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Benchmarking of universal qutrit gates
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We introduce a characterization scheme for a universal qutrit gate set. Motivated by the rising interest in
qutrit systems, we apply our criteria to establish that our hyperdihedral group underpins a scheme to characterize
the performance of a qutrit T gate. Our resulting qutrit scheme is feasible, as it requires resources and data
analysis techniques similar to resources employed for qutrit Clifford randomized benchmarking. Combining
our T gate benchmarking procedure for qutrits with known qutrit Clifford-gate benchmarking enables complete
characterization of a universal qutrit gate set.
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I. INTRODUCTION

Driven by the desire to exploit every precious dimension
of Hilbert space that Nature provides [1], the study and devel-
opment of d-level systems (qudits) as extensions of qubits are
rapidly increasing. Traditional quantum-information process-
ing centers primarily on encoding, manipulating, and reading
qubits [2]. Qudit experiments are now done using photons
[3,4], trapped ions [5–7], superconducting qutrits [8–10],
dopants in silicon [11], ultracold atoms [12], and spin systems
[13].

For reliable qutrit technology, gate characterization, akin
to qubit gates, is crucial [14]. An accepted standard of gate
characterization is randomized benchmarking. Randomized
benchmarking (RB) schemes, in general, are used by exper-
imentalists to estimate the mean average gate fidelity over
a set of gates (gate set) [14]. To date, an explicit extension
of randomized benchmarking has only been reported for the
Clifford gate set [15]. Here, we extend the randomized bench-
marking scheme for a universal qutrit gate set.

Qudit applications include quantum teleportation [16,17],
quantum memories [18,19], Bell-state measurements [20],
spin chains [3,4,17,20–22], and quantum computing [23].
Qutrits offer advantages over qubits, such as superior security
for quantum communication [24] or avoiding Hilbert-space
truncation of a higher-dimensional system [25].

For quantum computing, a universal gate set is essential to
efficiently approximate any gate [2]. Adding a specific gate
to the Clifford gate set achieves universality [26,27]. Such a
gate is the so-called T gate, which is a non-Clifford mem-
ber of the third level of the Clifford hierarchy. Interestingly,
contextuality presents another avenue for universal quantum
computation [27,28].
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We introduce a RB scheme to characterize a universal set of
qutrit gates, thereby helping determine the scalability [29] of a
qutrit platform. Our work is of interest to experimental groups
working with a qutrit set of gates. Furthermore, quantum
information theorists will take interest in our relaxation of the
unitary two-design condition in a qutrit RB scheme [10].

Our approach extends beyond the qubit case’s geometrical
considerations, as detailed in prior studies [30,31]. In this
context, we articulate the prerequisites for an optimal gen-
eralization of dihedral benchmarking. Our findings facilitate
the qudit generalization of the dihedral scheme by identifying
and broadening the essential features needed by a gate set to
characterize T gates effectively.

Whereas methods for characterizing arbitrary gate sets are
available [32,33], our work is particularly significant for two
reasons. First, we introduce the construction of a gate set that
demands minimal resources, specifically necessitating only
X and T gates. Second, we establish criteria that enable the
identification or construction of a gate set capable of charac-
terizing a T gate.

Qutrit experiments are proliferating [3–13], and our ex-
tension to experimentally feasible randomized benchmarking
schemes for characterizing qutrit T gates ushers in full charac-
terization of universal qutrit gates. Furthermore, our method
sets the stage for extending experimental characterization of
a universal set of gates to qutrit cases. With respect to ran-
domized benchmarking theory, our results offer a complete
characterization of the generators of a universal qutrit gate set.

Our work is preceded by the qubit case, wherein char-
acterization of a T gate is done via dihedral benchmarking
[30,31]. Dihedral benchmarking twirls (i.e., averages over the
uniform measure of a group) [14,34] over a representation of
the dihedral group D8 [35]. Here, we generalize the dihedral
benchmarking (DB) scheme to qutrits. Our scheme is optimal
with respect to the number of primitive gates required (X, T,
and H); we use upright letters (Roman font) for gates and
slanted letters (italic font) for the corresponding matrices.

We now start the discussion of our extension of dihedral
benchmarking to qutrit systems. We justify our focus on
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qutrits as currently there is an increasing number of qutrit
implementations [3–13]. Furthermore, in the qutrit case we
know that our generalization of D8 [and the corresponding
irreducible representation (irrep)] is the unique pair leading to
an optimal generalization of dihedral benchmarking. Before
establishing our qutrit generalization of the dihedral group, we
first recall several key mathematical concepts in randomized
benchmarking schemes for qutrits.

II. BACKGROUND

We introduce part of the key algebraic entities needed in
our work. We work in the three-dimensional Hilbert space
H := span(|0〉, |1〉, |2〉). A state ρ is a positive trace-class
operator with trace 1 [36]. The set of states in H is denoted
D ; pure states are the extreme points of D and are of the form

ρψ := |ψ〉〈ψ |, |ψ〉 ∈ H . (1)

Then for a mapping E : D → D and |�〉 := 1√
3
(|00〉 +

|11〉 + |22〉), the Choi-Jamiołkowski operator is JE :=
3(E ⊗ I)(|�〉〈�|).

We now describe the representation of the algebraic objects
introduced in the previous paragraph. We denote by �E the
matrix representation (in the computational basis of H ⊗2) of
JE . States {ρ} are represented by a nine-dimensional vector
|ρ〉〉 satisfying |E (ρ)〉〉 = �E |ρ〉〉; |ρ〉〉 is computed by stacking
the rows of the matrix representation (in the computational
basis) of ρ [37,38]. We emphasize that gates are physical ob-
jects; therefore, it is incorrect to discuss their representation.

The qutrit T gate has an important role within quantum
computing. A T gate corresponds to the action of some uni-
tary matrix T ∈ C3 \ C2 [1,39,40], with Cl the lth level of the
qutrit Clifford hierarchy. For convenience, we only consider
diagonal T matrices. Let ωd := exp(2π i/d ). For qutrits, the
generalized Hadamard and a T matrix are [41]

H := 1√
3

⎡
⎢⎣

1 1 1

1 ω3 ω2
3

1 ω2
3 ω3

⎤
⎥⎦, T :=

⎡
⎢⎣

1

ω8
9

ω9

⎤
⎥⎦, (2)

respectively. The gates generated by H and T, denoted by the
generating set 〈H, T〉, are a universal gate set [39,40,42]. The
corresponding set of matrices is denoted by 〈H, T 〉.

The qutrit Pauli group is defined in terms of the
Heisenberg-Weyl (HW) matrices, themselves one natural uni-
tary generalization of the Pauli matrices [43]. The qutrit HW
matrices are powers of the clock and shift matrices [44,45]:

Z|i〉 := ωi
3|i〉, X |i〉 := |i ⊕ 1〉, i ∈ [3] := {0, 1, 2}, (3)

with ⊕ denoting addition modulo 3 and [k] := {0, . . . , k − 1}.
In turn, the HW matrices {Wk, k ∈ [9]} correspond to W3i+ j :=
X iZ jfor i, j ∈ [3]: W := {W3i+ j : i, j ∈ [3]}. Then the qutrit
Pauli group is P := 〈W, ω3I〉.

Several concepts from representation theory are used in
our work [46]. Given a finite group G and a vector space
V , a representation σ is a homomorphic mapping from G to
GL(V ); henceforth, V refers to either H or H ⊗2. For con-
creteness, we employ the canonical isomorphisms GL(H ) ∼=
M and GL(H ⊗2) ∼= M ⊗2 to ensure our representations are

matrices. The range (or image) of σ is denoted Ran(σ ) :=
{σ (g) : g ∈ G}.

The term “irreducible representation” can refer to a sub-
space and to a mapping. Given a nontrivial subspace 	 ⊆ V
invariant under the action of σ , we decompose V = 	 ⊕ 	⊥,
where the superscript ⊥ denotes orthogonal complement. In
general, if σ has an ordered multiset of nontrivial invariant
subspaces {	i}, V can be decomposed as

V =
⊕

i

	i. (4)

The subspaces {	i} are known as irreps, mostly in the context
of the decomposition of a representation in irreps [46]. Unless
specified, capital Greek letters represent irreps as subspaces,
whereas lowercase Greek letters indicate their homomorphic
mappings.

We now introduce the representation of a group computed
from the Choi matrix. Let G be a finite group with a uni-
tary representation σ : G → M . We define the representation
�σ : G → M ⊗2 that maps g ∈ G to �σ (g) := σ (g) ⊗ σ (g)∗,
where ∗ denotes complex conjugation. We sometimes shorten
�σ (g) by �g when the knowledge of σ is implicit or unnec-
essary; we follow the convention of using a Greek subindex
to denote the representation and a Latin subindex to denote an
element of such representation.

We recall the definition of the twirl by a representation of
a group. Let G be a finite group with a three-dimensional
representation σ . The twirl of a channel E over a group G
is

T (G,σ )
E := E

g∈G
�†

g�E�g, (5)

where Ex∈X denotes average over the uniform measure on X;
that is, x has probability 1/|X|. We generally omit the pair
group-irrep (G, σ ) in writing the left-hand side of Eq. (5); the
trace of TE is used in RB schemes to estimate the average gate
fidelity (AGF).

Before proceeding to the next section, we define the ideal
and noisy versions of a channel labeled by a group element.
Let g ∈ G; we call �g the ideal channel corresponding to g.
Then if Eg is a channel associated with the noise accompany-
ing the action of �g, the noisy version of �g is

�̃g := �Eg�g. (6)

Using the tools of representation theory and quantum channels
presented above, we then formulate our generalization of DB.

III. APPROACH

We are now ready to describe our approach to articulating
and solving the problem of benchmarking a universal set of
qutrit gates. First we introduce the hyperdihedral group as a
generalization of the dihedral group, needed for generalizing
qubits to qutrits. Then we elaborate on our benchmarking
scheme for the hyperdihedral group. We discuss the formal
properties our scheme generalizes from the qubit case.

A. Hyperdihedral group

We now introduce our generalization of D8, which we
call the hyperdihedral group (HDG). Our extension of DB is
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based on a unitary irreducible representation (unirrep) of the
HDG. We establish this representation in the following two
paragraphs. The HDG is the semidirect product (we formally
specify the product later) between C3 and C×2

9 . We justify
the choice of the HDG in Appendix C 1. We discuss the
characterization of other diagonal unitary matrices (diagonal
gate) at the end of this subsection.

The unirrep for HDG is defined using two auxiliary repre-
sentations. The first auxiliary representation is σX : C3 → M .
If the abstract elements of the order-3 cyclic group C3 are
{ak : k ∈ [3]}, the mapping σX is σX (ak ) = X k , where X is
given in Eq. (3).

The second auxiliary representation is now introduced and
used to define the unirrep we use for the HDG. Consider
the mapping σC×2

9
: C×2

9 → M . If the elements of C×2
9 are

α = (α0, α1) ∈ [9]×2, then σC×2
9

(α) = T α0 (T ′)α1 , where T ′ :=
diag[ω2

9, ω
6
9, ω9]. Using σX and σC×2

9
, the HDG irrep our

scheme uses is

γ : HDG → M : (ak,α) �→ σX (ak )σC×2
9

(α). (7)

Notice Ran(γ ) = 〈T, X 〉, which is reminiscent of D8.
We now provide the definition of the HDG. Consider that

the automorphism φ ∈ Aut(C×2
9 ) is

φ(T ) := T 3(T ′)4, φ(T ′) := T 8(T ′)5. (8)

Considering φ, the HDG is completely defined by

HDG := C3 �φ C×2
9 ; (9)

the mapping φ depends on T . Additional details can be found
in Appendix B.

We discuss several properties of the HDG and the resulting
RB scheme. The HDG, consisting of 243 group elements,
requires only 81 gates when global phases are removed [10].
Consequently, our scheme uses fewer gates than Clifford-
based RB schemes. It is worth mentioning that H �∈ Ran(γ ),
which is a property shared with DB.

Our scheme has another two additional characteristics use-
ful in practical settings. The entire set of HDG gates is
generated solely by the X and T gates, which also enjoy a
simplified multiplication rule between group elements. The
AGF and survival probability (SP), derived from averaging
over the HDG, are dependent on two complex parameters.

The HDG is a natural generalization of D8; like D8, it
has a semidirect product structure [47]. As a result of the
semidirect product structure of the HDG, group elements and
their products can be straightforwardly expressed as powers of
the generating elements, as done in Appendix B. Thus, sam-
pling from the HDG is straightforward and does not require
approximate methods, as is often necessary for arbitrary finite
groups [48].

We now discuss the prerequisites of our scheme. Our
scheme requires three primitive gates (X, T, and H),
state preparation and measurement (SPAM) of |0〉 and
|+〉 := H |0〉, and the construction of circuits with a depth of
up to 200 HDG gates. Among these gates, the X and T gates
are the generators of the benchmarked gate set, whereas the H
gate is only required to prepare the state |+〉.

Current qutrit experiments satisfy the requirements of our
scheme [9,10]. For instance, the Berkeley implementation

(BI) [10] uses primitive gates for rotations in the subspaces
span(|0〉, |1〉) and span(|1〉, |2〉). These authors have also re-
ported the composition of more than 200 qutrit gates. These
characteristics support the claim that our scheme is currently
feasible.

Our scheme is not limited to the characterization of T in
Eq. (2). By substituting T by any other diagonal matrix (in
the computational basis) with order at least 3, the construction
of the HDG can be applied to such a gate. The resulting
representation has the same irrep decomposition as the HDG.
Thus, our scheme is useful to characterize any diagonal gate
with order at least 3.

We chose to employ the T gate, as defined in Eq. (2),
because it enables universal quantum computing. Using non-
Clifford gates like T is beneficial due to the availability of
established magic-state distillation procedures for generating
such a gate. Furthermore, the use of magic-state distillation is
notably advantageous, as this method has been integrated into
error-correcting codes [49].

IV. RESULTS

We now provide the expressions for the AGF and the
SP resulting from using a HDG gate set. These expressions
correspond to our generalization to qutrits of dihedral bench-
marking. We also show that our scheme is made, as Clifford
RB schemes are, SPAM-error independent by adding a pro-
jector to the SP expression.

A. Survival probability and average gate fidelity

We introduce our scheme to characterize a universal gate
set, which is our generalization for qutrits of DB. Our scheme
feasibly estimates the AGF of the HDG gate set. Our analysis
assumes every gate-set member has the same noise, which is
referred to as gate-independent analysis. It is worth mention-
ing that our scheme is compatible with the Fourier transform
method [50,51]. We introduce our scheme first by presenting
the twirl computed over the HDG and then the expressions for
the AGF and the SP.

We now write the explicit expression of the twirl.
We start by considering the projectors onto the different
representation spaces [46] in Eq. (C1) of Appendix C:
I,�0 ,�∗

0
,�+ ,�∗+ . The eigenvalues are

λ� (E ) := tr(�E� )

tr(��
� )

. (10)

Then the twirl of a channel E over the HDG is

TE =
∑

�∈{�I ,�0,�
∗
0 ,�+,�∗+}

λ� (E )�. (11)

From Eq. (11), there are only two nontrivial complex entries:
λ0 and λ+. Let ς ∈ {0,+}. The parameters λς are then conve-
niently written in polar form:

λς = rς exp(iϕς ). (12)

We now write the SP in our scheme. The gate-independent
conditions mean that for all group members g ∈ HDG, the
noisy channel has the form

�̃g = �E�g; (13)
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that is, every gate set member has the same noise channel
E . Let ρ be a state, E ∈ {ρ, I − ρ}, and m a positive integer.
Using the assumption of Eq. (13), the SP for the HDG is

Pr(m; ρ, E , HDG) = 〈〈E |�ET m
E |ρ〉〉. (14)

We rewrite Eq. (14) knowing TE is diagonal to obtain

Pr(m; ρ, E , HDG) =
∑

�

λm
� (E )〈〈E |�E�|ρ〉〉, (15)

where the sum is over the irreps in the decomposition of
Eq. (C1).

We now show how Eq. (15) is used to estimate, from the
circuit depth versus the SP curve, the AGF over HDG. We
obtain the expression for the SP curve, which is a decaying
exponential function. To express the SP as a function of the
twirl entries, we consider the states

ρς := |ς〉〈ς |, ς ∈ {0,+}. (16)

Substituting ρ in Eq. (15) with ρς given in Eq. (16), we obtain
the SP,

Pr(m; ρς , ρς , HDG) = 1
3 + 2

3 bς rm
ς cos(mϕς ). (17)

Thus, the SP can be used to estimate the AGF.
At this point, we introduce the AGF and relate it to the SP

written in Eq. (17). The AGF computed over a group G is
defined as

F̄ := E
g∈G

F(�̃g,�g), (18)

where F(�̃g,�g) is the gate fidelity between the ideal and the
noisy channel corresponding to �σ (g). In general, for any pair
of qutrit channels E and E ′, the AGF F(E ′, E ) is [52]

F(E ′, E ) := 1
12 tr�†

E ′�E + 1
4 . (19)

Next, we write the AGF in terms of the twirl parameters.
For gate-independent benchmarking, the quantity estimated
by HDG benchmarking [30] is the AGF between the twirl and
the identity,

F̄ = F(TE , I) = 1
12 tr TE + 1

4 , (20)

where TE is defined in Eq. (5). For the qutrit HDG, using
Eqs. (17),

F̄ = F(T , I) = 1
12 (1 + 2r0 cos ϕ0 + 6r+ cos ϕ+) + 1

4 . (21)

Note how the quantities bς in Eq. (17) are not needed to
estimate the AGF.

It is possible to neglect the phases in Eq. (21): we justify in
Appendix A that for high-fidelity configurations, ϕ0 � 1 and
ϕ+ � 1. Thus, we simplify Eq. (21) to

F̄ = F(T , I) ≈ 1
12 (1 + 2r0 + 6r+) + 1

4 . (22)

Notice that the previous approximation for the AGF is always
valid. However, for large values of m, the single exponential
approximation for the SP could fail; we study the validity of
the single-exponential approximation in Appendix A.

B. Removal of SPAM-error contributions

An important feature of Clifford randomized benchmark-
ing schemes is their independence of SPAM errors [53].

However, the HDG SP given in Eq. (17) is not SPAM
error-free (SEF). One way to overcome this limitation is by
computing a projector [48] that, when multiplied with the
twirl, leads to an expression of the survival probability with
a single parameter; thus our scheme is SEF.

The projector-based method for term removal is not the
only option and may sometimes be superfluous. There are
known alternatives to this approach [54,55]. Furthermore, if
a gate set achieves a fidelity of approximately F̄ ≈ 0.99, the
need for SPAM removal techniques diminishes, as illustrated
in Sec. V and explored in other studies [32].

We now compute the projectors. The Choi matrix of the X
and Z gates satisfies

Pς :=
∑
k∈[3]

�Qk
ς
, (23)

where ς ∈ {0,+}, Q0 := X , Q+ := Z . The projectors Pς sat-
isfy P+�0 = P+�∗

0
= 0 and P0�+ = P0�∗+ = 0, where

0 is the null matrix in M ⊗2.
By multiplying TE from the left by Pς , we remove every

parameter in Eq. (11) except λς . Therefore, using a modified
SP—with powers of the clock and shift matrices— we can
obtain an SP that depends only on selected parameters, inde-
pendently of the initial state and the final measurement. We
compute such an SP in the next paragraph.

The modified SP—by which we mean including the pro-
jectors in Eq. (23)—is

P̌r(m; ρ, E , HDG; ς, k) := 〈〈E |�Qk
ς
�ET m

E |ρ〉〉, (24)

where k ∈ [3]. Using Eq. (24), we reach the SEF version of
the SPs (17):

PrSEF
ς :=

∑
k∈[3]

P̌r(m; ρ, E , HDG; ς, k)

= λI + 2 Re
{(

λm
ς αSEF

ς

)}
, (25)

where αSEF
ς ∈ C are constants absorbing SPAM contributions.

Equation (25) shows that, even if the coefficients depend on
the initial state preparation, the eigenvalues λς remain un-
changed so that the expression of F̄ in Eq. (18) is SEF.

V. NUMERICS

In this section, we numerically investigate the feasibility
of our scheme. Our study is done by comparing the vari-
ance of the Clifford and HDG gate sets. This is done using
experimental resources reported for a transmon qutrit [10].
Our results show that both variances are qualitatively similar.
Thus, given that the experimental resources required for our
scheme are similar to those of Clifford RB, if Clifford RB can
be implemented, our scheme can likewise be appropriately
executed.

A. Noise model

We introduce examples of channels used to add noise to
HDG gates. These channels are motivated by the features of
the BI and the noise models presented elsewhere [51].

In determining the appropriate noise for each gate, we ob-
serve the following distinction: elements within the HDG fall
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into two distinct categories—diagonal matrices and powers of
X . Notably, the X gate’s implementation differs from that of
the diagonal gates [22]. Given this difference, we introduce
specific noise types for each: for the diagonal matrices, we
incorporate noise by adding a phase to the state |1〉, whereas
for the powers of X , we introduce an over-rotation error.

In our example, the over-rotation error corresponds to
adding a phase to the state |1〉. Thus we represent this noise
by conjugating a state by the following unitary matrix:

Uϕ :=
⎡
⎣1

exp(iϕ)
1

⎤
⎦. (26)

For the over-rotation error, the mapping corresponds to the
conjugation of a state by a matrix of the form

U(ψ,ξ ) := V exp(−iψM01) exp(−iξM12)V †, (27)

where ψ, ξ ∈ [0, 2π ), V ∼ Haar(SU(3)) is a matrix ran-
domly sampled using the SU(3) Haar measure [56], and

M01 :=
⎡
⎣1

−1
1

⎤
⎦, M12 :=

⎡
⎣1

1
−1

⎤
⎦. (28)

B. Survival probability statistics

We now analyze numerically the SP. The primary objective
of this examination is to highlight the similarities between the
variances of the Clifford and HDG gate sets. Notably, simi-
lar variance behaviors suggest a similar number of samples
required across both methods. Given our reliance on a small
subset of the Clifford gate set, excluding T , the feasibility of
our scheme is related to this sample count.

Through a numerical analysis, we determine the variance
of the HDG SP when subjected to noise. This is important, as
the determination of the number of samples required depends
on the variance. Although there is a model for the variance
[57], it includes numerous parameters; these parameters limit
its practicality.

Alternatively, a two-parameter empirical model is stated
for qubit Clifford randomized benchmarking (RB) [58]. Un-
fortunately, this latter model asymptotically approaches zero.
This behavior is not seen in qutrits, where the variance con-
verges to a nonzero value.

The variance of the SP is

V(m; ρ, E ,G) := 〈〈E⊗2|�⊗2
E (TE⊗2 )m|ρ⊗2〉〉

− 〈〈E⊗2|�⊗2
E

(
T ⊗2
E

)m|ρ⊗2〉〉, (29)

where m is the circuit depth, TE⊗2 := Eg�
⊗2
g �⊗2

E (�⊗2
g )†, ρ

is the initial state, and E is the final measurement [57]. An
example (for unital noise) of the variance of the SP (for qutrit
Clifford and HDG) is presented in Fig. 1.

These numerical results show the variance of the SP for
the HDG gate set is qualitatively similar to the Clifford case.
Consequently, it is reasonable to expect that the number of
required samples should be comparable.

FIG. 1. Variance for two SPs, differentiated by the gate set used
in the simulation: blue and orange lines correspond to the HDG and
Clifford gate sets, respectively; the variable m in the argument of
V denotes the circuit depth. We observe that the two curves are
qualitatively similar. In the plot we present the variance for the SP
for a configuration with F(�Uϕ

) = 0.9999 and F(�(ψ,ψ ) ) = 0.99 [in
Eqs. (26) and (27)], using |0〉 as initial state.

VI. DISCUSSION

Our extension of the randomized benchmarking scheme
to characterize T gates is given by the expressions (17) and
(25), together with the qutrit HDG gate sets. To summarize
our steps, we obtained the expression for the HDG AGF in
Eq. (22). We then showed that the parameters of the HDG
AGF are accessible via a fit from the survival probabilities in
Eqs. (17) and Eqs. (25), respectively, for ideal and noisy—
subject to SPAM errors—initial states.

Next we examined the experimental resources required for
our scheme. Compared with the 216 gates of the Clifford
group, the 81 gates of the quotient HDG/〈ω3I〉 reduce by
∼2/3 the number of gates required for benchmarking and pro-
vide a more efficient scheme than interleaved benchmarking,
with respect to the gates needed to be synthesized [14].

We then analyzed the practical properties of our scheme.
By enforcing the condition of a diagonal twirl, we simplified
the data analysis required for computing the AGF. This is
especially clear compared to the nondiagonal cases [33,48].
Additionally, the semidirect product structure of the HDG
allows the efficient sampling of HDG elements, eliminating
the need for approximate Markov chain methods [48]. Finally,
we asserted that our scheme is feasible as it is based on gates
(X, H, and T) that can be implemented by current platforms
[9,10].

In Sec. V, we simulated our scheme using the experimental
parameters from a transmon qutrit [10]. Our findings indicate
that the statistics of the HDG SP closely resemble those of the
Clifford gate set [57]. Consequently, comparable experimental
resources—such as measurements and the number of ran-
domly sampled circuits—are required, and the same statistical
tools can be employed.

We conclude our discussion with a comment on non-
Clifford interleaved benchmarking [14,30]. The HDG can be
used to characterize diagonal gates. However, our schemes
and the construction of the HDG cannot be used to charac-
terize the X gate. The reason is that, by removing the X gate
from the HDG, we obtain an Abelian subgroup. Twirling by
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an Abelian group leads to a twirl with more parameters than
for the HDG [59].

VII. CONCLUSIONS

We have extended the randomized benchmarking scheme
to characterize qutrit T gates. Our scheme relies on our gen-
eralization of the dihedral group for qubits, which we call
the hyperdihedral group. Using the hyperdihedral group, we
derived closed-form expressions for the survival probability
and average gate fidelity for gate sets that include a qutrit T
gate. Our scheme characterizes a diagonal qutrit T gate, the
non-Clifford generator of a universal qutrit gate set. Thus,
our extension completes the characterization of a universal
qutrit gate set. Finally, to prove our scheme’s feasibility, we
simulated its application on a transmon qutrit T gate [10].
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APPENDIX A: EFFECT OF PHASES ON THE SURVIVAL
PROBABILITY AND AVERAGE GATE FIDELITY

In this Appendix, we study the effect of the phases in
Eq. (12) on the survival probability curve and average gate
fidelity. We show that, for high-fidelity gates, the contribution
of the phases can be neglected in the AGF. However, for high-
depth circuits, the survival probability curve deviates from a
single exponential.

To consider the most general case, we express the phase
in terms of the χ -representation. This representation has its
origins in quantum tomography [2,60]. We use this repre-
sentation to obtain the general expression for the phase in
eigenvalue λ0 in Eq. (12). In the χ -representation, the phase
in Eq. (12) is given by

ϕ0 = 2 arctan

(
v√

u2 + v2 + u

)
, (A1)

where u := Re(λ0), and v := Im(λ0). Specifically, we have

u = χ00 + χ11 + χ22

− 1

2
(χ33 + χ44 + χ55 + χ66 + χ77 + χ88), (A2a)

v = 2√
3

(χ33 + χ44 + χ55 − χ66 − χ77 − χ88). (A2b)

We now analyze the asymptotic behavior of the phase for
high-fidelity gates. High-fidelity implies χ00 � 1 and χii �
1 for i > 0. This implies that u ≈ 1 and v � 1. Asymptotic
behavior of cos ϕ0 is

cos ϕ0 = 1 − 1

2

(
v

u

)2

+ O((u/v)4) ≈ 1 − 1

2

(
1 − F̄

F̄

)2

.

(A3)
Equation (A3) shows that for high-fidelity gates, approxima-
tion Eq. (22) is valid.

However, the experimental estimate of the eigenvalues λς

could be affected by the phase in Eq. (12). We study the case

FIG. 2. Natural logarithm plot of the SP Pr of Eq. (17) for a
gate-independent RB run. The noise was fixed with F̄ = 0.9925. We
highlight the presence of the oscillatory contribution as a deviation
from a straight line.

when the phase ϕ0 is maximal for a given AGF. We consider
F̄ = 0.9925. In Fig. 2 we show the natural logarithm of the
SP. From Fig. 2 we notice a deviation from a straight line; this
deviation indicates that the SP is not a single-exponential. The
shape of this curve makes it difficult to estimate the parameter
if the number of composed gates is large.

The contribution of the phase to the SP in Eq. (17) is
assessed by an asymptotic expansion. For large values of the
fidelity,

cos mϕ0 = 1 − 1
2 (mu/v)2 + O((u/v)4)

≈ 1 − 1
2 [m(1 − F̄)/F̄]2. (A4)

Therefore, even for high-fidelity gates, shallower circuit
depths must be considered for the single-exponential fit. Oth-
erwise the presence of the phase produces a bad fit.

APPENDIX B: CONSTRUCTING AND MANIPULATING
QUTRIT HDG ELEMENTS

For convenience, we construct elements in the qutrit
HDG by computing products of the matrices X , A1 :=
diag[1, ω8

9, ω9], and A2 := diag[ω2
9, ω

6
9, ω9], where ω9 :=

exp(2π i/9). Each HDG member X xAy
1Az

2 is labeled by
the (x, y, z), where x, y ∈ Z3, z ∈ Z9. For two words
(x1, y1, z1) and (x2, y2, z2) labeling HDG elements X x1 Ay1

1 Az1
2

and X x2 Ay2
1 Az2

2 , respectively, the resulting group element is
X x3 Ay3

1 Az3
2 = X x1 Ay1

1 Az1
2 X x2 Ay2

1 Az2
2 , where (x3, y3, z3) is given

by

⎡
⎢⎣

x3

y3

z3

⎤
⎥⎦ :=

⎡
⎢⎣

1 0 0

0 5 8

0 4 3

⎤
⎥⎦

x2
⎡
⎢⎣

x1

y1

z1

⎤
⎥⎦ +

⎡
⎢⎣

x2

y2

z2

⎤
⎥⎦. (B1)

Similarly, for an HDG element (x1, y1, z1), the inverse word
(x2, y2, z2) satisfying

(
X x1 Ay1

1 Az1
2

)(
X x2 Ay2

1 Az2
2

) = I3 (B2)
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is given by
⎡
⎢⎣

x2

y2

z2

⎤
⎥⎦ := −

⎡
⎢⎣

1 0 0

0 5 8

0 4 3

⎤
⎥⎦

3−x1
⎡
⎢⎣

x1

y1

z1

⎤
⎥⎦. (B3)

The multiplication rule in Eq. (B1) also hints at the semidirect
product structure of the group, where the X gate, acting by
conjugation, is an automorphism for the subgroup generated
by the matrices A1 and A2.

APPENDIX C: CRITERIA FOR THE SELECTION
OF THE HDG AND PROOFS

1. Criteria

We now explain our reasoning for choosing the HDG.
We identify and examine four properties that a pair (group,
representation) must satisfy for optimal characterization of
a qutrit T gate within a RB scheme. We then prove that the
pair (HDG, γ ) is the unique pair that meets our four criteria.
Appropriate and optimal pairs (as defined in the next two
paragraphs) generalize the pair group-irrep used in dihedral
benchmarking.

Our four criteria are divided into two categories: two crite-
ria distinguish appropriate from inappropriate pairs, while the
remaining criteria identify optimal pairs. We later show that
our criteria lead to the identification of a unique appropriate
and optimal pair.

We can now discuss our criteria for identifying an ap-
propriate pair (G, σ ). Our first criterion justifies why only
irreducible, and not reducible, representations are used in RB
schemes. This point is not addressed in either Clifford or D8

RB schemes. The motivation, as discussed in this Appendix,
is to prevent increasing the number of parameters in the SP
and AGF. A pair (G, σ ) satisfies our first criterion (C1) if σ is
an irrep and T ∈ Ran(σ ).

The criterion C1 is motivated by the number of parameters
in the AGF and SP. We can count the number of parameters
using the orthogonality of characters [35]. In Theorem 1 we
show that if a reducible representation is used, the number of
parameters is unnecessarily increased.

Our second criterion (C2) is established so as to only re-
quire projector or character techniques to recover SPAM error
independence [30,55]. A pair (G, σ ) satisfies C2 if it satisfies
C1, and twirling any channel by �σ yields a diagonal matrix
(in the computational basis). If a pair (G, σ ) satisfies C2, we
label it as appropriate.

We stress the significance of C2 in light of some alterna-
tives [32,33]. Whereas RB can be realized with nondiagonal
twirls, our criterion intentionally circumvents the necessity
for additional statistical techniques. This enables our method
to be incorporated as a subroutine in a more comprehensive
characterization scheme.

Our next two criteria deal with experimental costs, and they
are necessary to pick the best candidate among the appropriate
groups identified with C2. We introduce our third criterion
(C3) to reduce the number of gates needed. A pair (G, σ )
satisfies C3 if it satisfies C2 and the order of G is minimal: no
other appropriate pair contains a group with fewer elements
than G.

For our fourth criterion (C4), we consider SPAM costs. A
pair (G, σ ) satisfies C4 if (G, σ ) satisfies C3 and twirling by
σ yields a matrix with a minimal number of distinct eigenval-
ues. If a pair (G, σ ) satisfies C4, we label it as optimal.

Proposition 1. The following holds for the qutrit pair
(HDG, γ ):

P1. γ in Eq. (7) is an irrep and T ∈ Ran(γ ).
P2. Twirling a channel with respect to �γ yields a diagonal

channel in the computational basis.
P3. The HDG is the group with the smallest order with an

irrep satisfying P1 and P2.
P4. HDG AGF has the smallest number of parameters and

satisfies P3.
P1 is established through the examination of character

properties [35]. As the sum of the squared moduli of traces
of each member of Ran(γ ) equals the order of the HDG,
γ is indeed verified to be an irrep [35]. P2 is confirmed by
employing an HDG character table to ascertain that the irreps
of �γ decompose H ⊗2 as

H ⊗2 = �I ⊕ �0 ⊕ �∗
0 ⊕ �+ ⊕ �∗

+, (C1)

where �I is the trivial irrep, �0 and �∗
0 are two conjugated

one-dimensional irreps, and �+ and �∗
+ are two conjugated

three-dimensional irreps. Consequently, Schur’s lemma (as
explicitly analyzed in the supplemental material of Ref. [53])
ensures that the twirl is diagonal.

We finish the study of Proposition 1 by proving P3 and
P4. P3 is proven by direct enumeration of each group with
order smaller than the HDG. Then since the qutrit HDG is
the sole group that fulfills P3, P4 follows directly. As P1
implies C1, P2 implies C2, and P3 and P4 imply C3 and C4,
respectively, and Proposition 1 shows that the pair (HDG, γ )
satisfies our four criteria and is thus a generalization of D8.
In what follows, we use (HDG, γ ) to generalize the dihedral
benchmarking scheme.

Lemma 1 [46]. Let G be a finite group and γ ′ be an irrep of
G. Let us define the representation �γ ′ : G → M 2 := g �→
γ ′(g) ⊗ γ ′(g)∗. Then the trivial irrep (g �→ 1 ∈ C) appears in
the decomposition of �γ ′ .

Proof. Let χ (g) be the character of the irrep generated by
matrices g ∈ 〈X, T 〉. Then the character of �γ ′ (g) is χ�γ ′ (g) =
χ (g)χ (g)∗ = |χ (g)|2. We compute the inner product between
χ and the character of the trivial representation ∀g, χI (g) = 1:

〈χI, χ�γ ′ 〉 = 1

|G|
∑

g

|χ (g)|2.
Because χ�γ ′ (1) = d2, 〈χI, χ�γ ′ 〉 > 0. Therefore, the trivial
irrep appears at least once in the decomposition of �γ ′ [46].�

Theorem 1. If �γ ′ is reducible, then �γ ′ does not necessar-
ily produce a diagonal twirl.

Proof. Proving this theorem is equivalent to showing that
there is an irrep with multiplicity greater than 1 in the
decomposition of the representation. Without loss of gener-
ality, assume �γ ′ decomposes into two irreps α and β as
�γ ′ = α ⊕ β. Then �γ ′ = (α ⊕ β ) ⊗ (α ⊕ β )∗ = α ⊗ α∗ ⊕
α ⊗ β∗ ⊕ β ⊗ α∗ ⊕ β ⊗ β∗. By Lemma 1, we know that each
of the representations, α ⊗ α∗ and β ⊗ β∗, carries the trivial
irrep at least once. Thus, �γ ′ has an irrep with multiplicity
at least 2. Therefore, �γ ′ does not necessarily produce a
diagonal twirl. �
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