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The wave function is the cornerstone of quantum theory, and various techniques have been proposed for
its direct measurement. The reconstruction of the wave function can be achieved by utilizing the real and
imaginary components of momentum weak value, which correspond to amplitude and phase differentiation,
respectively. However, these methods are limited in their applicability to wave functions with large phase
gradients due to the weak coupling condition, which is a fundamental constraint. In this paper, we propose a
method for reconstructing wave functions with large phase gradients based on optical differentiation through
weak measurement. We have developed a more generalized theory of phase differentiation and implemented a
common optical path and fast measurement for wave functions with large phase gradients. The experimental
detection of wave functions with varying phase gradients has validated the reliability of our method. This work
expands the range of applications for weak measurement while retaining its high resolution and sensitivity
advantages, particularly in the field of wavefront sensing.
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I. INTRODUCTION

The wave function, a fundamental concept in quantum
mechanics, has attracted a lot of interest of research. As a
complex variation, it can be measured indirectly by quantum
state tomography through a series of strong measurements
and information processing [1,2]. This method requires a
large number of measurement processes and it is diffi-
cult to realize the simultaneous measurement of the real
part (the amplitude) and the imaginary part (the phase) of
the wave function. In 2011, Lundeen et al. presented a
method to directly reconstruct the wave function based on
weak measurement [3]. Their scheme uses the real and the
imaginary parts of weak value [4,5], corresponding to the
wave function’s amplitude and phase. However, this method
theoretically necessitates an infinitely small pinhole and re-
quires scanning every position to get all the information. In
2015, Shi et al. proposed a scheme for directly measuring
wave function without scanning [6]. However, the experi-
ment relies on introducing a phase shift to one particular
momentum state, which presents significant implementation
challenges.

To address these problems, methods of wave-function re-
construction without scanning and manipulating a particular
momentum state have been realized [7,8]. Their schemes
construct the momentum weak value by controlling differ-
ent pre- and postselection under weak coupling [9]. Phase
differentiation is obtained from the momentum weak value.
Although feasible in practice, those schemes have two limita-
tions. First, a sufficiently weak coupling strength is necessary
to satisfying the weak coupling condition. Second, the weak
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coupling condition requires the momentum uncertainty of the
meter wave function to be small as well, which limits the
measured wave function to a slow spatial variation. The max-
imum of phase gradients depends on how weak the coupling
strength is.

The complex amplitude in classical theory can be viewed
as a wave function when the quantum description of light is
not required. Light passing through a substance, such as an
optical component or atmospheric turbulence, inevitably in-
duces wavefront distortions. Detection of wavefront distortion
enables the measurement of component surface-type and at-
mospheric turbulence distribution. This method is extensively
utilized in surface testing [10] and adaptive optics [11,12].
Moreover, wavefront distortion measurement has facilitated
the observation and measurement of transparent organisms
or the human eye [13,14]. In these applications, the phase
gradient is much larger than the allowable range for weak
coupling condition. To apply the method, it is necessary to
extend the dynamic range.

Here, we propose an approach for wave-function recon-
struction that overcomes the limitations associated with large
phase gradients. For the case of small phase gradients, the
square of the phase derivative can be measured directly, where
three different wave functions modulated by the spatial light
modulator (SLM) are measured. For the case of large phase
gradients, the differentiation information is wrapped. In this
experiment, we measured the phase distribution of collimated
light passing through the lenses with a curvature radius of
77.5 mm (focal length f1 ≈ 15 cm) and 155.0 mm (focal
length f2 ≈ 30 cm). Phase differentiation is obtained by solv-
ing this wrapped phase (or the square of the phase derivative)
with a phase unwrapping algorithm [15–17]. Using the phase
differentiation, combined with the difference Zernike polyno-
mial fitting algorithm (DZF) [18,19], the measured phase is
reconstructed.
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II. THEORY

The weak coupling condition requires a coupling strength
that is extremely weak and it limits the uncertainty of the wave
function of the meter. Let us consider a more specific case.
The preselected state |ψi〉 is in the state of 1/

√
2(|H〉 + |V 〉),

where |H〉 and |V 〉 represent the horizontal and vertical polar-
ization states, respectively. To simplify nomenclature, we use
the reduced Planck constant h̄ = 1 in the following equations.
The evolution operator satisfies Û = exp(−iγ Â ⊗ p̂) [4,20],
where γ is the coupling strength, A = −|V 〉〈V | is the operator
of the polarization, p̂ is the operator of momentum. We use the
antidiagonal postselected state |ψ f 〉 = 1/

√
2(|H〉 − |V 〉) and

|x〉 to reach a high sensitivity. The distribution function of the
final probability is

�(x) = 〈ψ f | ⊗ 〈x|e−iγ Â⊗p̂|ψi〉 ⊗ |φ〉

=
+∞∑
n=0

(−iγ )n

n!
〈ψ f |Ân|ψi〉〈x| p̂n|φ〉, (1)

where the pure state wave function |φ〉 = ∑
p φp|p〉 is

expanded using the momentum eigenstate |p〉. The eigenvalue
corresponding to the momentum eigenstate |p〉 is p,
and the probability of finding the eigenvalue p is |φp|2.
Noting that 〈ψ f |ψi〉 = 0, 〈ψ f |Â|ψi〉 = 1/2, 〈ψ f |Ân|ψi〉 =
(−1)n+1〈ψ f |Â|ψi〉, and 〈x| p̂n| ∑p φp|p〉 = ∑

p φp pn〈x|p〉.
Using the formula mentioned above, Eq. (1) can be simplified
to obtain

�(x) = −1

2

∑
p

φp[exp(−iγ p) − 1]〈x|p〉. (2)

The significance of Eq. (2) is the key to recovering the
wave function, and we find that it has a special meaning under
the limitation condition of |γ p| � 1. It should be noted that
in our experiments, the coupling strength γ is a constant that
is much smaller than the diameter of the wave function, and
the restriction on the eigenvalue p is actually a restriction
on the wave function. The coupling strength γ is a constant
greater than 0, so we get |p| � 1/γ . When the condition of
|p| � 1/γ is satisfied, we can expand Eq. (2) to first order to
yield

�(x) ≈ −γ

2

∑
p

φp
∂

∂x

[
1√
2π

exp(ipx)

]
= −γ

2

∂

∂x
φ(x),

(3)

where 1√
2π

exp(ipx) = 〈x|p〉, and φ(x) = 〈x|φ〉. Equation (3)
shows that when the momentum eigenvalue |p| � 1/γ , the
probability distribution function �(x) is the sum of the deriva-
tives of each momentum eigenfunction, or proportional to the
derivative of the wave function φ(x). The previous approach
was to use the derivative to recover wave function. However,
the derivative of the wave function can only be obtained di-
rectly for |p| � 1/γ .

If the momentum eigenvalue of the wave function is ar-
bitrary, it is clear that the previous method is insufficient.
In practice, we are more concerned with the amplitude and
phase of the wave function, so we express the wave function
as φ(x) = a(x) exp[ib(x)]. For convenience of the writing, we

assume that the amplitude a(x) of the wave function is uni-
form (when the amplitude a(x) is not uniform, an additional
measurement is required to solve it, which is not described
here, and readers are referred to the literature [8]). From
Eqs. (2) and (3), the detection results are obtained as

I (x) = |�(x)|2 = a2

2
{1 − cos[b(x) − b(x − γ )]}. (4)

and

I (x) = |�(x)|2 = a2

4

[
γ

∂b(x)

∂x

]2

, (5)

respectively. Notice that we also give the intensity distribu-
tion for the special case |p| � 1/γ . The result of Eq. (5)
is proportional to the square of the derivative of the phase.
Based on Eq. (5), various methods of edge detection have
been developed [21–25]. However, due to the information
about phase derivatives less than 0 being hidden, Eq. (5) is not
sufficient for reconstructing the wavefront. Similarly, relying
on Eq. (4) is also insufficient to reconstruct the wavefront,
since there is not a direct relationship between the phase
derivative and the intensity distribution. To reconstruct the
wavefront, it is necessary to obtain the phase differentiation
�bx(x) = b(x) − b(x − γ ) from Eq. (4). In Sec. III, we show
how to obtain phase differentiation, and how to reconstruct the
phase from the phase differentiation.

Let us look at how the condition |p| � 1/γ changes as
the form of the wave function changes. Equation (3) is a
special case of Eq. (2) under the condition |p| � 1/γ , so
Eq. (5) should be a special case of Eq. (4) under the same
condition. Using the condition |b(x) − b(x − γ )| � 1, one
can also derive Eq. (5) from Eq. (4), so |p| � 1/γ and
|b(x) − b(x − γ )| � 1 are equivalent to each other. It was
mentioned before that γ is an small quantity, so |b(x) − b(x −
γ )| ≈ |γ ∂b(x)

∂x | � 1. Comparing to the condition |γ p| � 1,
it is shown that in the case of uniform amplitude, as the
form of the wave function changes, the condition |p| � 1/γ

becomes the condition |∂b(x)/∂x| � 1/γ . The experimental
setup is shown in Fig. 1. Monochromatic light of wavelength
of λ = 632.8 nm was generated from a He-Ne laser, and
defined as propagating along the z axis. A collimated light
[to satisfy the condition a(x, y) = a] is formed by a filtering
system. The filtering system consists of a pinhole and Lens 1
and Lens 2. The collimated light passes through the object to
form the measured wave function. The polarizer P1 forms the
preselected state |ψi〉 = 1/

√
2(|H〉 + |V 〉). The birefringent

crystal (BC) can produce a displacement between ordinary
and extraordinary lights, which couples momentum and po-
larization [26]. This displacement is the coupling strength γ .
The action of the BC represents the evolutionary operator Û =
exp(−iγ Â ⊗ p̂). Rotating BC around the z axis can change
the coupling direction to obtain the phase differentiation in
any direction. The polarizer P2 controls the postselected state
|ψ f 〉 = 1/

√
2(|H〉 − |V 〉). The I (x, y) is imaged by Lens 3

and recorded by a charge-coupled device (CCD). To complete
the first set of experiments, the object in the optical path
was replaced by an SLM loaded with a weak phase. For the
second set of experiments, we replaced the object with two
lenses, which generated two wave functions with large phase
gradients.
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FIG. 1. Experimental setup. The He-Ne laser generates a Gaussian beam with a wavelength of 632.8 nm, which passes through a filtering
system consisting of the pinhole and Lens 1 and Lens 2 to form a collimated light. The collimated light incident on the object forms the wave
function to be measured. The polarizers P1 and P2 are used to set pre- and postselected states, respectively. The birefringent crystal (BC)
couples polarization and momentum. Finally, the I (x, y) is imaged by Lens 3 into a plane, where a charge-coupled device (CCD) is placed to
obtain the light intensity. The SLM loaded with the phase of small gradients instead of the object completes the first set of experiments. For
the second set of experiments, object was replaced with a lens with a focal length of 15 cm or 30 cm, respectively.

III. DATA PROCESSING

We need to further process Eq. (4) to get the phase differ-
entiation �bx(x). Rewrite Eq. (4) to get

�bT
x (x) = arccos

(
1 − 2I (x)

a2

)
, (6)

where T in �bT
x (x) represents �bT

x (x) gets wrapped. For
example, in Fig. 2(a), wrapped means that the function is
compressed between −π/2 and π/2. The unknown vari-
able a2 can be obtained by reading the maximum value of
the light intensity distribution. Therefore, the �bT

x (x) is not
the phase differentiation but a wrapped phase. Obtaining
phase differentiation from a wrapped phase is called phase
unwrapping [15–17]. Since Eq. (4) is an approximation of
Eq. (5) at |p| � 1/γ , the phase unwrapping also applies to
the case of small phase gradient.

The general one-dimensional phase unwrapping can be
achieved by compensating a value of π in each phase jump as

FIG. 2. The phase unwrapping algorithm. (a) The general one-
dimensional (1D) phase unwrapping. The process can be viewed
as increasing π at (−6, 3π/2), increasing 2π at (−π/2, π/2), and
so on. The compensation value is an integer multiple of π . (b) The
phase unwrapping for �bT

x (x). Unlike the general method, the com-
pensation value is not a constant, as shown in the figure. (c) The
unwrapping process from �bT

x (x) to �bx (x). Starting at x = 0, when
the point �bT

x (x) = π is encountered (the point is x = 3.07 or x =
−3.07), the function is flipped in the domain of definition of (3.07, 6)
or (−6, −3.07). Continue to look for �bT

x (x) = 2π and repeat the
above process.

shown in Fig. 2(a). The same approach can be used in the 2D
phase [16,17]. Unlike the general approach, the compensation
value of the wrapped phase �bT

x (x) is not nπ , where n is a
integer. As shown in Fig. 2(b), to obtain �bx(x) from �bT

x (x),
the compensation value is not constant. We take �bx(x) =
1/3 × x2 as an example to illustrate the process of getting
�bx(x) from �bT

x (x). This process is shown in Fig. 2(c):
starting at x = 0, when the point �bT

x (x) = π is encountered
(the point is x = 3.07 or x = −3.07), the function is flipped
in the domain of definition of (3.07, 6) or (−6,−3.07). After
that the function becomes the red dashed line in Fig. 2(c).
Continue to look for �bT

x (x) = 2π (the point is x = 4.34 or
x = −4.34) and flipping the function again in the domain of
definition (4.34,6) and (−6, 4.34). Keep repeating the process
of flipping the function until we get �bx(x). In summary, the
phase differentiation can be obtained by constantly flipping
the function in different domains of definition.

The measured phase is reconstructed by bringing the phase
differentiation of two orthogonal directions into the DZF
[18,19]. In the following, we discuss the DZF in detail. The
original phase is reconstructed and written as

b(x, y) =
(k+1)(k+2)/2∑

i=1

cizi(x, y), (7)

where zi(x, y) represents the ith term of the Zernike poly-
nomial [27], and ci is the coefficient of the ith Zernike
polynomial. The letter k refers to the order of the polynomial,
and the summation limit is (k + 1)(k + 2)/2. A higher value
of k corresponds to greater precision in the fitting procedure.
In this context, ci is the value to be obtained. The phase
differentiation can be decomposed as

�bx(x, y) =
(k+1)(k+2)/2∑

i=1

ci[zi(x, y) − zi(x − γ , y)] (8)
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FIG. 3. Experimental results for small phase gradients. The three wave functions ba(x, y), bb(x, y), and bc(x, y) are formed using the
first 15 Zernike polynomials and loaded into the SLM. The theoretical (∂b/∂y)2, (∂b/∂x)2 and phase distributions, Zernike coefficients, and
experimental (∂b/∂y)2, (∂b/∂x)2, and phase distributions are shown. Finally, the peak-to-valley (PV) and root-mean-square (RMS) values of
the recovery error were calculated and the unit is the wavelength λ of the incident light.

and

�by(x, y) =
(k+1)(k+2)/2∑

i=1

ci[zi(x, y) − zi(x, y − γ )]. (9)

Rewriting Eqs. (8) and (9) into matrix form, we get(
�bx(x, y)

�by(x, y)

)
= C

(
�zx(x, y)

�zy(x, y)

)
, (10)

where �zx(x, y) = zi(x, y) − zi(x − γ , y), �zy(x, y) =
zi(x, y) − zi(x, y − γ ), and C is the Zernike coefficient
matrix of the original phase. The coefficients can be obtained
by solving the matrix equation by the least-squares method.

IV. RESULTS

In the first experiment, we verify the correctness of Eq. (5),
which states that for weak phase, the detection result is pro-
portional to the square of the phase derivative. We measured
three phases consisting of the first 15 [k = 4 in Eq. (7)]
Zernike polynomials. The phase distribution is a circle that
is the inscribed circle of a 214 × 214 pixels rectangle on the
SLM, and the diameter of the circle is 1498 Âµm. The ex-
perimental coupling strength γ is 0.1 mm, and |b(x) − b(x −
γ )| � 0.15 rad. The values of theoretical (∂b/∂y)2, (∂b/∂x)2

and the phase distributions, the Zernike coefficients, and the
experimental values of (∂b/∂y)2, (∂b/∂x)2 and phase distribu-
tions are shown in Fig. 3. In order to judge the experimental
value of b(x, y), we calculated the root-mean-square (RMS)
and peak-to-valley (PV) values of their differences between
the theoretical value and its, as in the bottom of Fig. 3. Since
the reconstruction accuracy is related to the wavelength of the
incident light, we take the unit as λ. Notice that the detection
results in Fig. 3 are the square of the derivative of the phase,

and using the phase unwrapping the phase differentiation can
be obtained (not plotted in the Fig. 3) from the detection result.

For weak phase, we want the detection result of the CCD
to be proportional to the square of the phase derivative and
the reconstructed phase to be the same as the phase on the
loaded SLM. As can be seen in Fig. 3, for any one of the
three wavefronts, the experimental values of [∂b/∂y(x)]2 and
the theoretical values of [∂b/∂y(x)]2 are very similar. From
the RMS values, the average value of absolute error is about
0.06λ (38 nm), and the relative error is about 6% (the max-
imum loading phase of the SLM is 2π , which is converted
to length representing one wavelength, so the relative error is
0.058λ/λ). It shows that Eq. (5) and the phase unwrapping are
correct.

In the second set of experiments, we verified that the
method still works under the large phase gradients. The ob-
ject in Fig. 1 is replaced by the planoconvex lenses with a
curvature radius of 77.5 mm ( f1 ≈ 15 cm) and 155.0 mm
( f2 ≈ 30 cm), respectively. Here, f1 and f2 represent the focal
lengths of the lenses. The aperture of the measurement area
is 4.8 mm. The maximum values of |b(x) − b(x − γ )| for the
two measured wave functions are 15.8 rad and 7.7 rad, respec-
tively. Under the condition of the large phase gradients, the
phase differentiation is wrapped. The detection result I (x, y)
for the lens with f1 = 15 cm is shown in Fig. 4(a). Accord-
ing to Eq. (6), the wrapped phase �bT

y (x, y) is calculated
using detection result I (x, y), and then the phase unwrap-
ping is used to obtain the phase differentiation �by(x, y).
We show the process of solving for �by(x, y) in Fig. 4(b)
with a column of data for x = 0. The distribution of the
phase differentiation �by(x, y) is shown in Fig. 4(c). Fig-
ures 4(d)–4(f) correspond to the data processing of the lens
with f2 = 30 cm. In this experiment, since the measured ob-
ject is a spherical lens, the measured phase can be viewed as
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FIG. 4. The phase unwrapping for large phase gradients. (a)–
(c) correspond to the data processing of the lens with f1 ≈ 15 cm.
(d)–(f) correspond to the data processing of the lens with f2 ≈ 30 cm.
The x axis and y axis represent the aperture of the measured phase,
and the z axis and the color bar characterize the size of the phase.
(a) and (d) The detection result I (x, y) of CCD. (b) and (e) The
process of phase unwrapping of the center column. (c) and (f) The
phase differentiation.

a sphere, and its phase differentiation should be a tilted plane.
Figures 4(c) and 4(f) are also inclined planes and are consid-
ered to be correct. Their correctness is further verified in the
reconstructed phase.

We obtain the phase differentiation Figs. 4(c) and 4(f) (only
one direction is drawn in to a wavefront) under the condition
of the large phase gradients. Using the DZF, we calculated
b(x, y), as in Fig. 5(a). To illustrate the correctness of the re-
sults, we calculated the theoretical phase distribution b1(x, y).
The theoretical value b1(x, y) can be acquired by multiplying
the optical path difference (OPD) by k = 2π/λ. The recon-
structed accuracy Fig. 5(b) is expressed by the difference
between the reconstructed result b(x, y) and b1(x, y). The PV
and RMS values of the reconstructed accuracy correspond-
ing to the two lenses are about 1.44λ (9.05 rad) and 0.27λ

(1.70 rad), 0.50λ (3.14 rad), and 0.12λ (0.75 rad), respectively.
The RMS value is only about 1% of the phase distribution
b(x, y). This means that the experimental values are very close
to the theoretical values. This conclusion can be seen more
intuitively in Fig. 5(c), which plots the cross section of the
theoretical and experimental values.

For each measured wave function there is a region un-
der weak coupling. In Figs. 4(a) and 4(d), for example, the
dark stripes in the center are considered under the approx-
imation condition of weak coupling, and the wave function
with large curvature has a small weak coupling region. A
common technology in surface testing is the lateral-shear in-
terferometer [27], which also goes through phase unwrapping
and reconstructing. However, our method requires only one

FIG. 5. Phase reconstruction for large phase gradients. The top
and bottom rows correspond to lenses with focal lengths f1 ≈ 15 cm
and f2 ≈ 30 cm, respectively. The x axis and y axis represent the
aperture of the measured phase, and the z axis and the color bar
characterize the size of the phase. (a) The reconstructed phases
b(x, y). (b) The reconstructed accuracy. It is the difference between
the reconstructed result b(x, y) and theoretical result b1(x, y). The
PV and RMS values of the reconstructed accuracy corresponding
to the two lenses are about 1.44λ (9.05 rad) and 0.27λ (1.70 rad),
0.50λ (3.14 rad), and 0.12λ (0.75 rad), respectively. (c) The cross
sections of the reconstructed result b(x, y) and theoretical result
b1(x, y).

measurement to obtain the phase differentiation without us-
ing the temporal phase shifts or spatial-carrier phase shifting
method. Moreover, under weak coupling, the square of the
derivative of phase is obtained directly.

In summary, we have demonstrated that under weak cou-
pling, the square of the phase derivative of the target object
can be measured directly, where three weak phase distri-
butions loaded directly into SLM are measured. However,
for the wave function with large phase gradients, the phase
differentiation is wrapped. The reason is that when the eigen-
values corresponding to the momentum states are all small,
the probability distribution function is seen as the sum of
the derivatives of each eigenstate, and when the eigenval-
ues are large, the probability distribution function has other
implications. The wrapped phase hides the differentiation in-
formation, which requires an unwrapping algorithm to obtain
phase differentiation. We experimentally measured the phase
of collimated light passing through two lenses with different
focal lengths. The results were as we expected, and by the un-
wrapping algorithm, we get the phase differentiation. Finally,
combining with DZF, the measured phase is reconstructed.
This work retains the advantages of weak measurement tech-
niques and validates measurements of large phase gradients,
which can extend the application of weak measurement to
wavefront sensing.
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