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Revisiting the divergent multipole expansion of atom-surface interactions:
Hydrogen and positronium, α-quartz, and physisorption
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We revisit the derivation of multipole contributions to the atom-wall interaction previously presented in Łach
et al. [G. Łach, M. DeKieviet, and U. D. Jentschura, Phys. Rev. A 81, 052507 (2010)]. A careful reconsideration
of the angular momentum decomposition of the second-, third-, and fourth-rank tensors composed of the
derivatives of the electric-field modes leads to a modification for the results for the quadrupole, octupole,
and hexadecupole contributions to the atom-wall interaction. Asymptotic results are given for the asymptotic
long-range forms of the multipole terms, in both the short-range and long-range limits. Calculations are carried
out for hydrogen and positronium in contact with α-quartz; a reanalysis of analytic models of the dielectric
function of α-quartz is performed. Analytic results are provided for the multipole polarizabilities of hydrogen
and positronium. The quadrupole correction is shown to be numerically significant for atom-surface interactions.
The expansion into multipoles is shown to constitute a divergent, asymptotic series. Connections to van der Waals
corrected density-functional theory and applications to physisorption are described.
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I. INTRODUCTION

Multipole corrections to the atom-surface interactions have
been considered in Ref. [1], with an application to helium
interacting with α-quartz. The theory of atom-surface inter-
actions is well known, for both perfect conductors as well as
realistic dielectric materials (see Refs. [2–9], pp. 261–263 of
Ref. [10], and Ref. [1]). In Ref. [1], the quadrupole, octupole,
and hexadecupole contributions to the atom-wall interaction
were evaluated. Here, we update the analysis presented in
Ref. [1] with an emphasis on the isolation of angular momen-
tum components of the quantized electric field near the wall.

Let us discuss the basis for the update, in terms of the
initial expressions used for the evaluations, both for the cases
discussed in Ref. [1] as well as for the modifications dis-
cussed here. Specifically, according to Eq. (22) of Ref. [1] (in
accordance with Ref. [10]), the dipole part of the atom-wall
interaction can be expressed as follows:

E�=1 = −1

2

∑
�kλ

∑
i

α�=1(ω)
∣∣Ei

�kλ
(�r)

∣∣2
, (1)

where �E�kλ
(�r) is the (in general complex) mode function of

the electric field near the wall, �k is the wave vector, and λ is
the polarization. The index i enumerates the Cartesian com-
ponents. The dipole polarizability of the atom is α�=1(ω) =
α1(ω), and it is evaluated at the angular frequency ω = ωk =
c |�k|, where c is the speed of light. The mode function �E�kλ

(z)
of the electric field is related to the mode function �A�kλ

(z) of
the vector potential by the relation

�E�kλ
(�r) = iωk �A�kλ

(�r), (2)

with the mode functions in Eqs. (18)–(20) of Ref. [1]. The
formalism for the treatment of the dipole contribution is well
established.

The starting point for the analysis of the quadrupole,
octupole, and hexadecupole corrections to the atom-wall in-
teraction has been given by Eq. (8) of Ref. [1] as follows:

E�=2 = − 1
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where ∇ j ≡ ∂/∂x j and the indices i and j stand for the
Cartesian components, and α2 is the quadrupole polarizability
of the atom. We reserve the index i for the component of the
electric field. The octupole energy shift has been analyzed in
Ref. [1] based on the expression

E�=3 = − 1

180
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∑
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α3(ω)
∣∣∇ j∇kE i

�kλ
(�r)

∣∣2
, (4)

where α3 = α�=3 is the octupole polarizability of the atom.
The expressions (3) and (4) need to be substantiated by
the specification of the angular momentum component rel-
evant to the analysis. Namely, the virtual atomic transitions
contributing to the quadrupole, octupole, and hexadecupole
polarizabilities of the atom connect the atomic ground state
to virtual states with angular momenta � = 2 and 3. However,
when one calculates sums such as∑

i j

∣∣∇ jE i
�kλ

(�r)
∣∣2

, (5)

without separating the (� = 2) component of the second-rank
tensor ∇ jE i first, then one sums over the � = 0 and 1 compo-
nents of the second-rank tensor T ji = ∇ jE i as well. While
the proper isolation of the angular momentum components
does not change the functional form of the results reported
in Ref. [1], some prefactors receive modifications. For the
quadrupole term, the proper isolation of the � = 2 component
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leads to the modified expression

E�=2 = − 1
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where the � = 2 component of a tensor is given by the trace-
less, symmetric component as follows:

T i j |�=2 = 1
2 (T i j + T ji ) − 1

3 δi j Tr(T ), (7)

δi j is the Kronecker delta, and Tr(T ) = ∑
i T ii is the trace.

The octupole term is substantiated by the expression

E3 = − 1
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where the isolation of the octupole (� = 3) component of
a third-rank tensor has recently been discussed by Itin and
Reches in Ref. [11]. The isolation of the � = 3 component
of a third-rank tensor is not completely trivial. The modified
expressions given in Eqs. (6) and (8) have phenomenological
consequences which are discussed in the following.

Finally, the hexadecupole energy shift is calculated as
follows:

E4 = − 1

5040
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. (9)

The isolation of the � = 4 component from a Cartesian tensor
is discussed in Ref. [12].

We use Système International (SI mksA) units in the fol-
lowing, before we switch to atomic units in Sec. IV. The
basis for the treatment of multipole interactions is discussed
in Sec. II, the case of a perfect conductor is discussed in
Sec. II B, and dielectric materials are discussed in Sec. III. In-
teractions with hydrogen and positronium atoms are discussed
in Sec. IV. Conclusions are drawn in Sec. V.

II. MULTIPOLE INTERACTIONS

A. General formulation

In order to put things into perspective, and in terms of some
orientation, we briefly review the concept of the multipole
oscillator strength, inspired by Chap. 5 of Ref. [13]. The
2�-pole polarizability is written as

α�(ω) = 1

2� + 1

∑
m

〈
1S

∣∣∣∣Q�m

(
1

H − E1S + h̄ω

+ 1

H − E1S − h̄ω

)
Q∗

�m

∣∣∣∣1S

〉
, (10)

where the Q�m tensor is given as

Q�m =
∑

a

e

√
4π

2� + 1
ra Y�m(r̂a), (11)

the ra are the electron coordinates, and the sum over a runs
over the atomic electrons. The spherical harmonic is Y�m, and
the shorthand notation r̂a summarizes the polar and azimuthal
angles θa and ϕa which define r̂a uniquely, and vice versa.
Here,

T i j |�=2 = 1
2 (T i j + T ji ) − 1

3 δi j trc(T ) (12)

is the traceless quadrupole component of a general tensor T i j .
The octupole energy shift (� = 3) is evaluated according to
Eq. (8):

E3 = − 1

180
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The � = 3 component can be extracted from a third-rank
tensor T i jk as follows. One first decomposes T i jk into a totally
symmetric part Si jk , a totally skew-symmetric part Ai jk , and a
remainder term Ni jk :

Si jk = T (i jk) (14a)

= 1
6 (T i jk + T jki + T ki j + T jik + T k ji + T ik j ),

Ai jk = T [i jk] (14b)

= 1
6 (T i jk + T jki + T ki j − T jik − T k ji − T ik j ),

Ni jk = T [i jk] − Si jk − Ai jk . (14c)

The matrix Si jk contains both components with � = 1 and
3. One then forms a vector αk which one promotes to a
matrix Ki jk :

αk = δi j Si jk = 1
3 (δi j T i jk + δi j T ik j + δi j T ki j ),

Ki jk = 1
5 (αi δ jk + α j δik + αk δi j ). (15)

Finally, the � = 3 component which we need for our consid-
erations is obtained as

T i jk|�=3 = Si jk − Ki jk . (16)

For the hexadecupole energy shift, we need the � = 4 compo-
nent of the Cartesian tensor:

T i jk� = ∇ i∇ j∇kE �
�kλ

(�r). (17)

It can be calculated as follows [12]:

T i jk�|�=4 = T (i jk�) − 1
7 (δi jT (ρρk�) + δikT (ρρ j�) + δi�T (ρρ jk)

+ δ jkT (ρρi�) + δ j�T (ρρik) + δk�T (ρρi j) )

+ 1
35 (δi jδk� + δikδ j� + δi�δ jk )T (ρρσσ ). (18)

Here, the Einstein summation is understood, with dummy
indices (ρ and σ ) being summed over. Furthermore, the sym-
metrization of a tensor is defined as follows:

T (i jk�) = 1
24 [T i jk� + T i j�k + T ik j� + T ik� j + T i� jk + T i�k j + T jik� + T ji�k + T jki� + T jk�i + T j�ik + T j�ki + T ki j� + T ki� j

+ T k ji� + T k j�i + T k�i j + T k� ji + T �i jk + T �ik j + T � jik + T � jki + T �ki j + T �k ji]. (19)

For the case � = 4, just as is the case for � = 3, the isolation of the component of highest angular momentum is a nontrivial
exercise [12].
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B. Perfect conductor

Based on the formalism outlined in Secs. I and II, and in Chap. 5 of Ref. [13], it is relatively straightforward to evaluate
the atom-wall interaction for a perfect conductor. We first recall the known result for the atomic-dipole contribution, e.g., from
Eq. (27) of Ref. [1]:

E1(z) = − h̄

16π2ε0z3

∫ ∞

0
dω α1(iω)

[
1 + 2ωz

c
+ 2

(
ωz

c

)2
]

exp

(
−2ωz

c

)
. (20)

The � = 2 contribution to the energy shift is as follows:

E2(z) = − h̄

16π2ε0z5

∫ ∞

0
dω α2(i ω) exp

(
−2ωz

c

)[
3

4
+ 3

2

ωz

c
+ 4

3

(
ωz

c

)2

+ 2

3

(
ωz

c

)3

+ 1

6

(
ωz

c

)4
]
. (21)

This result constitutes a correction to a result previous derived in Eq. (32) of Ref. [1]. For the octupole term, we have

E3(z) = − h̄

16π2ε0z7

∫ ∞

0
dω α3(i ω)e−2ωz/c

[
2

3
+ 4

3

ωz

c
+ 92

75

(
ωz

c

)2

+ 152

225

(
ωz

c

)3

+ 6

25

(
ωz

c

)3

+ 4

75

(
ωz

c

)4

+ 4

675

(
ωz

c

)6]
.

(22)

For large distances, the multipole polarizabilities are suppressed by higher powers of z. Specifically, the 2�-pole contribution
scales as z−2�+1 in the short-range limit and as z−2�+2 for z → ∞. The general structure of the short-range asymptotic limit is
given in Eq. (52), in the limit ε(iω) → ∞, which has the same functional dependence but a different prefactor than Eq. (49)
of Ref. [1]. In the context of the current paper, it is useful to clarify that we understand by short range (see also Ref. [1]) the
distance regime a0 � z � a0/α, where a0 is the Bohr radius and α is the fine-structure constant. As explained in Ref. [14], the
first inequality a0 � z should be taken with a grain of salt in this context; the short-range expressions derived below are actually
valid down to distance regions of a few angstroms away from the surface [14,15]. From the point of view of physisorption, what
we refer to as the short-range regime rather constitutes a long-range distance [14,15]. By contrast, the long-range regime as
considered in the current paper refers to atom-surface distances z 	 a0/α.

Finally, on the basis of Eqs. (9) and (18), while employing, otherwise, the formalism of Ref. [1], the hexadecupole energy
shift is obtained as follows:

E4(z) = − h̄

16π2ε0z9

∫ ∞

0
dω α4(i ω)e−2ωz/c

[
5

8
+ 5

4

ωz

c
+ 115

98

(
ωz

c

)2

+ 100

147

(
ωz

c

)3

+ 79

294

(
ωz

c

)4

+ 11

147

(
ωz

c

)5

+ 32

2205

(
ωz

c

)6

+ 4

2205

(
ωz

c

)7

+ 1

8820

(
ωz

c

)8]
. (23)

This concludes the discussion of interactions with a perfect
conductor.

III. DIELECTRIC SURFACE

A. Dipole term

In order to analyze the multipole contributions for a dielec-
tric, one consults the transverse electric (TE) and transverse
magnetic (TM) modes given in Eqs. (18)–(20) of Ref. [1]. In
this case, TE stands for incident waves whose electric field
is transverse to the plane of incidence, whereas TM stands
for waves whose magnetic field is transverse to the plane of
incidence. The calculation is described in detail in Ref. [1].
For given wave vector �k, one has two polarization vectors,
one for the the TE mode, and another one for the TM mode.
With these ideas in mind, it is relatively easy to rederive the
following result for a dipole polarizable particle in contact

with a dielectric surface:

E1(z) = − h̄

8π2ε0 c3

∫ ∞

0
dω ω3 α1(iω)

×
∫ ∞

1
d p exp

(
−2 pω z

c

)
H (ε(iω), p), (24)

where

H (ε, p) =
√

ε − 1 + p2 − p√
ε − 1 + p2 + p

+ (1 − 2p2)

√
ε − 1 + p2 − p ε√
ε − 1 + p2 + p ε

. (25)

For the convenience of the reader, a remark might be in
order. Namely, in order to obtain Eq. (24) from Ref. [2],
one sets, in Ref. [2], ε2(ω) = 1 + NV α1(ω)/ε0, for material
number 2, and one expands to first order in the volume density
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NV = N/V , where N is the number of atoms and V is the
volume, and one applies the principle of virtual work. This
leads to the potential given in Eq. (24). The connection of
Ref. [2] to the atom-surface interaction was also pointed out
in Ref. [14], in Ref. [5], and in the second paragraph of p. 6
of Ref. [16]. Specifically, after the pioneering paper Ref. [2],
steps toward the calculation of the long-range and short-range
limits of Eq. (24) were considered in Eqs. (4.37)–(4.39) of
Ref. [5], and in Eqs. (3) and (4) of Ref. [17]. The interpolating
formula (24) has been been given in Eqs. (18) and (21) of
Ref. [18], and in Eqs. (63a) and (63b) of Ref. [1].

It is useful to investigate the function

K (ε, z) =
∫ ∞

1
d p exp

(
−2 pω z

c

)
H (ε, p). (26)

For ε → ∞, we have H (ε, p) ≈ 2 p2, and

K (ε, z)
ε→∞≈ 1

2

(
c

zω

)3
[

1 + 2
zω

c
+ 2

(
zω

c

)2
]
, (27)

which shows that the formula (34) is consistent with the result
for the dipole interaction with a perfect conductor. For z → 0,
we have, on the other hand,

K (ε, z) = 1

2

(
c

z ω

)3
ε − 1

ε + 1
+ O(z−1). (28)

Inserting (28) into (34), we have the short-range limit as

E1(z)
z→0= − h̄

16π2 ε0 z3

∫ ∞

0
dω α1(iω)

ε(iω) − 1

ε(iω) + 1
. (29)

The long-range limit is obtained as a function of the static
polarizability α(0) and the static dielectric function ε(0) as
follows:

E1(z)
z→∞= − 3ch̄ α1(0)

32π2 ε0 z4
�1(ε(0)). (30)

Here, �1(ε) is a function which is normalized to unity in the
limit ε(0) → ∞ (limit of a perfect conductor) and which can
otherwise be expressed as follows:

�1(ε) = A1(ε) + B1(ε) ln

(√
ε − 1 − √

ε + 1√
ε − 1 + √

ε − 1

)

+ C1(ε) ln

(√
ε + 1 − √

ε + 1√
ε + 1 + √

ε − 1

)
. (31)

The coefficients involve both fractional and integer powers
of ε:

A1(ε) = 6ε2 − 3ε3/2 − 4ε − 3
√

ε + 10

6(ε − 1)
, (32a)

B1(ε) = 2ε3 − 4ε2 + 3ε + 1

2(ε − 1)3/2
, (32b)

C1(ε) = − ε2

√
ε + 1

. (32c)

The expansion about the perfect-conductor limit is

�1(ε) = 1 − 5

4
√

ε
+ 22

15ε
+ O

(
1

ε3/2

)
, (33)

which is tantamount to an expansion about a large static di-
electric function ε ≡ ε(0). We emphasize that the long-range
limit is consistent with Eqs. (4.37)–(4.39) of Ref. [5], with
Eq. (23) of Ref. [18], and with Eqs. (27)–(29) of Ref. [19].

B. Quadrupole term

The generalization to the quadrupole polarizability reads as
follows:

E2(z) = − h̄

16π2 ε0 c5

∫ ∞

0
dω ω5 α2(iω)

×
∫ ∞

1
d p e−2pωz/c

(
p2

2
− 1

3

)
H (ε(iω), p). (34)

In the perfect conductor limit (ε → ∞), this result is in agree-
ment with the previously derived result given in Eq. (21). The
short-range limit reads as follows:

E2(z)
z→0= − 3h̄

64π2 ε0 z5

∫ ∞

0
dω α2(iω)

ε(iω) − 1

ε(iω) + 1
. (35)

The long-range limit is obtained as

E2(z)
z→∞= − 35ch̄ α2(0)

384π2 ε0 z6
�2(ε(0)), (36)

where �2 has the same structure as �1:

�2(ε) = A2(ε) + B2(ε) ln

(√
ε − 1 − √

ε + 1√
ε − 1 + √

ε − 1

)

+ C2(ε) ln

(√
ε + 1 − √

ε + 1√
ε + 1 + √

ε − 1

)
. (37)

The coefficients are given as follows:

A2(ε) = 1

140(ε − 1)2
[−120ε4 + 60ε7/2 + 380ε3 − 180ε5/2

− 364ε2 + 75ε3/2 + 348ε + 75
√

ε − 224],

(38a)

B2(ε) = 3

28

8ε5 − 28ε4 + 40ε3 − 34 ε2 + 7ε + 5

(ε − 1)5/2
, (38b)

C2(ε) = 3

7

ε2(2ε − 1)√
ε + 1

. (38c)

The expansion about the perfect-conductor limit is

�2(ε) = 1 − 31

28
√

ε
+ 338

245ε
+ O

(
1

ε3/2

)
. (39)
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C. Octupole term

For the interaction with a dielectric surface, the octupole energy shift reads as follows:

E3(z) = − h̄

16π2 ε0 c7

∫ ∞

0
dω ω7α3(iω)

∫ ∞

1
d pe−2pωz/c

(
8

135
p4 − 16

225
p2 + 4

225

)
H (ε(iω), p). (40)

The calculation of the dielectric response function for imaginary input frequencies is a nontrivial problem. The short-range limit
is given by the expression

E3(z)
z→0= − h̄

24π2 ε0 z7

∫ ∞

0
dω α3(iω)

ε(iω) − 1

ε(iω) + 1
. (41)

The long-range limit is

E3(z)
z→∞= − 77ch̄ α3(0)

800π2 ε0 z8
�3(ε(0)), (42)

where �3 reads as follows:

�3(ε) = A3(ε) + B3(ε) ln

(√
ε − 1 − √

ε + 1√
ε − 1 + √

ε − 1

)
+ C3(ε) ln

(√
ε + 1 − √

ε + 1√
ε + 1 + √

ε − 1

)
. (43)

The coefficients are given as follows:

A3(ε) = 1

11 088(ε − 1)3

[
− 2520ε11/2 − 28 560ε5 + 13 860ε9/2 + 66 528ε4 − 31 290ε7/2 − 76 336ε3 + 29 120ε5/2 + 62 016ε2

− 2415ε3/2 − 48 675ε − 6195
√

ε + 19 888

]
, (44a)

B3(ε) = 5

528(ε − 1)7/2
[48ε7 − 288ε6 + 712ε5 − 976ε4 + 890ε3 − 444ε2 + 5ε + 59], (44b)

C3(ε) = − 5

33

3ε2 − 6ε + 1√
ε + 1

. (44c)

The expansion about the perfect-conductor limit is

�3(ε) = 1 − 265

264
√

ε
+ 914

693ε
+ O

(
1

ε3/2

)
. (45)

D. Hexadecupole term

For the interaction with a dielectric surface, the octupole energy shift reads as follows:

E4(z) = − h̄

16π2 ε0 c9

∫ ∞

0
dω ω9α4(iω)

∫ ∞

1
d pe−2pωz/c

(
1

252
p6 − 1

147
p4 + 1

294
p2 − 1

2205

)
H (ε(iω), p). (46)

The short-range limit is

E4(z)
z→0= − 5h̄

128π2 ε0 z9

∫ ∞

0
dω α4(iω)

ε(iω) − 1

ε(iω) + 1
. (47)

The long-range limit is obtained as

E4(z)
z→∞= − 1287ch̄ α4(0)

12544π2 ε0 z10
�4(ε(0)), (48)

where �4 reads as follows:

�4(ε) = A4(ε) + B4(ε) ln

(√
ε − 1 − √

ε + 1√
ε − 1 + √

ε − 1

)
+ C4(ε) ln

(√
ε + 1 − √

ε + 1√
ε + 1 + √

ε − 1

)
. (49)
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The coefficients are given as follows:

A4(ε) = 1

205 920(ε − 1)4

[
− 40 320ε8 + 20 160ε15/2 + 369 600ε7 − 181 440ε13/2 − 1 338 624ε6 + 641 760ε11/2

+ 2 670 816ε5 − 1 252 440ε9/2 − 3 242 464ε4 + 1 409 520ε7/2 + 2 767 936ε3 − 690 270ε5/2 − 2 110 464ε2

− 62 265ε3/2 + 1 300 000ε + 118 125ε1/2 − 376 480

]
, (50a)

B4(ε) = − 7

4576(ε − 1)9/2
[128ε9 − 1216ε8 + 4608ε7 − 9600ε6 + 12 720ε5 − 12 120ε4 + 8080ε3 − 2580ε2 − 405ε + 375],

(50b)

C4(ε) = 7

143

4ε3 − 18ε2 + 12ε − 1√
ε + 1

. (50c)

The expansion about the perfect-conductor limit is

�4(ε) = 1 − 1323

1430
√

ε
+ 18 050

14 157ε
+ O

(
1

ε3/2

)
. (51)

E. Some general short-range results

In the short-range limit, a few simplifications and general-
izations are possible, especially in regard to two-body bound
systems like hydrogen and positronium. First, we may point
out the generalization of the short-range expressions given
in Eqs. (29), (35), (41), and (47), to arbitrary multipole or-
ders. Indeed, the general result for the 2�-pole effect reads as
follows:

E�(z)
z→0= − h̄

16π2 ε0 z2�+1

� + 1

2�

∫ ∞

0
dω α�(iω)

ε(iω) − 1

ε(iω) + 1
.

(52)

This result has the same functional form as Eq. (49) of
Ref. [1], but a different, updated prefactor.

IV. CALCULATION OF MULTIPOLE CORRECTIONS

A. Multipoles for hydrogen and positronium

We aim to give an update on multipole corrections to
atom-surface interactions, beyond the discussion in Ref. [1].
Hydrogen and positronium constitute atomic systems for
which the exact evaluation of multipole polarizabilities is
possible analytically (see the Appendix). Hence, we focus on
these two atomic systems, for definiteness, while stressing that
other atomic systems could be more interesting from the point
of view of applications (see Sec. IV C). The derivation of the
multipole polarizabilities of hydrogen and positronium uses
the Sturmian decomposition of the Schrödinger-Coulomb
Green function, and the evaluation of radial matrix elements,
according to the formalism outlined in Chap. 4 of Ref. [13].
In order to ensure concise formulas, we now switch to atomic
units (see Chap. 2 of Ref. [13]) with a0 = 1, Eh = 1, ε0 =
1/(4π ), h̄ = 1, and e = 1 (unit elementary charge).

Using the results given in the Appendix, we are now in
the position to derive some more closed-form expressions for
interactions with a perfect conductor, i.e., in the limit ε(iω) →
∞. Specifically, for multipole interactions with atomic hydro-

gen, one obtains the following result for the integral over the
2�-pole polarizability:

∫ ∞

0
dω α�(iω) = π �(2� + 3)

22�+1 (2� + 1)

a2�
0

h̄
. (53)

The general result for the 2�-pole energy shift for hydrogen
interacting with a perfect conductor thus is as follows:

E (H)
� (z)

z→0,ε→∞= − (� + 1) �(2� + 3)

22�+4 � (2� + 1)

Eh

(z/a0)2�+1
. (54)

Here, Eh is the Hartree energy, and a0 is the Bohr radius.
The ratio z/a0 is equal to the atom-wall distance, expressed
in atomic units (see Chap. 2 of Ref. [13]). For positronium,
one obtains the result

E (Ps)
� (z)

z→0,ε→∞= − (� + 1) �(2� + 3)

16 � (2� + 1)

Eh

(z/a0)2�+1
. (55)

In the short-range regime, the expansion into multipoles con-
stitutes an expansion in powers of a0/z, where a0 is the Bohr
radius and z is the atom-wall distance.

The general results given in Eqs. (54) and (55) demon-
strate that the sum over the multipole potentials (at least for
hydrogen and positronium interacting with a perfect conduc-
tor) constitutes a divergent, asymptotic series. The divergence,
for any distance z, happens due to the factorial growth of
the prefactor �(2� + 3). Optimal truncation of the multipole
expansion at the smallest term of the series then constitutes
a valid procedure for obtaining theoretical predictions [21],
while Borel summation can be used in order to sum the diver-
gent series [22].

B. Hydrogen, positronium, and α-quartz

We aim to combine the analysis of the multipole polariz-
abilities given in the Appendix and Sec. IV A with an update
on α-quartz [1]. For the data presented in Ref. [20], we used
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FIG. 1. A reanalysis of the dielectric function of α-quartz (ordinary axis) is performed based on Eq. (58), with fitting parameters given
in Table I. The angular frequency is measured in atomic units, i.e., in units of Eh/h̄, where Eh is the Hartree energy and h̄ is the reduced
Planck constant. The panels refer to the (a) lattice resonance region, real part of ρ(ω); (b) lattice resonance region, imaginary part of ρ(ω);
(c) interband region, real part of ρ(ω); and (d) interband region, imaginary part of ρ(ω). The data points are taken from Ref. [20], while the
solid curve is described by Eq. (58), with parameters given in Table I.

the following fit formula discussed in Ref. [1]:

ρ(ω) ≡ ε(ω) − 1

ε(ω) + 2
= [n(ω) + i k(ω)]2 − 1

[n(ω) + i k(ω)]2 + 2

�
n∑

k=1

αk ω2
k

ω2
k − i γk ω − ω2

. (56)

Here, n(ω) are k(ω) are the dispersive and absorptive parts of
the index of refraction, while the functional form is inspired
by the Clausius-Mossotti equation. We take the opportunity
to point out the missing factor ω2

k in the numerator of the
fitting function given in Eq. (70) of Ref. [1]. The missing
prefactor had previously been supplemented in Eq. (21) of
Ref. [23]. For completeness, it might be useful to point out
that the expression [ε(ω) − 1]/[ε(ω) + 1], which appears in
the integrand of the short-range expressions (29), (35), (41),
and (47), can be obtained from ρ(ω) as follows:

ε(ω) − 1

ε(ω) + 1
= 3ρ(ω)

ρ(ω) + 2
. (57)

For intrinsic silicon [19], we have recently found that a better
analytic representation can be obtained based on the following
fit formula:

ρ(ω) �
n∑

k=1

αk (ω2
k − i γ ′

k ω)

ω2
k − i γk ω − ω2

(58)

where the expression [αk (ω2
k − i γ ′

k ω)] can be regarded as a
complex oscillator strength that includes a phenomenological
model of radiative reaction [19]. We find that such a model
represents the data from Ref. [20] very well (see Figs. 1 and
2, as well as Table I). This finding is nontrivial in view of
the necessity for any fit function to fulfill the Kramers-Kronig
relationships (see, e.g., Chap. 6 of Ref. [24]), which relate
the real and imaginary parts of ρ and ε. The functional form
of our model (58) fulfills the Kramers-Kronig relationships
automatically. While the oscillator strengths and resonance
frequencies for vibrational excitations differ in between the
ordinary and the extraordinary axis of α-quartz (see Table I),
we find that the influence of the low-frequency vibrational
excitations on the leading short-range expansion coefficients
reported below is numerically negligible. Similar approaches
as described by Eq. (58) have been discussed (for rutile) in
Eq. (1) of Ref. [25], in Eq. (4) of Ref. [26] (for cubic thallium),
in Eq. (1) of Ref. [27] (for sodium nitrate), and in Eq. (5) of
Ref. [28] (for orthorhombic sulfur).

We are now in the position to analyze the multipole
corrections for α-quartz. In general, we can say that these
intriguing corrections to atom-surface interactions have gen-
erated considerable interest [see, e.g., Ref. [29], Eq. (2)
of Ref. [15], and Eq. (8) of Ref. [30]]. In order to put
this finding into perspective, we should point out that it
has recently become possible to calculate the multipole
corrections to polarizabilities more accurately from first prin-
ciples, for general multielectron atoms [31]. In this paper, in

012802-7



ULRICH D. JENTSCHURA PHYSICAL REVIEW A 109, 012802 (2024)

TABLE I. We indicate the coefficients for the first few resonances for α-quartz according to the fitting formula (58), for the ordinary and
the extraordinary optical axis. The values for ωk , γk , and γ ′

k are measured in atomic units, i.e., in units of Eh/h̄. The subscript k numbers the
resonances.

k αk ωk γk γ ′
k

Ordinary axis: Vibrational excitations

1 1.045×10−2 1.827×10−3 1.301×10−5 1.631×10−5

2 8.541×10−2 2.218×10−3 1.835×10−5 −1.528×10−6

3 2.022×10−3 3.180×10−3 4.026×10−5 1.019×10−4

4 1.111×10−2 3.668×10−3 3.381×10−5 3.423×10−5

5 5.850×10−2 5.234×10−3 3.959×10−5 −3.881×10−5

6 4.472×10−2 5.339×10−3 3.776×10−5 4.041×10−4

Ordinary axis: Interband excitations

7 1.341×10−2 3.899×10−1 1.423×10−2 −1.195×10−1

8 8.086×10−2 4.287×10−1 9.996×10−2 4.432×10−1

9 1.568×10−2 5.245×10−1 5.322×10−2 7.333×10−1

10 2.520×10−1 6.270×10−1 9.280×10−2 8.041×10−1

11 1.772×10−1 8.237×10−1 4.981×10−1 −4.361×10−1

Extraordinary axis: Vibrational excitations

1 3.628×10−2 1.736×10−3 2.316×10−5 2.316×10−5

2 6.734×10−2 2.418×10−3 2.811×10−5 4.267×10−5

3 1.023×10−2 2.430×10−3 9.981×10−5 −3.154×10−3

4 1.114×10−2 3.578×10−3 3.594×10−5 2.118×10−3

5 1.026×10−1 5.307×10−3 4.383×10−5 2.533×10−4

Extraordinary axis: Interband excitations

6 1.351×10−2 3.899×10−1 1.428×10−2 −1.172×10−1

7 7.775×10−2 4.283×10−1 9.861×10−2 4.422×10−1

8 1.512×10−2 5.245×10−1 5.229×10−2 7.323×10−1

9 2.430×10−1 6.272×10−1 9.108×10−2 7.971×10−1

10 1.859×10−1 8.209×10−1 5.049×10−1 −4.160×10−1

order to facilitate the analysis of the multipole corrections, we
have evaluated exact expressions for hydrogen and positro-
nium up to the hexadecupole order (see the Appendix and
Sec. IV A).

It is indicated to include a brief discussion on the magni-
tude of the multipole corrections. We continue to use atomic
units. A priori, the short-range approximations are valid for
z � 1/α ≈ 137.036 in atomic units, i.e., for distances smaller
than about 137 Bohr radii [1,32]. The upper end of the
range of validity of the short-range, nonretarded approxima-
tion and its dependence on the atomic species has recently
been discussed in Ref. [33]. The leading term for the 2�-pole
multipole term is proportional to 1/z2�+1. It is well known
that Lifshitz theory cannot be used for arbitrarily close ap-
proach to the surface. The probability density of atomic wave
functions (for ground-state hydrogen atoms) decreases with
a probability |ψ |2 ∼ exp(−2r), where r is the distance from
the nucleus in atomic units. For a distance of z = 0.5 nm,
which is roughly equal to z = 10 in atomic units, one has
|ψ |2 ∼ 10−9, eliminating the overlap as a possible limiting
factor. It has been stressed in Ref. [14] that, for vanishing
overlap of the atomic wave function with the surface, the
exchange of electrons between the atom and the substrate
can be neglected, which, in turn, makes it possible to treat
the electrons (and nuclei) of the atom and the surface as
distinguishable. Furthermore, in the seminal paper Ref. [14],
it has been stressed in remarks following Eq. (2.39) that even

for separations typically encountered in physisorption (≈4–7
Bohr radii) the formula V (z) ≈ −C3/(z − z0)3 is applicable.
Here, C3 is given implicitly in Eq. (29). Here, z0 is the position
of a suitably defined reference plane given by Eq. (2.38) of
Ref. [14]. The position of the reference plane (see also Fig. 1
of Ref. [14]) is given by an integral which depends on both
the susceptibility of the atom and also [via the integral given
in Eq. (2.28) of Ref. [14]] the susceptibility of the solid.
One accepted path toward the calculation of physisorption
energies has involved the addition of an ultrashort-range
(overlap) contribution to the energy, which is calculated on
the basis of density-functional (DFT) theory, and the van der
Waals energy, the latter being calculated according to the
ideas outlined in Ref. [14]. One possible pathway toward
the calculation of the contact contribution (the DFT part) is
based on DFT-GGA, where GGA stands for the generalized
gradient approximation [34]. The entire procedure is often
referred to as the van der Waals corrected DFT approach
[35–38]. A calculation of the reference-plane position z0 for
α-quartz is beyond the scope of the current paper. We merely
use an exemplary distance of z = 10 a.u. for the calculations
reported below, in order to illustrate the magnitude of the
multipole corrections for close approach, and furthermore,
assume positronium to be at rest (see Refs. [39,40]).

We can thus use an exemplary distance of z = 10 a.u., in
order to analyze the magnitude of the multipole corrections.
A further remark is in order. It has recently been shown in
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FIG. 2. We present the analog of Fig. 1, but for the extraordinary axis. Specifically, the dielectric function of α-quartz (extraordinary axis)
is analyzed based on Eq. (58), with fitting parameters given in Table I. The angular frequency is measured in atomic units, i.e., in units of Eh/h̄,
where Eh is the Hartree energy and h̄ is the reduced Planck constant. The panels refer to the (a) lattice resonance region, real part of ρ(ω);
(b) lattice resonance region, imaginary part of ρ(ω); (c) interband region, real part of ρ(ω); and (d) interband region, imaginary part of ρ(ω).
The data points are taken from Ref. [20], while the solid curve is described by Eq. (58), with parameters given in Table I.

Ref. [32] that higher-order terms in the atom-surface potential
contain logarithms of the atom-wall distance, ln(z), leading
to a semianalytic expansion of the atom-surface potential in
powers of z and ln(z), described by coefficients with two
indices. Hence, we will refer to the leading short-range coeffi-
cient multiplying for the atom-surface dipole and quadrupole
terms as C30 and C50 (rather than C3 and C5), where the first
index counts the power of z and the second index (equal to
zero) indicates the absence of a logarithm [32].

For a perfect conductor, we thus write the relations

E1(z) ≈ −C30

z3
, E2(z) ≈ −C50

z5
, 1 � z � α−1, (59)

with the following exemplary results (for the dipole and
quadrupole coefficients) for perfect conductors [see Eqs. (54)
and (55)]:

C(H)
30

ε→∞= 1
4 , C(H)

50
ε→∞= 27

32 , (60)

C(Ps)
30

ε→∞= 1, C(Ps)
50

ε→∞= 27
2 . (61)

For α-quartz, we refer to Tables II and III for the multi-
pole coefficients. For positronium, at z = 10 a.u., one has the
following ratio of the quadrupole corrections to the leading
dipole term:

E (Ps)
2 (z = 10)

E (Ps)
1 (z = 10)

= C(Ps)
50

C(Ps)
30 × (10)2

=
{

0.135 (conductor)
0.124 (α-quartz) .

(62)

A deviation by 13.5% is larger than the uncertainty of many
current measurements of the dielectric function of materials
[41]. For hydrogen, the quadrupole correction is

E (H)
2 (z = 10)

E (H)
1 (z = 10)

= C(H)
50

C(H)
30 × (10)2

=
{

0.0336 (conductor)
0.0296 (α-quartz) , (63)

which is of the order of a few percent. These observations
are consistent with the literature [15]. In the study of atom-
wall interactions, atomic systems with an exceptionally large
static polarizability have attracted considerable attention. One
example is metastable helium (in the metastable spin-triplet
state) with a static polarizability of 315 a.u. (see Ref. [42]).
For such systems, one can expect even larger corrections due

TABLE II. Coefficient C(2�+1)0 multiplying the leading term for
the 2�-pole contribution to the atom-surface interaction given in
atomic units, for hydrogen interacting with a (perfect) conductor, and
with α-quartz.

C(2�+1)0 for hydrogen

� = 1 � = 2 � = 3 � = 4

Conductor 0.250 0.844 7.50 123
α-quartz 0.0599 0.178 1.48 23.4
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TABLE III. Same as Table II for positronium.

C(2�+1)0 for positronium

� = 1 � = 2 � = 3 � = 4

Conductor 1.00 13.5 480 31500
α-quartz 0.302 3.73 127 8130

to quadrupole effects. Investigations in these directions are
currently in progress. In the current section, we restrict our
attention to hydrogen and positronium, for which the multi-
pole polarizabilities can be evaluated in closed analytic form
(see the Appendix).

C. Applications to physisorption

As already outlined above, the application of van der Waals
corrected density-functional theory to the adsorption of rare
gases on surfaces is a standard process in surface physics
[14,34–37,43]. In this context, one adds the van der Waals
energy which is due to the interaction with all atoms in the
solid, evaluated at the adsorption coordinate, to a DFT term,
which results from the interaction with the nearest neighbors
at the adsorption site. This approach had been mentioned in
the text in the upper right column of p. 2280 of Ref. [14]. The
method has been further developed over a couple of decades;
the justification for this approach and the general theoretical
background are discussed in Refs. [14,15,34–38,43,44].

One of the most important results of the current paper is
the additional factor (� + 1)/(2�) in Eq. (54) as compared to
the results communicated in Ref. [1]. This correction factor
evaluates to 3/4 for the quadrupole term. This correction
factor also affects a few results recorded in the literature, for
example, the C5 coefficients reported in Ref. [31]. In Ref. [14],
the authors take into account the effect of the reference plane
at z0 in the modified expansion

V (z) = − C3

(z − z0)3
− C′

5

(z − z0)5
− · · · , (64)

where C′
5 = C5 + 6C3z2

0, and C5 is the quadrupole coefficient
from Eq. (54), which reads as follows (in atomic units):

C5 = 3

16π

∫ ∞

0
dω α2(iω)

ε(iω) − 1

ε(iω) + 1
. (65)

Let us consider two examples taken from Table III of
Ref. [15], namely, Kr on Cu(111) and Ar on Pd(111). For Kr
on Cu(111), one has C3 = 0.558 and C′

5 = 3.963 in atomic
units according to Table III of Ref. [15], as well as zeq =
5.99 (equilibrium position) and z0 = 0.39. One can easily
solve for C5 = 3.453 (before correction) and C5 = 2.590
(after correction with the multiplicative factor 3/4). Adding
the result from DFT-GGA from Table III of Ref. [15], which
is 20.3 meV, one obtains the modified van der Waals corrected
adsorption energy of 121 meV which is even closer to the
value of 119 meV from Ref. [38] than the value of 126 meV
given in Table III of Ref. [15].

For Ar on Pd(111), one has C3 = 0.476 and C′
5 = 2.584

in atomic units according to Table III of Ref. [15], as well
as zeq = 5.59 (equilibrium position) and z0 = 0.26. One then

solves for C5 = 2.391 (before correction) and C5 = 1.793 (af-
ter correction). Adding the result for DFT-GGA from Table III
of Ref. [15], which is 14.9 meV, one obtains the modified van
der Waals corrected adsorption energy of 113 meV which is a
bit closer to the comparison value of 110 meV from Ref. [43]
than the value of 117 meV originally given in Table III of
Ref. [15]. Further considerations on adsorption energies are
currently in progress.

V. CONCLUSIONS

In this paper, we have (re)derived (see Ref. [1]) the
quadrupole, octupole, and hexadecupole corrections to the
atom-wall interaction, with a special emphasis on the isola-
tion of the relevant angular momentum components from the
derivative tensors of the electric field. The functional form of
our results is the same as the one obtained in in Ref. [1], but
important differences are obtained for the prefactors.

The general results for the dipole, quadrupole, octupole,
and hexadecupole contributions to the atom-wall interactions
have been given in Eqs. (24), (34), (40), and (46), respec-
tively. Short-range limits have been given for either term in
Eqs. (29), (35), (41), and (47), and the long-range limits
have been analyzed in Eqs. (30), (36), (42), and (48). For
the long-range limit, we have found rather concise formulas
for the dependence of the coefficient multiplying the term
proportional to z−2�−2, in terms of logarithms [see Eqs. (31),
(37), (43), and (49)]. The analytic results for the long-range
limit constitute an important addition to the results originally
reported in Ref. [1].

Furthermore, we find that the expansion into multi-
pole terms constitutes an asymptotic, divergent series [see
Eqs. (54) and (55)]. Series with factorially divergent coeffi-
cients can, in many cases, be summed using generalizations
of the Borel method [21,22]. Furthermore, a truncation of
the series at the smallest term yields an excellent approxi-
mation to the complete result, so that the divergent character
of the series is not an obstacle to the deduction of theoret-
ical predictions. We find that it is possible to express the
quadrupole, octupole, and hexadecupole polarizabilities of
hydrogen and positronium in closed analytic form (see the Ap-
pendix). This enables us to reanalyze multipole corrections,
with a special emphasis on hydrogen and positronium. We find
that the quadrupole correction is phenomenologically relevant
[see Eqs. (62) and (63)]. A concrete application is discussed
in in Sec. IV C. A reanalysis of the dielectric function of
α-quartz using the functional form given in Eq. (58) reveals
very good agreement with numerical data from Ref. [20]. For
the short-range coefficients of the multipole corrections to the
atom-surface interactions (perfect conductor and α-quartz),
we present results in Tables II and III. These data confirm
the rapid growth of the coefficients multiplying the multipole
corrections, both for interactions with perfect conductor and
α-quartz, consistent with the eventual factorial divergence of
the series. Applications to physisorption (van der Waals cor-
rected density-functional theory) are discussed in Sec. IV C.
The modified result for the quadrupole correction derived here
yields important corrections to results previously communi-
cated in Ref. [15].
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APPENDIX: MULTIPOLE POLARIZABILiTIES OF
HYDROGEN AND POSITRONIUM

Hydrogen and positronium constitute atomic systems for
which the exact evaluation of multipole polarizabilities is
possible analytically. Hence, we focus on these two atomic
systems, for definiteness, while stressing that other atomic
systems could be more interesting from the point of view
of applications (see Sec. IV C). In this Appendix, we use
atomic units (see Chap. 2 of Ref. [13]) with a0 = 1, Eh = 1,
ε0 = 1/(4π ), h̄ = 1 and e = 1 (unit elementary charge). The
atoms of interest are hydrogen and positronium. With tech-
niques outlined in Ref. [45] and in Chap. 4 of Ref. [13], it is
possible to derive closed-form expressions for hydrogen and
positronium which we use in the nonrelativistic and nonrecoil
limit. We consider the specialization of the tensor (11) to a
one-electron atom and work with the matrix element

Q(H)
� (ω) = 1

2� + 1

∑
m

〈
Q�m

1

H − E (H)
1S + ω

Q∗
�m

〉
1S

, (A1)

where the superscript indicates the atom (H stands for
hydrogen). From Q(H)

� (ω), one obtains the 2�-pole polarizabil-
ity as follows:

α
(H)
� (ω) = Q(H)

� (ω) + Q(H)
� (−ω). (A2)

The polarizability of positronium can be obtained from the
hydrogen result as follows:

α
(Ps)
� (ω) = 22�+1

[
Q(H)

� (2ω) + Q(H)
� (−2ω)

]
. (A3)

According to Eq. (4.154) of Ref. [13], the dipole term can be
expressed in terms of a variable t ,

Q(H)
1 (ω) = 2t2 p(1)(t )

3 (1 − t )5 (1 + t )4
+ 256 t9 f (t )

3 (1 + t )5 (1 − t )5
,

(A4)
where the photon energy is parametrized by the t variable:

t = t (ω) = 1√
1 + 2ω

. (A5)

The polynomial p(1)(t ) incurred in Eq. (A4) is

p(1)(t ) = 3 − 3t − 12t2 + 12t3 + 19t4 − 19t5 − 26t6 − 38t7.

(A6)

Within the representation in terms of the t variable, the transi-
tion to positronium amounts to the replacement t → t ′ where
t ′ = t ′(ω) = (1 + 4ω)−1/2. The quadrupole term reads as
follows:

Q(H)
2 (ω) = t2 p(2)(t )

5 (1 − t )7 (1 + t )6
− 4096 t11 (t2 − 4) f (t )

5 (t2 − 1)7
.

(A7)

The polynomial p(2)(t ) reads as follows:

p(2)(t ) = 45 − 45t − 285t2 + 285t3 + 786t4 − 786t5

− 1322t6 + 1322t7 + 2865t8 + 5327t9 − 553t10

− 1495t11. (A8)

The octupole term is

Q(H)
3 (ω) = 9 t2 p(3)(t )

7(1 − t )9(1 + t )8

− 36 864 t13 (t2 − 4) (t2 − 9) f (t )

7 (t2 − 1)9
. (A9)

It contains the polynomial p(3)(t ) which reads as follows:

p(3)(t ) = 70 − 70t − 595t2 + 595t3 + 2280t4 − 2280t5

− 5309t6 + 5309t7 + 9134t8 − 9134t9 − 24 077t10

− 49651t11 + 6532t12 + 20 092t13 − 323t14

− 1725t15. (A10)

Finally, the hexadecupole term reads as follows:

Q(H)
4 (ω) = t2 p(4)(t )

9(1 − t )11(1 + t )11

− 262 144 t15 (t2 − 4) (t2 − 9) (t2 − 16) f (t )

9 (t2 − 1)11
.

(A11)

The polynomial p(4)(t ) is given by

p(4)(t ) = 14 175 − 14 175t − 150 255t2 + 150 255t3

+ 732 060t4 − 732 060t5 − 2 191 500t6

+ 2 191 500t7 + 4 624 386t8 − 4 624 386t9

− 8 049 042t10 + 8 049 042t11 + 23 686 124t12

+ 51 811 348t13 − 7 367 996t14 − 24 613 572t15

+ 484 375t16 + 3 316 713t17 + 14 153t18

− 145 225t19. (A12)

The asymptotic limits are as follows. For high photon energy,
one obtains the result

Q(H)
� (ω) = 22�−1 �(2� + 3)

2� + 1

1

ω
+ O

(
1

ω2

)
. (A13)

By contrast, the result in the static limit is

Q(H)
� (ω = 0) = 2 (� + 2)

�(� + 1)
�(2� + 3), (A14)

for the general multipole order 2�. For the static value of the
polarizability, one multiplies the result given in Eq. (A14) by
a factor 2. The result (A14) can be used in Eqs. (30), (36),
(42), and (48), in order to obtain long-range asymptotics for
a perfect conductor. For positronium, one multiplies the result
given in Eq. (A14) by 22�+1 in order to obtain the static limit
of the 2�-pole polarizability of positronium.
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