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With a finite amount of measurement data acquired in variational quantum algorithms, the statistical benefits
of several optimized numerical estimation schemes, including the scaled parameter-shift (SPS) rule and
finite-difference (FD) method, for estimating gradient and Hessian functions over analytical schemes [unscaled
parameter-shift (PS) rule] were reported by the present author [Phys. Rev. A 107, 042421 (2023)]. We continue
the saga by exploring the extent to which these numerical schemes remain statistically more accurate for a
given number of sampling copies in the presence of noise. For noise-channel error terms that are independent
of the circuit parameters, we demonstrate that without any knowledge about the noise channel, using the
SPS and FD estimators optimized specifically for noiseless circuits can still give lower mean-squared errors
than PS estimators for substantially wide sampling-copy number ranges—specifically for SPS, closed-form
mean-squared error expressions reveal that these ranges grow exponentially in the qubit number and reciprocally
with a decreasing error rate. Simulations also demonstrate similar characteristics for the FD scheme. Lastly,
if the error rate is known, we propose a noise-model-agnostic error-mitigation procedure to optimize the
SPS estimators under the assumptions of two-design circuits and circuit-parameter-independent noise-channel
error terms. We show that these heuristically optimized SPS estimators can significantly reduce mean-
squared-error biases that naive SPS estimators possess even with realistic circuits and noise channels, thereby
improving their estimation qualities even further. The heuristically optimized FD estimators possess as much
mean-squared-error biases as the naively optimized counterparts and are thus not beneficial with noisy circuits.

DOI: 10.1103/PhysRevA.109.012620

I. INTRODUCTION

Quantum computation is a key theoretical milestone of
quantum information theory [1] where prospective quan-
tum computers and devices [2–7] are used to perform
tasks with computation power that could in theory surpass
classical computers. This prompted the invention of a
plethora of quantum-computation and cryptographic algo-
rithms [8–14]. In practice, we are still in the era of noisy
intermediate-scale quantum (NISQ) devices [15] which run
algorithms on noisy circuits and a limited number of working
qubits [16–24]. These include the class of variational quan-
tum algorithms (VQAs) [25–29] that rely on the interplay
between classical and NISQ devices. Examples are quantum
eigensolvers designed for quantum chemistry [30–32], combi-
natorial tasks [33,34], and quantum machine learning [35–43].

Among the multiple problems faced by NISQ devices,
efficient circuit sampling and accurate circuit-function esti-
mation are important goals for achieving practical quantum
computation [28,44,45]. In recent years, there have been pro-
posals to employ analytical estimation schemes, commonly
known as the parameter-shift rule (PS) in the quantum-
computing community [46–49], to exactly estimate gradients
and/or Hessians VQAs that rely on, for instance, steepest
gradient-descent [50–53] and quantum natural gradient-
descent methods [54–58] in function optimization. On the
other hand, numerical estimation schemes are frequently
criticized because they are statistically biased and intro-
duce approximation errors. Especially for the finite-difference
(FD) scheme, the general mindset has been that decreas-
ing approximation errors requires a very small step size

and thus a large number of sampling copies to reduce
estimation errors.

Contrary to the above consensus, we note that when circuit
functions are to be sampled, an FD estimator that gives the
minimum mean-squared error (MSE, synonymous to “esti-
mation error,” or “sampling error” as in Ref. [59]) will have
an optimized step size that is not small—statistical bias is
generally necessary to minimize the MSE [60–64]. For Pauli-
encoded parametrized quantum circuits (PEPQCs) in which
variable parameters are encoded on single-qubit Pauli rotation
gates, the present author argued in Ref. [59] that the additional
free parameter in a numerical estimator, such as one of those
of the FD scheme (or its generalized versions) or the scaled
PS (SPS) scheme, should be optimized by minimizing the
respective MSE averaged over two-design circuits [65–67]. In
situations where barren plateaus exist [68–71], that is when
the circuit function and its gradient and Hessian magnitudes
drop exponentially with the qubit number, these optimized
estimators offer exponentially lower mean-squared errors rel-
ative to those from PS for a fixed number of sampling copies.

In this work, we demonstrate that optimized numerical es-
timators can still be statistically more accurate than analytical
ones when quantum circuits are subjected to noise channels,
which is part of a crucial research topic that is intimately
related to the possibility of a quantum advantage using noisy
circuits, especially when the qubit number is large [72–85].
After recalling the concepts of gradient and Hessian estima-
tion in Sec. II and noisy quantum circuits in Sec. III, we first
supply closed-form MSE expressions for both the FD and
SPS schemes averaged over two-design circuits for a given
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noise error rate η and qubit number n in Sec. IV A. With
these, we show in Sec. IV B that if SPS estimators optimized
for noiseless quantum circuits are used to estimate gradient
and Hessian components of noisy circuits, then the critical
sampling-copy numbers below which these naively optimized
SPS estimators outperform the PS ones all grow as O(2n/η)
with increasingly large n and decreasing η. While FD exhibits
no closed-form results for these critical numbers, simulations
exhibit similar behaviors for both naively optimized numerical
schemes with noisy hardware-efficient circuits.

While the original SPS and FD estimators may be em-
ployed when one has absolutely no knowledge about the
noise channel, using these naively optimized numerical
schemes that are strictly catered only to noiseless circuits
will result in asymptotically wrong estimated gradient and
Hessian components. In Sec. V, when only the noise-channel
error rate is known, we introduce a heuristic error mitigation
strategy to reduce the noise biases. Based on the assumptions
of unitary two-designs circuits and that the noise-channel
error terms do not depend on the circuit parameters, this
strategy is independent of the kind of circuit noise channel: it
minimizes the MSE upper bound over the free parameter for
the chosen numerical estimator, which depends only on the
error rate and not the noise-channel type. Such a procedure
is therefore operational since a very accurate and complete
description of the noise channel is unnecessary.

Under this error-mitigation strategy, we find that the heuris-
tically optimized SPS scheme offers a much more significant
reduction in the MSE relative to the naively optimized SPS
and PS schemes even with hardware-efficient quantum cir-
cuits and realistic circuit noise. However, the heuristically
optimized FD estimators obtained from this error-mitigation
strategy are still as noisily biased as their naively opti-
mized counterparts due to the way statistical biases enter the
approximation errors. This establishes the heuristically opti-
mized SPS scheme as the preferred choice for noisy gradient
and Hessian estimation when the noise-channel error rate is
known prior to the estimation.

II. NUMERICAL AND ANALYTICAL GRADIENT
AND HESSIAN ESTIMATORS FOR VARIATIONAL

QUANTUM ALGORITHMS

A parametrized quantum circuit (PQC) represented by
the unitary operator Uθ , where θ is a collection of real
parameters characterizing this circuit of a certain ansatz,
together with some Hermitian measurement observable O,
defines a real circuit function fQ(θ ) = 〈0|U †

θ OUθ |0〉. Here,
|0〉〈0| = (|0〉〈0|)⊗n is some n-qubit pure state initialized to
the zero bit-string state of the computational basis. A core
purpose of VQAs is to minimize fQ(θ ) over θ . Examples
of problems relevant to this task are eigenvalue-minimization
schemes such as variational quantum eigensolvers [30–32]
and quantum approximate optimization algorithms [33,34],
where O is a Hamilton operator of either a physical sys-
tem or combinatorial problem. The PQCs may include
classical-data encoding, as in quantum machine learning
[35–43]. Additionally, since the traceless part of O may
be written as a sum of traceless Pauli basis operators that
are usually each measured independently in an experiment,

we consider O as a traceless Pauli operator without loss
of generality.

To present the key results and important messages more
easily, we consider Pauli-encoded parametrized quantum
circuits (PEPQCs), which are circuits that encode variable
parameters on single-qubit Pauli rotation gates defined by
the standard Pauli operators X ≡ σx, Y ≡ σy, and Z ≡ σz.
For such PEPQCs and circuits encoded on single-qubit gates
of slightly more general Hermitian generators [49], one can
exactly write down the gradient and Hessian components
of fQ(θ ). If we consider a rather general and universal circuit
ansatz consisting of L layers, where each layer comprises
single-qubit and two-qubit controlled-NOT (CNOT) gates, such
that Uθ = WLWL−1 · · ·W2W1, these are

[∂PS]μ,l fQ ≡ ∂μ,l fQ = fQ(θμl + π/2) − fQ(θμl − π/2)

2
,

[∂PS]μ,l [∂PS]μ′,l ′ fQ ≡ ∂μ,l∂μ′,l ′ fQ

= fQ
(
θμl + π

2 , θμ′l ′ + π
2

)− fQ
(
θμl + π

2 , θμ′l ′ − π
2

)
4

− fQ
(
θμl − π

2 , θμ′l ′ + π
2

)− fQ
(
θμl − π

2 , θμ′l ′ − π
2

)
4

,

(1)

where the pair (μ, l ) labels the μth circuit parameter
θμl located in the unitary operator Wl . All other un-
specified parameters of fQ in the above formulas are
otherwise untranslated. The right-hand sides of (1) consti-
tute the so-called parameter-shift (PS) scheme, which is
an analytical scheme as it exactly computes the gradi-
ent and Hessian components. Since VQAs are iterations
of fQ sampling from a PQC and value updates with
a classical computer, these gradient and Hessian compo-
nents are also estimated from a finite number of sampling
copies. We therefore denote the corresponding estima-
tor versions as ̂[∂PS]μ,l fQ and ̂[∂PS]μ,l [∂PS]μ′,l ′ fQ, where
each function estimator f̂Q is obtained from measuring
N copies of the PQC output state in the eigenbasis of
a Pauli observable O. These estimators therefore possess
finite-copy errors.

There is another class of numerical schemes that approx-
imately defines gradient and Hessian components. One of
which is the (centralized) finite-difference (FD) scheme (its
generalized variants shall not be discussed here):

[∂FD]εμ,l fQ,k ≡ sinc(ε/2)∂μl fQ,k

= fQ,k (θμl + ε/2) − fQ,k (θμl − ε/2)

ε
,

[∂FD]εμ,l [∂FD]εμ′,l ′ fQ,k ≡ [sinc(ε/2)]2∂μ,l∂μ′,l ′ fQ,k

= fQ
(
θμl + ε

2 , θμ′l ′ + ε
2

)− fQ
(
θμl + ε

2 , θμ′l ′ − ε
2

)
ε2

− fQ
(
θμl − ε

2 , θμ′l ′ + ε
2

)− fQ
(
θμl − ε

2 , θμ′l ′ − ε
2

)
ε2

,

(2)

for ε > 0. Note that the effective multiplicative factors in-
volving sinc(ε/2) = 2 sin(ε/2)/ε is a special property of
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PEPQCs, where

fQ(θμ,l + θ0) = fQ(θμ,l ) + sin θ0∂μ,l fQ(θμ,l )

+ (1 − cos θ0)(∂μ,l )
2 fQ(θμ,l ). (3)

One may also consider a different numerical scheme where
a scalar parameter λ is multiplied to all true gradient and
Hessian components. This nabs us the scaled parameter-shift
(SPS) scheme inasmuch as

[∂SPS]λμ,l fQ ≡ λ[∂PS]μ,l fQ,

[∂SPS]λμ,l [∂SPS]λμ′,l ′ fQ ≡ λ[∂PS]μ,l [∂PS]μ′,l ′ fQ. (4)

Notice the difference between how the free parameters enter
the SPS and FD schemes.

Unlike the analytical PS scheme, both of these nu-
merical schemes introduce additional approximation errors
whenever ε �= 0 and λ �= 1. Hence, in VQAs, the estima-

tor counterparts ̂[∂FD]ε
μ,l fQ, ̂[∂FD]ε

μ,l [∂FD]ε
μ′,l ′ fQ, ̂[∂SPS]λ

μ,l fQ,

and ̂[∂SPS]λ
μ,l [∂SPS]λ

μ′,l ′ fQ will also be statistically biased

(for instance, the data averages ̂[∂FD]ε
μ,l fQ �= ∂μ,l fQ and

̂[∂SPS]λ
μ,l fQ �= ∂μ,l fQ) and result in approximation errors. This

means that these estimators possess both finite-copy and ap-
proximation errors.

As a measure for the estimation quality or accuracy, we
investigate the mean-squared error (MSE):

D(∂ fQ) = 〈( ̂[∂]μ,l fQ − ∂μ,l fQ)2〉,

D(∂∂ fQ) = 〈( ̂[∂]μ,l [∂]μ,l fQ − (∂μ,l )2 fQ)2〉,

D(∂∂ ′ fQ) = 〈( ̂[∂]μ,l [∂]μ′,l ′ fQ − ∂μ,l∂μ′,l ′ fQ)2〉. (5)

The notation 〈 〉 and respectively refer to averages over θ

and measurement data per θ , and ∂∂ fQ and ∂∂ ′ fQ are short-
hand for diagonal and off-diagonal Hessian components.

Technically, a numerical estimator would end up with an
MSE that is a sum of the finite-copy and approximation errors
[see Eq. (B2)]. On the other hand, an analytical estimator only
has the finite-copy error as its MSE. So, why are numerical es-
timators interesting? Well, in textbook scenarios, they are not
when fQ is computable exactly, in which case ε = 0 and λ = 1
should be the only sensible options for error-free gradient and
Hessian computation. However, they become interesting when
fQ has to be sampled from PQCs. Then, the free parameter
(ε or λ) of a numerical estimator can be chosen as the optimal
one that minimizes the MSE.

In Ref. [59], the optimized numerical estimators were
shown to give MSEs that drop exponentially in the qubit
number n. For finite sampling-copy numbers N , FD estimators
outperform the PS ones up to some critical N = N∗, beyond
which PS becomes more accurate. Furthermore, it has also
been shown that SPS always outperforms PS for any given N ,
making them the more favorable method over FD in practice
especially when n is large. The intuitive understanding of
this difference for noiseless VQA lies in the highly nonlinear
dependence on ε in both the finite-copy [∼1/(Nεα )] and
approximation [∼O(2−n)[1 − sinc(ε/2)β]2 ] error terms of
FD estimators, where α = 2, 4 and β = 1, 2, resulting in

optimized MSEs that scale as 2−nN−κ with 0 < κ < 1 for
large N , which will eventually be larger than those of the
PS estimators, which scale as 1/N . Both the finite-copy and
approximation error terms of SPS estimators, on the other
hand, are only quadratic in λ, and this leads to optimized
MSEs ∝1/N when N is large.

Another intuitive guide as to why this is the case: for
smaller N values and large qubit number n, SPS’s finite-copy
errors ∼λ2/N and approximation errors ∼O(2−n)(1−λ)2→0
in the presence of barren plateaus, such that the optimal
λ ∼ O(2−n) → 0 and the optimized SPS MSEs (∼λ2/N) are
clearly much smaller than the PS MSEs.

These results demonstrate that the statistical bias in an
estimator, when optimized properly, is a key ingredient for
minimizing its MSE, an insight well-known in sampling
theory [60–64].

III. NOISY QUANTUM CIRCUITS

Realistic (PE)PQCs are always susceptible to
noise in the form of a noise-channel action, namely,
ρθ = Uθ |0〉〈0|U †

θ �→ ρ ′
θ = E[ρθ ], which is completely

positive and trace-preserving. The resulting noisy mixed
state ρ ′

θ can always be written as

ρ ′
θ = ρθ,η = (1 − η)ρθ + ηρerr (θ, η), (6)

with η characterizing the error rate, or the strength of the
noise-channel map E , and ρerr (θ, η) is the noise-channel error
term that is typically a function of both the noiseless state ρθ

and η, and, thus, also depends on θ .
One example of a realistic noise channel is the successive

action of a two-qubit depolarizing channel on an n-qubit quan-
tum state ρ0 after every two-qubit unitary operation, such as
a CNOT-gate operation UCNOT, jk = |0〉 j j〈0|1k + |1〉 j j〈1|Xk on
qubits j and k:

UCNOT, jkρ0U
†
CNOT, jk

�→ (1 − η j,k )UCNOT, jkρ0U
†
CNOT, jk

+ η j,k

15

∑
1�=Pjk∈P ( j,k)

2

PjkUCNOT, jkρ0U
†
CNOT, jkPjk, (7)

where η j,k is the error rate from this CNOT operation and
P ( j,k)

2 = {1, Xj,Yj, Zj} × {1, Xk,Yk, Zk} is the set of two-qubit
Pauli operators and the identity for qubits j and k. Hence,
the unitary operator W1 = UCNOTsR1 for the first layer of an
n-qubit circuit ansatz (see Fig. 1) consisting of parameter-
encoded near-noiseless single-qubit gates R1 = R(1)

1 ⊗ R(1)
2 ⊗

· · · ⊗ R(1)
n followed by an array of n noisy CNOT op-

erations UCNOTs = UCNOT,n1UCNOT,n−1n · · ·UCNOT,23UCNOT,12

gives the noisy state ρ (1)
η = W1|0〉(1 − η1)〈0|W †

1 + η1ρ
(1)
err ,

with 1 − η1 = ∏n
j=1(1 − η j, mod ( j,n)+1). It follows that the

noisy version of an L-layered ansatz state defined by
Uθ = WLWL−1 · · ·W2W1 is given by

ρ
(L)
θ,η = Uθ |0〉(1 − η)〈0|U †

θ + ηρ (L)
err (θ, η),

η = 1 −
L∏

l=1

n∏
j=1

[
1 − η

(l )
j, mod ( j,n)+1

]
. (8)
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FIG. 1. Schematic of a four-qubit circuit representation of a Uθ

unitary operator. Each Wl , or a circuit unitary layer, comprises a chain
of parametrized single-qubit rotations R and a CNOT array.

Specifically, when η
(l )
j,k = η0 are equal, η = 1 − (1 − η0)nL.

For small η0, we consequently find that η ∼= nLη0.
In all numerical simulations, the circuit ansatz as illustrated

in Fig. 1 shall be adopted, where the encoded parameters on
all single-qubit rotation gates are chosen according to the Haar
measure on the qubit unitary group. Furthermore, noisy CNOT

gates that bring about (7) and (8) with a constant error rate
η0 per CNOT gate. All single-qubit gates are always taken to
have unit fidelity for granted. The corresponding figures of
merit are still the MSEs, but this time, the estimators are noisy,
whereas the true components are not. The MSE definitions are
otherwise similar to those in (5).

IV. RESULT 1: ADVANTAGES OF USING NUMERICAL
ESTIMATORS OPTIMIZED FOR NOISELESS CIRCUITS

A. Noisy mean-square errors of numerical estimators

For the sole purpose of acquiring an analytical understand-
ing of the performance of numerical schemes on a noisy
circuit, we first assume that ρ (L)

err (θ, η) = ρ (L)
err (η) does not

depend on the circuit parameters θ . This implies that the noisy
function

fQη
(θ ) = (1 − η) fQ(θ ) + ηg (9)

is a sum of the noiseless fQ(θ ) and some constant term g =
tr{ρ (L)

err (η)O} that is independent of θ . Note that −1 � g � 1
still generally depends on η, but we suppress this dependence
for notational simplicity as it shall be irrelevant for subsequent
discussions unless otherwise required.

Figure 2 illustrates that, for PEPQCs (that is, all R(l )
k are

products of encoded Pauli rotation gates) with the circuit noise
channel of uniform error rate η0 described in Sec. III, which
shall be the noise channel of choice for all subsequent simu-
lations, the distribution of g in θ is generally much flatter than
that of fQ(θ ). The constant-g (in θ ) assumption thus serves as
a reasonable approximation for such a physically motivated
noise model. This is slightly elaborated in Appendix A.

The second assumption that we shall make to facilitate
the analysis is that all θ averages are well approximated by
averages over unitary two-designs. This means that the first
and second moments of Uθ coincide with the Haar measure of
the unitary group [86,87]. This is a rather good approximation
as broad classes of circuits with polynomial and logarithmic
circuit depths are approximately unitary two-designs [65–67].

FIG. 2. Distributions of fQ and g in fQ,η for PEPQCs with (a),
(b) n = 4 and (c), (d) n = 7 qubits over 1000 sets of randomly
generated PEPQC parameters (Haar-distributed single-qubit unitary
rotations) in each figure panel. The ratio rvar = Varθ [ fQ]/Varθ [g] is
given in every panel. The CNOT depolarizing error rate is set at η0 =
0.05 and the overall error rates η = 1 − (1 − η0)nL are (a) 0.185,
(b) 0.642, (c) 0.302, and (d) 0.834. The respective observables are
O = X1Y2Z3X4 and O = X1Y2Z3X4Y5Z6X7.

To theoretically establish the performance of FD and SPS, we
derive analytical MSE formulas that are strictly relevant to
gradient and Hessian components corresponding to parame-
ters whose encoded Pauli rotation gates are each sandwiched
by two-design circuit unitary operators (see Fig. 3). This shall
be coined the two-design sandwich (TDS) condition, which
is satisfied for the majority of gradient and Hessian compo-
nents in the bulk of a sufficiently deep circuit. In Fig. 4, for
instance, we show that the simulated average MSEs fit all
the TDS-based theoretical expressions well, even though the
purposefully chosen gradient and Hessian components do not
satisfy the TDS condition.

When O is a traceless Pauli observable, this two-design
framework and the TDS condition permits one to obtain

FIG. 3. (Extracted from Ref. [59] and modified.) A visual illus-
tration of the TDS condition. The (red) blocks A, B, and C are unitary
operators drawn from a set of unitary two-designs. They sandwich
every gradient and Hessian component. This allows for analytical
MSE expressions for the numerical estimation schemes.
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FIG. 4. Monte Carlo simulations generating the respective N∗ behaviors in gradient and Hessian estimations with ηper layer for L = 5 in
the regime of small ηper layer. Noisy CNOT gates as in (7) is considered here. The dashed curves in the top figures represent the explicit NNSPS

∗
expressions for g = 0 in (B11), whereas those in the bottom figure trace all NNFD

∗ values by numerically solving DNFD(·) = DPS(·) for NT ≡
NNFD

∗ when g = 0, all derived based on the two main assumptions. The simulation markers are obtained from MSEs averaged over 2000 sets
of random PEPQC parameters (Haar-distributed single-qubit unitary rotations) and 1000 sampling experiments per PEPQC parameter set. We
discretize the range of NT in steps of 96 copies so that the minimum division is sufficiently large to be distributed to 2, 3, and 4 sampled
functions for defining gradient and Hessian estimators as per Sec. IV A. We pick μ = 1 and l = 2 to specify the location of the gradient
and diagonal Hessian components considered in this figure, and μ = 1, μ′ = 2, and l = l ′ = 2 for the off-diagonal Hessian component. As
examples, all evaluated gradient and Hessian circuit parameters are encoded onto to the Pauli Y -rotation gate. The exponentially increasing
trend of N∗ with n is numerically evident. The respective observables O for different n are cyclic repetitions of X , Y , and Z in this order for
every qubit following Fig. 2.

PEPQC-based identities that are independent of (μ, l ) [59]:

〈 fQ〉 = 0,
〈
f 2
Q

〉 = 1

d + 1
,

〈|∂ fQ|2〉 = 〈|∂∂ fQ|2〉 = d2

2(d + 1)(d2 − 1)
(TDS),

〈|∂∂ ′ fQ|2〉 = d4

4(d + 1)(d2 − 1)2 (TDS). (10)

To summarize, in order to acquire some analytical un-
derstanding of gradient and Hessian estimation with noisy
quantum circuits (in terms of MSE expressions and lem-
mas), we make the following two physically reasonable
assumptions:

(1) The noise channel generates error terms that are inde-
pendent of the circuit parameters θ (constant g in θ ).

(2) The noiseless Uθ is a unitary two-design, where gradi-
ent and Hessian components of its parameters conform to the
TDS condition such that Eq. (10) hold.

Under these two assumptions, for traceless Pauli observ-
ables, we arrive at the following exact MSEs for FD:

DFD(∂ fQ) = 4

NTε2

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]

+ [1 − (1 − η)sinc(ε/2)]2〈|∂ fQ|2〉,

DFD(∂∂ fQ) = 18

NTε4

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]

+ {1 − (1 − η)[sinc(ε/2)]2}2〈|∂∂ fQ|2〉,

DFD(∂∂ ′ fQ) = 16

NTε4

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]

+ {1 − (1 − η)[sinc(ε/2)]2}2〈|∂∂ ′ fQ|2〉,
(11)

and those for SPS,

DSPS(∂ fQ) = λ2

NT

[
1 − (1 − η)2〈 f 2

Q

〉− η2g2]
+ [1 − (1 − η)λ]2〈|∂ fQ|2〉,
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DSPS(∂∂ fQ) = 9λ2

8NT

[
1 − (1 − η)2〈 f 2

Q

〉− η2g2]
+ [1 − (1 − η)λ]2〈|∂∂ fQ|2〉,

DSPS(∂∂ ′ fQ) = λ2

NT

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]

+ [1 − (1 − η)λ]2〈|∂∂ ′ fQ|2〉. (12)

Here, NT is the total sampling-copy number for estimating
the corresponding components. If N copies are used to esti-
mate the function fQ, then NT = 2N for gradient-component
estimation, and NT = 3N and 4N , respectively, for the diag-
onal and off-diagonal Hessian-component estimation. Setting
λ = 1 gives us the MSEs for PS. The derivation of (11) and
(12) may be found in Appendix B.

B. Naively optimized numerical schemes
and their estimation advantages

It is now possible to compare the performances of SPS
and PS in terms of gradient and Hessian estimation. In the
noiseless case (η = 0), it is a straightforward matter to deduce
[59] that SPS estimators with λ taking the following optimal
values:

λopt = dNT

2d2 + dNT − 2
� 1 (∂ fQ estimation),

λopt = 4dNT

9d2 + 4dNT − 9
� 1 (∂∂ fQ estimation),

λopt = d3NT

4(d2 − 1)2 + d3NT

� 1 (∂∂ ′ fQ estimation), (13)

will minimize their respective MSEs, and these optimized
SPS estimators always offer smaller MSEs than those of PS
regardless of the value of NT. For 0 < η � 1, when the same
λopt in (13) are naively used in spite of the presence of noise,
a smaller naively optimized SPS (NSPS) MSE can still be
expected when NT is below some critical N∗. So, a larger N∗
signifies a more advantageous numerical scheme over PS. One
can directly calculate N∗ by setting DNSPS(·) − DPS(·) = 0,
which is generally a complicated function of η, g, and d . The
explicit expressions of N∗ when g = 0, which is almost exact
for our noise model from Fig. 2, are given in (B11).

To get a handle on the behavior of N∗ in relation to d and η,
we may further consider small η values such that all MSEs of
the NSPS schemes may be expanded up to first order in η. In
this small-η limit, the leading term ρ (L)

err (η) is also a constant
in η. The resulting N∗ = NNSPS

∗ values then read

NNSPS
∗ = (d2 − 1)

dη
(∂ fQ estimation),

NNSPS
∗ = 9(d2 − 1)

8dη
(∂∂ fQ estimation),

NNSPS
∗ = 2(d2 − 1)2

d3η
(∂∂ ′ fQ estimation). (14)

Therefore, we have the following lemma:
Lemma 1. Gradient- and Hessian-estimation performance

advantage of NSPS over PS. For an n-qubit two-design

PEPQC that satisfies the TDS condition and any noise channel
with a θ -independent error term leading to Eq. (9), NSPS
outperforms PS if NT < N∗ = NNSPS

∗ ∼ O(2n/η).
This result tells us that when the PEPQC is noisy, even

without knowing anything about the noise channel (such as
the error rate η), the NSPS estimators, that is those in (4)
evaluated with λ = λopt in (13) can still give more accurate
estimation than PS estimators when the sampling-copy num-
ber is limited. For circuits of very many qubits, owing to the
influence of barren plateaus for universal PEPQC ansatz̈e,
Lemma 1 informs us that these NSPS estimators are still the
more accurate ones for very large copy numbers.

We may also naively optimize the FD estimators in much
the same way as we did the NSPS estimators. Accordingly,
we may consider the noiseless FD MSEs by setting η = 0 in
all of (11) and minimize each of them over ε. Since ε enters
the MSEs in a transcendental fashion, this minimization is
done numerically. The optimal εopt is then a function of NT

and d , much like λopt in (13). If we now use these εopt to
define the FD estimators for noisy circuits, we then have the
analogous naively optimized FD estimators (NFD) and N∗ =
NNSPS

∗ for them can similarly be found by noting the instant
DNFD(·) = DPS(·).

In Fig. 4, we compare the values of N∗ for NFD and
NSPS schemes by simulating PEPQCs possessing noisy CNOT

gates with the channel action in (7). We do this for different
number of qubits n given a fixed error rate per layer—ηper layer.
This allows us to compare MSE performances for various
n fairly in an ansatz-free manner since the two-qubit gate
count that scales with n is absorbed into this “error rate per
layer” definition. For the circuit ansatz described in Sec. III
which we are considering, ηper layer ≡ 1 − (1 − η0)n. This is
also ηper layer

∼= nη0 when η0 is small. The total error rate
is hence η ∼= ηper layerL. Overall, naively ignoring noise by
using the NSPS schemes can still achieve lower MSEs in
contrast with PS. Compared with NFD, this happens for larger
sampling-copy number ranges (or a larger N∗).

Nonetheless, both NSPS and NFD schemes, which are
optimally tuned for noiseless quantum circuits, will evidently
introduce noise biases (or MSE biases) even when NT → ∞ if
they are employed for noisy circuits. This is a consequence of
optimizing over ε and λ by ignoring the presence of noise. As
these noise biases are permanent systematic errors that cannot
be eliminated even when NT = ∞, they are not to be confused
with statistical biases of the numerical estimators as explained
in Sec. II, which, when correctly optimized, can help eliminate
noise biases as a matter of fact. In the next section, we discuss
how these parameters may be properly tuned for noisy quan-
tum circuits so that the resulting optimized statistical biases
actually reduce noise biases.

V. RESULT 2: HEURISTIC ERROR-MITIGATION
FOR NUMERICAL GRADIENT
AND HESSIAN ESTIMATIONS

In the previous section, we found that numerical gradient
and Hessian estimation schemes, when optimized under the
negligence of noise in PEPQCs, can still give more accurate
estimators for a given total sampling-copy number NT value
no larger than some critical value N∗. There is, however,
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one more procedure we may carry out to further improve
the estimation quality of numerical estimators with noisy
NISQ circuits. In this section, we discuss a simple error-
mitigation strategy that can be carried out if the error rate η

of the overall noise channel is known a priori, which may
be acquired through an initial device and channel calibration
tests. Otherwise, no other explicit knowledge about the type
of noise channel acting on a PEPQC is necessary.

Very briefly, this error-mitigation technique involves mak-
ing a few heuristic assumptions such that the MSE expressions
in (11) and (12) are valid, followed by eliminating the de-
pendence of g by considering the upper bounds of these
MSE expressions, and finally minimizing these upper bounds
to obtain the respective optimal parameters to be used for
defining the heuristically optimized numerical estimators
given a specific η. As this technique does not require an
accurate noise-channel superoperator description, such an
error-mitigation scheme is appealingly feasible in real exper-
imental situations, since a full characterization of 16n real
parameters of the noise-channel map is generally impractical
for large n.

Let us now describe this error-mitigation protocol with
more detail. As the primary step, we make the assumptions
listed in Sec. IV A, which we repeat here once more: namely,
that (1) the noise channel generates error terms (or g) that are
constant in θ , and (2) all Uθ is a unitary two-design in which
gradient and Hessian components satisfy the TDS condition,
which leads to the MSE expressions in (11) and (12). To
execute this error-mitigation strategy without the knowledge
about the noise channel or g, the second step we take is to
consider the upper bounds of the MSE expressions, which are
obtained by simply removing “η2g2” on the right-hand sides
of (11) and (12). After minimizing the MSE upper bounds,
the λopt,η parameters characterizing the heuristically optimized
SPS scheme (HSPS) are

λopt,η = dNT(1 − η)

2d2 + dNT − 2 + η(2 − η)
(
2d − dNT − 2

d

)
(∂ fQ estimation),

λopt,η = 4dNT(1 − η)

9d2 + 4dNT − 9 + η(2 − η)
(
9d − 4dNT − 9

d

)
(∂∂ fQ estimation),

λopt,η = d3NT(1 − η)

4(d2 − 1)2+d3NT + η(2 − η)
[

4
d (d2 − 1)2 − d3NT

]
(∂∂ ′ fQ estimation). (15)

When η is known a priori, such an error-mitigation strat-
egy of minimizing MSE upper bounds over the parameters
that characterize numerical estimators can reduce their noise
biases significantly. Furthermore, the simplicity of the λ de-
pendence in all SPS MSEs allows us to acquire a quantitative
understanding of these noise biases.

Lemma 2. Gradient- and Hessian-estimation performance
advantage of HSPS over NSPS and PS. Suppose an n-qubit
two-design PEPQC satisfying the TDS condition is sub-
jected to a noise channel of a fixed error rate η > 0 and

a θ -independent error term leading to Eq. (9). Then when
NT → ∞, the NSPS and PS estimators give nonzero MSEs,
which are respectively 〈|∂ fQ|2〉η2 for gradient estimation,
〈|∂∂ fQ|2〉η2 and 〈|∂∂ ′ fQ|2〉η2, respectively, for diagonal and
off-diagonal Hessian estimation. On the other hand, the MSEs
of HSPS estimators asymptotically approach zero.

This heuristic protocol may also apply to the FD scheme,
which would then yield the heuristically optimized FD
scheme (HFD). However, as in the NFD estimation protocol in
Sec. IV B, the εopt,ηs for all gradient and Hessian estimations
have no closed forms and should be obtained by numerically
minimizing the upper bounds of the MSEs in (11). Unfortu-
nately, it turns out that the HFD estimators acquired this way
are just as noisily biased as the NFD ones. This is equivalently
encapsulated in the next lemma:

Lemma 3. HFD and NFD schemes are
asymptotically noisy. Suppose an n-qubit two-design
PEPQC satisfying the TDS condition is subjected to a
noise channel of a fixed error rate η > 0 and θ -independent
error term leading to Eq. (9). Then when NT → ∞, the
NFD and HFD estimators give nonzero MSEs, which are
respectively 〈|∂ fQ|2〉η2 for gradient estimation, 〈|∂∂ fQ|2〉η2

and 〈|∂∂ ′ fQ|2〉η2 respectively for diagonal and off-diagonal
Hessian estimation.

The interested reader may refer to Appendix C for the
simple arguments leading to Lemmas 2 and 3.

One can intuitively understand the reasons behind these
two lemmas by observing that, for the HSPS estimators to
completely eliminate noise biases in the limit of large NT,
we expect the condition (1 − η)λopt,η = 1 to hold in order for
the approximation error to approach zero, which means that
λopt,η > 1, consistent with the large-NT versions of (15). For
the HFD estimators, demanding an asymptotically vanishing
approximation error would entail the obedience of the anal-
ogous condition (1 − η)sinc(εopt,η/2) = 1, which can never
happen for any η > 0 since the sinc function is always less
than or equal to one. The only way out is η = 0, where we
recover the textbook asymptotic limit εopt,0 = εopt → 0.

Figure 5 compares the NSPS and NFD schemes with their
heuristically optimized counterparts HSPS and HFD using
known η0 or ηper layer, where the quantum circuit ansatz com-
prises layers of single-qubit gates followed by a complete
array of noisy CNOT gates. The zero-noise-bias property of
HSPS for constant-g noise channels as in Lemma 2 carries
over to other more general noise models, such as the one
governed by (7). However, because of the noise biases that
persist in HFD estimators, such an error mitigation does im-
prove the MSE. Moreover, the close competition between
NFD and HFD and the proximity of their asymptotic noise
biases may result in NFD estimators giving lower MSEs than
HFD estimators. This is, however, allowed because only the
upper bounds of the MSE are minimized to obtain the heuris-
tic schemes, so there is no guarantee for HFD to always do
better than NFD. Meanwhile, HSPS estimators would always
outperform NSPS and PS for sufficiently large NT if g is
roughly a constant in θ.

These findings suggest that, for quantum circuits of suffi-
cient depth and general noisy channels of a known error rate,
whose error terms are approximately constants in the circuit
parameters, HSPS is an advantageous gradient and Hessian
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FIG. 5. Monte Carlo simulations comparing the naive (NFD, NSPS) and heuristically optimized (HFD, HSPS) numerical gradient and
Hessian estimation schemes with (a) four-qubit, (b) six-qubit, and (c) eight-qubit PEPQCs for ηper layer = 0.05 and L = 5 circuit layers
[η = 1 − (1 − ηper layer )L = 0.226 ∼= 0.25]. The gradient and diagonal Hessian components are specified by μ = 1 and l = 2, and the off-
diagonal Hessian component by μ = 1, μ′ = 2, and l = l ′ = 2, with evaluated gradient and Hessian circuit parameters encoded to the
Y -rotation gate. All MSEs are averaged over 500 sets of random PEPQC parameters (Haar-distributed single-qubit unitary rotations) and
500 sampling experiments per PEPQC parameter set. In these plots, we observe that while HSPS significantly improves the MSEs with respect
to NSPS and PS, there is almost no visible differences between HFD and NFD estimators even with the logarithmic-scale plots presented here.
The respective observables O for the different n values are cyclic repetitions of X , Y , and Z in this order for every qubit, as in the captions of
Figs. 2 and 4.

estimation scheme that can significantly reduce asymptotic
noise biases for any given finite number of sampling copies.
As the qubit number n → ∞, the asymptotic noise biases of
all estimators eventually go to zero, but so are the gradient
and Hessian magnitudes anyway, which is a signature of the
barren-plateau problem. In this detrimental regime, no estima-
tion is feasible.

VI. CONCLUSION

The results of this work and those presented in the pre-
quel article revolve around the use of numerical methods
(such as finite-difference and scaled parameter-shift rule)
to estimate the gradient and Hessian of quantum-circuit
functions in variational quantum algorithms. With hypothet-
ical noiseless circuits, it is known from the prequel article
that a proper optimization of statistical biases in numerical
estimators can achieve lower mean-squared errors than an-
alytical ones (namely, estimators derived from the unscaled
parameter-shift rule). The key point is that sampling is re-

quired in variational algorithms, and the additional parameter
degree of freedom in numerical estimators permits us to
achieve optimal mean-squared errors that drop exponentially
with the number of qubits, commensurate with the exponen-
tially decaying gradient and Hessian magnitudes as a result
of barren plateaus occurring in deep universal quantum cir-
cuits. This possibility is absent in analytical estimators. Such
optimized numerical estimators are as easily computable as
the commonly accepted analytical ones and should therefore
be the preferred estimators if one considers the mean-squared
error as the figure of merit for estimation accuracy.

With realistic noisy quantum circuits, we have shown here
that, when one uses numerical estimators that are optimized
for noiseless circuits to estimate gradient and Hessian
components of noisy circuit functions, there exist nonzero
sampling-copy-number regimes where these so-called naively
optimized numerical estimators can still achieve lower
mean-squared errors than analytical estimators. Under two
physically realistic assumptions on both the quantum-circuit
structure and noise channel as stated in Sec. IV A, we
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explicitly show that the scaled parameter-shift estimators
outperform the corresponding unscaled analytical ones within
a sampling-copy-number range that increases exponentially
with qubit number and also increases reciprocally with the
total noise-channel error rate. These properties are carried
over to practical channels modeling noisy two-qubit gates on
a layered circuit ansatz.

These naively optimized numerical estimators have in-
nate noise biases that do not result in faithful gradient and
Hessian estimation even when the sampling-copy number be-
comes infinity, because they are strictly not meant for noisy
quantum circuits. To resolve this problem, we proposed an ex-
perimentally operational error-mitigation technique that does
not require the precise knowledge concerning the type of noise
channel acting on the circuit; only the error rate is needed.
This technique employs, again, the two assumptions about the
circuit and noise channel and seeks to minimize the mean-
squared error upper bounds of numerical schemes to obtain
heuristically optimized estimators that are more compatible
with noisy circuits. Indeed, we showed that the heuristically
optimal scaled parameter-shift estimators not only completely
eliminate noise biases under noise channels with constant er-
ror terms but also significantly reduce these noise biases when
physically realistic circuit noise models are considered. The
heuristically optimized finite-difference estimators, unfortu-
nately, are just as noisily biased as their naively optimized
counterparts and should be avoided.

The heuristic nature of the error-mitigation procedure in-
troduced in this work originates from the two assumptions
about the circuit unitary properties and noise channels. We
emphasize, however, that since these assumptions are approxi-
mately aligned with moderately deep quantum circuits and re-
alistic circuit noise channels, the corresponding heuristically
optimal scaled parameter-shift estimators are consequently
also relevant and interesting in practical situations.

From Lemma 2, the asymptotic relative performance
between heuristic scaled parameter-shift and unscaled
parameter-shift schemes drops exponentially with the number
of qubits. This exponential decrease originates from the onset
of barren plateaus, which is the limiting factor for a significant
performance gap for large circuit sizes and depths. In relation
to this, which is also the end message of the prequel article,
we reiterate here that having a statistically accurate estimation
scheme is only the first of many important steps towards the
goal of trainable quantum circuits, and that this quest is by no
means finished with this work. Much more efforts are required
in seeking new initialization strategies and more expressive
circuit ansätze to circumvent the barren plateau problem, or,
more generally, the concentration-of-measure phenomenon in
variational quantum algorithms.
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FIG. 6. Plots of (a) Varθ [ fQ] and (b) Varθ [g] against n for η0 =
0.05 and various L values under the CNOT-gate depolarizing channel.
All curves are averaged over 1000 random sets of PEPQC parameters
(Haar-distributed single-qubit unitary rotations).

APPENDIX A: REMARKS ON CONSTANT
NOISE-CHANNEL ERROR TERMS

Figure 6 illustrates the behaviors of Varθ [ fQ] and Varθ [g]
with respect to n for the CNOT-gate depolarizing channel
defined in (7) with a uniform error rate η0. The decreas-
ing variances over n is an indication of the concentration of
measure phenomenon that occurs when the number of free
parameters or system dimension tends to infinity [88–90]. The
ratio rvar tends to increase with n, especially when L is large.

To show that the constant-g assumption is not bad even for
general Pauli channels, we also look at the distribution of g
for the case in which the noise-channel map E corresponds
to a general Pauli channel where the 15-dimensional column
η0=̂(η0,12, η0,13, . . . , η0,44)� per noisy CNOT gate has all en-
tries that sum to some fixed η0. The action is then given by

UCNOT, jkρ0U
†
CNOT, jk

�→ (1 − η0)UCNOT, jkρ0U
†
CNOT, jk

+
∑

1�=Pjk∈P ( j,k)
2

η0, jkPjkUCNOT, jkρ0U
†
CNOT, jkPjk . (A1)

Figure 7 shows a very similar characteristic for g in which and
that rvar increases with increasing n and L.

APPENDIX B: DERIVATIONS OF EQS. (11) AND (12)

We present the derivations of DFD(∂ fQ) and DSPS(∂ fQ).
All other expressions may be obtained in a similar fashion.
Starting with the general definition

D·(∂ fQ) = 〈(̂[∂·] fQη − ∂ fQ)2〉, (B1)

where ̂[∂·] fQη is the gradient estimator subjected to noise of
error rate η (the subscripts μ and l will be dropped in this
discussion). Note that

D·(∂ fQ) = 〈(̂[∂·] fQη − [∂·] fQη )2〉︸ ︷︷ ︸
finite-copy error

+〈([∂·] fQη − ∂ fQ)2〉︸ ︷︷ ︸
approximation error

(B2)
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FIG. 7. Distributions of fQ and g in fQ,η for PEPQCs with (a),
(b) n = 4 and (c), (d) n = 7 qubits over 1000 sets of randomly
generated PEPQC parameters (Haar-distributed single-qubit unitary
rotations) in each figure panel. The ratio rvar = Varθ [ fQ]/Varθ [g] is
given in every panel. The Pauli-channel error rate is set at η0 = 0.05
and η0 is randomly chosen for each PEPQC parameter set. The over-
all error rates η = 1 − (1 − η0 )nL are (a) 0.185, (b) 0.642, (c) 0.302,
and (d) 0.834. The respective observables are O = X1Y2Z3X4 and
O = X1Y2Z3X4Y5Z6X7 for n = 4 and 7.

is a sum of the finite-copy and approximation errors. Gradient
estimators are formed by taking the difference between two
translated circuit functions and dividing it by a scalar.

For FD, this scalar is twice the translation according to
(2), so that the independence of the data collected for each
translated function results in

〈( ̂[∂FD] fQη − [∂FD] fQη )2〉

= 1

ε2

{〈[
̂

fQη

(
θ + ε

2

)
− fQη

(
θ + ε

2

)]2
〉

+
〈[

̂

fQη

(
θ − ε

2

)
− fQη

(
θ − ε

2

)]2
〉}

. (B3)

Since fQη(θ ) = tr{ρθ,ηO} = ∑d−1
k=0 ok〈k|ρθ,η|k〉, where |k〉 is

an eigenket of O with eigenvalue ok , ̂fQη(θ ) can be defined as
an unbiased estimator of fQη(θ ) inasmuch as

̂fQη
(θ ) =

d−1∑
k=0

okνk,θ,η = 1

N

d−1∑
k=0

oknk,θ,η, (B4)

with νk,θ,η → pk,θ,η = 〈k|ρθ,η|k〉 in the limit of large N ,

such that ̂fQη(θ ) = fQη(θ ) as νk,θ,η = pk,θ,η. So, using the
identity

νk,θ,ηνk′,θ,η − pk,θ,η pk′,θ,η = 1

N
(δk,k′ pk,θ,η − pk,θ,η pk′,θ,η )

(B5)

for the multinomial distribution, a traceless Pauli observable
O implies that〈[

̂

fQη

(
θ + ε

2

)
− fQη

(
θ + ε

2

)]2
〉

= 1

N

〈
d−1∑

k,k′=0

okok′ (δk,k′ pk,θ+ε/2,η − pk,θ+ε/2,η pk′,θ+ε/2,η )

〉

= 1

N

[
1 −

〈
fQη

(
θ + ε

2

)2
〉]

= 1

N

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]
, (B6)

where we made use of the constant-g and two-design
assumptions—〈 fQg〉 = 〈 fQ〉g = 0. The finite-copy error
hence reads

〈( ̂[∂FD] fQη − [∂FD] fQη )2〉

= 2

Nε2

[
1 − (1 − η)2

〈
f 2
Q

〉− η2g2
]
. (B7)

The approximation error is straightforward to cope with using
the same two assumptions:

〈([∂FD] fQη − ∂ fQ)2〉

=
〈{

1

ε

[
fQη

(
θ + ε

2

)
− fQη

(
θ − ε

2

)]
− ∂ fQ

}2
〉

=
〈{

1 − η

ε

[
fQ

(
θ + ε

2

)
− fQ

(
θ − ε

2

)]
− ∂ fQ

}2
〉

=
〈[

(1 − η)sinc
(ε

2

)
∂ fQ − ∂ fQ

]2
〉

=
[
1 − (1 − η)sinc

(ε

2

)]2
〈|∂ fQ|2〉. (B8)

What is left the assignment NT = 2N .
By the same token, the SPS finite-copy error is given by

〈( ̂[∂SPS] fQη − [∂SPS] fQη )2〉

= λ2

4

{〈[
̂

fQη

(
θ + π

2

)
− fQη

(
θ + π

2

)]2
〉

+
〈[

̂

fQη

(
θ − π

2

)
− fQη

(
θ − π

2

)]2
〉}

= λ2

2N

[
1 − (1 − η)2〈 f 2

Q

〉− η2g2]. (B9)

Likewise, its approximation error is straightforwardly ac-
quired through these steps:

〈([∂SPS] fQη − ∂ fQ)2〉

=
〈{

λ

2

[
fQη

(
θ + π

2

)
− fQη

(
θ − π

2

)]
− ∂ fQ

}2
〉

=
〈{

(1 − η)λ

2

[
fQ

(
θ + π

2

)
− fQ

(
θ − π

2

)]
− ∂ fQ

}2
〉
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= 〈[(1 − η)λ∂ fQ − ∂ fQ]2〉
= [1 − (1 − η)λ]2〈|∂ fQ|2〉. (B10)

The quadratic dependence in λ for the SPS MSEs in (12)
permits the acquisition of explicit NNSPS

∗ closed forms for
g = 0. When the total error rate of the noise channel is η, these
exact formulas are

NNSPS
∗ = (d2 − 1)h(d, η)

2d2η(1 − η)
(∂ fQ estimation),

NNSPS
∗ = 9(d2 − 1)h(d, η)

16d2η(1 − η)
(∂∂ fQ estimation),

NNSPS
∗ = (d2 − 1)2h(d, η)

d4η(1 − η)
(∂∂ ′ fQ estimation),

h(d, η) = d + 4η + η2(d − 2)

+ {4η(2 − η)2 + 4dη[2 + η(1 − η)(3 − η)]

+ d2[1 + η(8 − 6η + η3)]}1/2. (B11)

Clearly, if η → 0, h(d, η) → 2d and we once again
arrive at (14).

APPENDIX C: BIASES IN NSPS, NFD,
AND HFD ESTIMATORS

It is clear that using numerical estimators such as those of
NSPS and NFD, which are optimized for noiseless quantum
circuits, introduce noise biases, which are permanent sys-
tematic errors when used to estimate gradient and Hessian
components for noisy circuit functions.

To quantify these noise biases for NSPS and HSPS, we
take the constant-g and two-design (with the TDS condition)
approximations and investigate things in the regime of large
NT, where λopt

∼= 1 for all NSPS schemes. Hence, while the
finite-copy errors all go as 1/NT, the approximation errors
respectively approach 〈|∂ fQ|2〉η2, 〈|∂∂ fQ|2〉η2, and

〈|∂∂ ′ fQ|2〉η2, which are the noise biases. On the other
hand, from the results of (15), we have the asymptotic answer
λopt,η

∼= 1/(1 − η) > 1 for all HSPS schemes. It is then trivial
to see that the approximation error approaches zero in the
large-NT limit. This reasoning works well so long as g is
approximately constant.

A similar argument may be invoked to study the noise
biases of NFD estimators defined by the optimal parameters
εopt meant for noiseless circuits. In (C8) of Ref. [59], these
parameters, in the NT � d limit are found to be

εopt (∂ fQ) ∼=
[

1152d

〈(∂ fQ)2〉NT(d + 1)

]1/6

,

εopt (∂∂ fQ) ∼=
[

2592d

〈(∂∂ fQ)2〉NT(d + 1)

]1/8

,

εopt
(
∂∂ ′ fQ

) ∼=
[

2304d

〈(∂∂ ′ fQ)2〉NT(d + 1)

]1/8

. (C1)

For such an astronomical NT, we return to the textbook op-
timality requirement that εopt → 0, so that sinc(εopt/2) → 1.
Notice that εopt tends to zero much slower than 1/NT, so that
the finite-copy errors of (11) (evaluated with εopt for NFD)
still approach zero in a well-defined manner as NT → ∞.
Thus, the noise biases of NFD estimators are precisely those
of NSPS estimators.

For the HFD estimators, it turns out that the approximation
error can never be completely eliminated even in the limit
of large NT. The straightforward reason is that when η < 1,
unlike λopt,η, which is to be greater than one for noise biases
to vanish, the sinc functions entering the approximation errors
of the FD estimators are all never greater than one. Therefore,
the best these HFD estimators can do is to achieve noise biases
equal to those of the NFD estimators in the asymptotic limit.
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