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Nonlinear Landau-Zener-Stückelberg-Majorana problem with non-Hermitian models
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We study nonlinear Landau-Zener-Stückelberg-Majorana (LZSM) tunneling with a PT -symmetric potential,
which can be converted to a non-Hermitian nonlinear two-level model by a two-mode approximation. Then,
we construct an equivalent Hermitian model through a transformation, verify that the tunneling probabilities
obtained by the two models are consistent, and comprehensively analyze the effect of the gain-dissipation term
on tunneling. In addition, due to the gain-dissipation properties, the total population density of the non-Hermitian
model is no longer a conserved quantity, which will increase or decay to a fixed value as the model evolves.
Finally, we prove that the spatial inversion symmetry breaking of the Hamiltonian leads to nonreciprocal
tunneling, and the numerical simulation results confirm our analysis. These studies provide alternative ideas
to study the nonlinear dynamics of non-Hermitian systems in the future.
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I. INTRODUCTION

As the foundation of modern science, quantum mechanics
has provided a theoretical framework for studying the micro-
cosmic world since its birth. In traditional quantum theory,
observations are treated as Hermitian operators in Hilbert
space with eigenvalues of real numbers, which ensures many
properties of conservative systems. In 1998, a class of non-
Hermitian Hamiltonian systems following parity-time (PT )
symmetry was reported [1], immediately attracting wide at-
tention in the scientific community. This discovery modified
the traditional quantum theory and revolutionized quantum
theory into a new field. In scientific research, dissipation
always exists. Scientists think it is a harmful physical effect,
and adopt various methods to compensate for it. However, the
PT system introduces dissipation into the Hamiltonian. Still,
it has real eigenvalues, which shows that the system can still
maintain the properties of conservative systems. This novel
characteristic makes dissipation more meaningful in physical
research [2]. This opens up new possibilities for the control
of physical systems and has a wide range of applications
in many fields, such as plasma physics [3,4], Bose-Einstein
condensation (BEC) [5], nonlinear optics [6–8], and so on.

Tunneling is one of the most common phenomena in quan-
tum mechanics. The problem of a system crossing from one
side to the other to avoid the crossing of energy levels under
an external linear drive is called Landau-Zener-Stückelberg-
Majorana (LZSM) tunneling, in honor of the outstanding
contributions made by these four scientists [9–12]. The LZSM
problem has important applications in various physical sys-
tems [13–17]. In particular, Wu et al. found that a loop
structure will appear in the lowest-energy band with in-
creased nonlinear intensity, which is proved in Ref. [18]. This
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special band structure leads to the appearance of an unstable
superposition state [19]. Based on the equivalent classical
Hamiltonian, the physical mechanism is studied, and the adi-
abatic tunneling phenomenon caused by the loop structure is
revealed [20]. These findings further extend the LZSM tunnel-
ing problem to nonlinear physics, which is inherent in many
fields of physics. The loop structure and adiabatic tunneling
lead to various new phenomena, which have triggered a lot of
research and discussion in the scientific community, but these
studies are limited to Hermitian systems [21–25].

In this paper, we consider the non-Hermitian nonlinear
two-level model, which is also mentioned in recent stud-
ies [26–28]. This model can be equivalent to a Hermitian
Hamiltonian. The research shows a threshold value of the
gain-dissipation term. Below and beyond it, the effect of
this term on adiabatic tunneling is the opposite. Furthermore,
as the linear driving intensity increases, a crossover point
exists where gain-dissipation plays a major role in the smaller
driving part. The nonlinear intensity significantly affects the
position of the crossover point. The paper is structured as
follows. In Sec. II, we introduce our non-Hermitian model and
its equivalent Hermitian model, prove their tunneling proba-
bilities are consistent, and obtain the specific expressions of
the gain-dissipation coefficient threshold and total population
density. Then, we detail the case of reverse sweep in Sec. III
and conclude in Sec. IV.

II. MODEL

The present work considers a dimensionless generalized
Gross-Pitaevskii equation of the following form,

i
∂ψ

∂z
= −1

2

∂2ψ

∂x2
+ V (x)ψ − βxψ + c|ψ |2ψ, (1)
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with V (x) being a PT -symmetric periodic function. In this
paper, we discuss the known potential

V (x) = v0[cos2 x + iω0 sin(2x)], (2)

where v0 is the depth of the potential and ω0 is the gain-
dissipation coefficient. When ω0 � 0.5, the lowest two bands
degenerate, and the degenerate bands appearing imaginary
part, the energy gap disappears [29]. What appears here is
no longer the LZSM tunneling phenomenon. Therefore, we
only consider the ω0 < 0.5 part in this paper. βx denotes an
external transverse bias. Here, β is the external driving inten-
sity and experimentally controls the sweep rate and direction.
c is the Kerr nonlinear coefficient, where c > 0 and c < 0
indicate repulsive and attractive interactions, respectively. We
can convert Eq. (1) to the following form through a gauge
transformation,

i
∂ψ̃

∂z
= 1

2

(
−i

∂

∂x
+ βz

)2

ψ̃ + V (x)ψ̃ + c|ψ̃ |2ψ̃, (3)

where ψ̃ = e−iβxzψ . Here, we can define a pseudomomentum
vector

k(z) = k0 + αz. (4)

The value of α is the same as β, but we use a different notation
because of the different physical meanings. α is called the
sweep rate, and its sign represents the sweep direction. We
define α > 0 as the forward sweep, α < 0 as the reverse
sweep, and α = 0 as the adiabatic process. Furthermore, k0

is an arbitrary Bloch vector in the Brillouin zone. If the
system’s initial state is a Bloch state in the lowest Bloch
band, when β is small enough, the system will oscillate in
the band, which is called Bloch oscillation. As β increases,
the system will tunnel toward the upper band at the Brillouin
zone’s edge (kBZ = 1). However, tunneling between higher
bands requires more energy, making tunneling more difficult.
Therefore, when v0 is sufficiently small, we can consider
only two modes as resonant, which are coupled by the Bragg
scattering, and ignore the higher mode, i.e.,

ψ (x, z) = eik(z)x[a0(z) + a1(z)e−i2x], (5)

which is called two-mode approximation [8] and is often
used to study tunneling in BEC [30,31]. Here, we can take
k0 = 1 so that the minimum band gap occurs at αz = 0, i.e.,
k(z) = 1 + αz. a0 and a1 represent the amplitudes of the two
plane-wave components and satisfy the normalization condi-
tion |a0|2 + |a1|2 = 1. Substitute Eq. (5) into Eq. (1) and make
the following variable substitutions,(

a
b

)
= exp

[
i

(
1

2
z + 1

6
α2z3 + v0

2
z + 3

2
cz

)](
a0

a1

)
. (6)

Then, we will obtain a nonlinear two-level model (NTL),

i
∂

∂z

(
a
b

)
=

(
γ + c

2 (|b|2 − |a|2) v0
4 + v0ω0

2
v0
4 − v0ω0

2 −γ − c
2 (|b|2 − |a|2)

)(
a
b

)

= H (γ )

(
a
b

)
. (7)

Here, we introduce the notation γ = αz. It can be seen that
the Hamiltonian H (γ ) in Eq. (7) is non-Hermitian and has the

same form as Ref. [27] when it is in the linear case. We take a
transformation of Eq. (7) to get the following form,

i
∂

∂z

[
η−1

(
a
b

)]
= η−1Hηη−1

(
a
b

)
+ i

(
∂

∂z
η−1

)(
a
b

)
. (8)

If we can find an η matrix without z, we can reduce it to a
form similar to Eq. (7), i.e.,

i
∂

∂z

(
a′
b′

)
= Hη

(
a′
b′

)
. (9)

Here,

Hη = η−1Hη,

(
a′
b′

)
= η−1

(
a
b

)
. (10)

Since the linear adiabatic tunneling probability Plin =
exp[−πδ2/(2|α|)] is only determined by the band-gap width
δ when the sweep rate is fixed, we first calculate the adiabatic

energy level Elin = ±
√

( v0
4 )2 − ( v0ω0

2 )2 + γ 2 corresponding to

Eq. (7) and find its band-gap width, that is, the minimum

energy gap difference is � = 1
2v0

√
1 − 4ω2

0. Therefore, we
can define a Hermitian matrix,

Hη =
(

γ + c
2 (|b|2 − |a|2) 1

2�
1
2� −γ − c

2 (|b|2 − |a|2)

)
. (11)

This ensures that the LZSM tunneling probability in the linear
case of Eq. (9) is consistent with Eq. (7). Fortunately, under
such a definition, we can find an η matrix without z in the
following form,

η =
(

η11 0
0 η22

)
, (12)

where η11 and η22 are undetermined values. After calculation,
we can get

η =
(√

v0 + 2v0ω0 0
0

√
v0 − 2v0ω0

)
,

η−1 =
(

(v0 + 2v0ω0)−
1
2 0

0 (v0 − 2v0ω0)−
1
2

)
. (13)

According to the above series of derivations and definitions,
we can rewrite Eq. (7) as an equivalent nonlinear two-level
model (ENTL),

i
∂

∂z

(
a′
b′

)
=

⎛
⎝ L 1

4v0

√
1 − 4ω2

0

1
4v0

√
1 − 4ω2

0 −L

⎞
⎠

= Hη

(
a′
b′

)
, (14)

with L = γ + c
2 [(v0 − 2v0ω0)|b′|2 − (v0 + 2v0ω0)|a′|2]. We

call Hη and (
a′
b′ ) the equivalent Hamiltonian and equivalent

component of Eq. (7). To understand the behavior of tunneling
probability with parameters, we set the initial state (γ →
−∞) of NTL to (a, b) = (1, 0), and then directly evolve
Eq. (7) by the Crank-Nicolson method [32] and time splitting
method [33] to get |a|2 at γ → ∞, which is the tunneling
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FIG. 1. The final total population density N under forward sweep
for v0 = 0.2. Dashed (red), solid (blue), and dashed-dotted (black)
lines correspond to NTL simulation results at ω0 = 0, 0.2, and 0.4,
respectively. Red circles, blue squares, and black triangles corre-
spond to N = 1−2ω0

1+2ω0
+ 4ω0

1+2ω0
P at ω0 = 0, 0.2, and 0.4, respectively.

Here, P is the tunneling probability under forward sweep (see Fig. 2).

probability P [13]. Similarly, for our ENTL, the correspond-
ing equivalent initial state is (a′, b′) = [(v0 + 2v0ω0)−1/2, 0],
in this case N ′ = |a′|2 + |b′|2 = 1/(v0 + 2v0ω0). Therefore,
we can obtain the tunneling probability corresponding to
ENTL, P′ = |a′|2/N ′ = P, that is, the tunneling probability
obtained by the two models should be consistent. In addition,
since NTL is non-Hermitian, its population density N is not
conserved. However, ENTL is Hermitian and N ′ is conserved,
so we can obtain N = |a|2 + |b|2 = 1−2ω0

1+2ω0
+ 4ω0

1+2ω0
P for NTL

at γ → ∞ by Eq. (10). Due to dissipation, the total population
density N decays to a fixed value, which is associated with ω0

and α, and this has been similarly concluded in Refs. [30,34]
(see Fig. 1).

Next, to verify the validity of the two-mode approximation,
we consider the exact solution of the tunneling probability
between the lowest two bands of Eq. (1) by using the known
LZSM formula P′

lin = exp (−π�2
0/2α), and compare it with

the probability simulated by ENTL when c = 0. �0 is the
minimum energy difference between the lowest two bands
without an external transverse bias. For Eq. (1) of β = 0 and
c = 0, we are looking for the solution in the following form,

ψ (x, z) = exp(−iμ0z + iKx)
N∑

n=−N

an exp(i2nx). (15)

Here, the summation term on the right-hand side of the equa-
tion is called the plane-wave expansion, also known as the
Fourier expansion. μ0 and K are energy levels and Bloch
wave numbers, respectively. We then substitute Eq. (15) into
Eq. (1), numerically calculating the band-gap width �0 and
get the tunneling probability. In Fig. 2(a) we compare this
probability with the one obtained from the two-level model.
This result shows that our two-mode approximation is valid,
and in fact, Ref. [8] proves that this approximation is true
when v0 is small. In this section, if not specifically empha-
sized, we research ENTL all under forward sweep.
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α
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(b)

FIG. 2. Tunneling probability P for v0 = 0.2 under forward
sweep. (a) Bottom to top corresponds to ω0 = 0, 0.2, and 0.4, respec-
tively. Circles, squares, and triangles correspond to the numerical
simulation results of ENTL. Dashed (red), solid (blue), and dashed-
dotted (black) lines represent the exact solutions obtained from the
plane-wave expansion and the LZSM formula P′

lin. (b) Red circles,
blue squares, and black triangles correspond to ENTL simulation
results at ω0 = 0, 0.2, and 0.4, respectively. Dashed, solid, and
dashed-dotted lines correspond to c = 0.1, 0.2, and 0.4, respectively.
For instance, a solid line with circles corresponds to c = 0.2 and
ω0 = 0.

As can be seen from Fig. 2, with the rise of the external
driving intensity, the tunneling probability quickly exceeds
the case of ω0 = 0, and the larger the nonlinear coefficient
c and gain-dissipation coefficient ω0, the closer the inter-
section point is to the adiabatic case. These phenomena all
indicate that the appearance of gain-dissipation makes the
system more sensitive to the response of the external drive.
Since the nonlinear adiabatic tunneling is closely related to the
loop structure of the adiabatic level, we need to consider the
behavior of adiabatic levels in ENTL. These levels are ob-
tained by replacing i∂/∂z in Eq. (14) with energy μ, i.e.,
Eq. (14) is reduced to a z-independent version by the com-

ponent variable method. That is to say, μ(
a′
b′ ) = Hη(

a′
b′ ).

Then, we find the following quartic equation satisfied by the
energy μ,

μ4 + Aμ3 + Bμ2 + Cμ + D = 0, (16)

where

A = c

1 + 2ω0
,

B = c2 − 2c2ω0 + 8cω0γ

4 + 8ω0
− v2

0

(
1 − 4ω2

0

)
16

− γ 2,

C = −cv2
0 (1 − 2ω0)

16
,

D = −c2v2
0 (1 − 2ω0)

64(1 + 2ω0)
. (17)
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FIG. 3. Adiabatic energy levels and fixed-point stability analysis
of ENTL for v0 = 0.2. The dashed (red) lines represent the maximum
real part of the eigenvalues of the Hamilton-Jacobi matrix. The solid
(black) and dashed-dotted (yellow) lines represent the adiabatic en-
ergy levels corresponding to the forward and reverse sweep. Here,
for the forward sweep, the nonlinear coefficient c takes 0.4; for
the reverse sweep, the nonlinear coefficient takes 1−2ω0

1+2ω0
c. Further-

more, the eigenstates correspond to fixed points Pi (i = 1, 2, 3) in the
classical Hamiltonian system Hc, whose trajectories are P1 → IXR,
P2 → LXF , and P3 → LR.

We plot two sets of nonlinear adiabatic energy levels with
different ω0 in Fig. 3. We can see that a loop structure appears
in both, which means that at the adiabatic limit α → 0, the
nonlinear LZSM tunneling probability is nonzero, consistent
with our direct simulation results. To reveal this interesting
phenomenon, we consider an equivalent classical Hamilto-
nian. We define a′ = |a′|eiθa , b′ = |b′|eiθb , and let θ = θb − θa,
s = (v0 + 2v0ω0)(|b′|2 − |a′|2). s and θ are a pair of canonical
variables in a classical Hamiltonian system satisfying ds

dz =
− ∂Hc

∂θ
, dθ

dz = ∂Hc
∂s [35]. A simple calculation gives the following

classical Hamiltonian,

Hc = −1

2
v0 cos θ

√
1 − s2

√
1 − 4ω2

0 + 2γ s + c(s2 − 4ω0s)

2 + 4ω0
.

(18)

The above equation can be reduced to the standard model in
Refs. [19,20] when ω0 = 0. The following equations give its
fixed points,

∂Hc

∂θ
= 1

2
v0 sin θ

√
1 − s2

√
1 − 4ω2

0 = 0,

∂Hc

∂s
= 1

2

v0s cos θ√
1 − s2

√
1 − 4ω2

0 + 2γ + c(s − 2ω0)

1 + 2ω0
= 0.

(19)

The eigenstates of adiabatic energy levels correspond to fixed
points. An unstable fixed point P3 appears when a loop struc-
ture appears, as shown in Fig. 3. Therefore, we can judge the
correctness of our adiabatic levels by analyzing the stability
of fixed points. We get the following corresponding Hamilton-
Jacobi matrix by linearizing Eq. (19) near the fixed points,(

− ∂2Hc
∂θ∂s − ∂2Hc

∂θ2

∂2Hc
∂s2

∂2Hc
∂s∂θ

)
. (20)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

ω
0

P

(a) forward sweep

0.5v
0

c=0.2

c=0.4

P
ccri

0 0.1 0.2 0.3 0.4 0.5ω
0

(b) reverse sweep

0.5v
0

c=0.2
c=0.4

P
ccri

0

0.2

0.4

0.6

0.8

1

Th
e 

cr
iti

ca
l v

al
ue

 o
f c

FIG. 4. Near-adiabatic tunneling probability and critical value
of loop structure for v0 = 0.2 and α = 0.0001. The dashed lines
are auxiliary lines for observing threshold values. The black cross
indicates that the value at ω0 = 0.5 is not feasible, i.e., here, the
model is invalid.

The fixed point is stable when the real part of the matrix’s
eigenvalue (λ) is zero. On the contrary, it is unstable. In
Fig. 3, we verify the correctness of our nonlinear adiabatic
energy levels. Reference [36] shows that the pair of canonical
variables (θ, s) corresponding to the unstable fixed point P3

at the adiabatic level crossing point X is (π, 0). Then, by
substituting (θ, s) = (π, 0) into Eq. (18), we get that the γ

value corresponding to the point X is cω0/(1 + 2ω0), that
is, the value corresponding to γb and �b in Fig. 3. When Pi

(i = 1, 2, 3) coincide at this moment, the loop structure is in
a critical state, and the adiabatic tunneling probability is zero,
i.e., the s values corresponding to the three points are −1, 1,
and 0, respectively. In this case, we can get the critical value of

the nonlinear coefficient to be ccri = v0
2 (1 + 2ω0)

√
1 − 4ω2

0.
When v0 = 2ccri, ω0 is a threshold, below which the gain-
dissipation term is inhibitory in adiabatic tunneling. On the
contrary, it promotes it. Figure 4(a) proves this conclusion.

III. NONRECIPROCAL TUNNELING

In this section, we consider the case of the reverse sweep.
Previous studies have found that the classical Hamiltonian
is closely related to the tunneling probability. Therefore, we
solve the equivalent classical Hamiltonian corresponding to
ENTL in reverse sweep and compare it with forward sweep.
First, we set the initial state to (a, b) = (0, 1), thus the corre-
sponding initial state in ENTL should be (a′, b′) = [0, (v0 −
2v0ω0)−1/2]. In this case, the total population density is N =
1+2ω0
1−2ω0

− 4ω0
1−2ω0

P, and here, P is the tunneling probability of
reverse sweep, equal to the value of |b|2 in the final state (see
Fig. 5). We recalculate Eq. (14), where γ in the formula is
changed to −γ ′, i.e., γ ′ = |α|z = γ . Consistent with Eq. (18),
we let θ ′ = θb − θa, s′ = (v0 − 2v0ω0)(|a′|2 − |b′|2), then
obtain

H ′
c = −v0

2
cos θ ′√1 − s′2

√
1 − 4ω2

0 + 2γ ′s′

+ c′(s′2 − 4ω0s′)
2 + 4ω0

. (21)

Here, c′ = 1+2ω0
1−2ω0

c. Compared with Eq. (18), we can see
that the difference between forward and reverse sweep is
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FIG. 5. The final total population density N under reverse sweep
for v0 = 0.2. From bottom to top, ω0 = 0, 0.2, and 0.4, respectively.
Solid lines correspond to the NTL simulation results, and circular
marks correspond to N = 1+2ω0

1−2ω0
− 4ω0

1+2ω0
P. Here, P is the tunneling

probability under the reverse sweep (see Fig. 6).

only on the equivalent nonlinear coefficient. When ω0 is not
zero, the c′ of the reverse sweep is greater than the corre-
sponding c of the forward. Therefore, the adiabatic tunneling
probability of the reverse sweep is greater than that of the
forward. Moreover, the greater ω0, the greater is the difference
between the two. This is because the existence of ω0 breaks
the spatial inversion symmetry of the Hamiltonian and leads to
the generation of nonreciprocal tunneling, consistent with the
conclusions in Ref. [37]. We proved this conclusion through
numerical simulation, as shown in Fig. 6. When we set the
original nonlinear coefficient of reverse sweep as 1−2ω0

1+2ω0
c f ,

where c f is the nonlinear coefficient of forward sweep, the two
classical Hamiltonians are completely consistent, and their
tunneling probabilities should also be consistent, as shown
in Fig. 6(e). Moreover, the threshold of the gain-dissipation
term corresponding to the reverse sweep is obtained by v0 =
1−2ω0
1+2ω0

2ccri. In this case, when ω0 > 0, this term always plays
a promoting role [see Fig. 4(b)].

We also study the quartic equation for the adiabatic en-
ergy level in the reverse sweep, which differs from Eqs. (16)
and (17) only by ω0 → −ω0. We plot two sets of adiabatic
energy levels under reverse sweep in Fig. 3 with the yel-
low dashed-dotted lines, where the nonlinear coefficient we
take is 1−2ω0

1+2ω0
c f . According to Fig. 3, under such a nonlinear

coefficient selection for the reverse sweep, the adiabatic en-
ergy level of the reverse sweep is the same as that of the
forward sweep.

IV. CONCLUSION

We have studied the nonlinear LZSM problem in a class of
non-Hermitian NTL systems. We have proposed a method for
constructing ENTL and verified that the tunneling probabili-
ties obtained by these two models are consistent. According to
the equivalent form, we have given the expression of the total
population density N , which shows that due to the effect of
dissipation, N is no longer conserved, and will decay to a fixed
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FIG. 6. Tunneling probability P for v0 = 0.2 under forward and
reverse sweeps. (a)–(d) The red circles, blue squares, and black
triangles correspond to tunneling probabilities of ω0 = 0, 0.2, and
0.4 under reverse sweep, respectively. The red dashed, blue solid,
and black dashed-dotted lines indicate the tunneling probabilities
under forward sweep corresponding to ω0 = 0, 0.2, and 0.4. (e) The
solid lines and star marks correspond to the tunneling probabilities
of forward and reverse sweeps, respectively. From bottom to top,
the nonlinear coefficients take c = 0.1, 0.2, and 0.4 for the forward
sweep, and the corresponding nonlinear coefficients are 1−2ω0

1+2ω0
c for

the reverse sweep.

value, which is related to the gain-dissipation coefficient ω0

and the sweep velocity. By analyzing the equivalent classical
Hamiltonian of ENTL, we have obtained a threshold value of
ω0, determined only by v0. In the forward sweep, the adiabatic
tunneling is inhibited below the threshold and promoted above
it. The reverse sweep for ω0 > 0 is always promoted. Fur-
thermore, we have found that systems with gain-dissipation
terms are more sensitive to external drives. Finally, we have
compared the classical Hamiltonians corresponding to the for-
ward and reverse sweeps, proved the nonreciprocal tunneling
caused by the spatial inversion symmetry breaking of the
Hamiltonian, and verified it by numerical simulation.
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