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Geometric quantum gates via dark paths in Rydberg atoms
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Nonadiabatic holonomic quantum gates are high-speed and robust. Nevertheless, they were found to be more
fragile than the adiabatic gates when systematic errors become dominant. Inspired by the dark-path scheme that
was used to partially relieve the systematic error in the absence of external noise, we construct a universal set of
nonadiabatic holonomic N-qubit gates using the Rydberg-Rydberg interaction between atoms under off-resonant
driving. Based on an effective four-level configuration in the Rydberg-atom system, the modified nonadiabatic
holonomic geometric gates present a clear resilience to both systematic error in the whole parametric range and
external noise. In our scheme, the conventional ultrastrong interaction between control atoms and the target atom
for the nonadiabatic holonomic quantum computation is compensated by the detuning of the driving fields on the
target atom. That idea yields a deeper understanding about the holonomic transformation. Moreover, our scheme
is compact and scale-free with respect to N . It is interesting to find that the three-qubit gate is less susceptible to
errors than the double-qubit one.
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I. INTRODUCTION

Controlled gates are basic elements in the quantum circuit
and are widely applicable in quantum error correction [1,2]
and quantum algorithms [3–8]. In comparison to the quantum
circuit composed of many one-qubit gates [9] and two-qubit
gates [9–12], the utilization of N-qubit controlled gates [9,11–
13] can reduce the number of quantum gates and then lead to
more convenient and faster quantum information processing.

Many setups were used to realize controlled gates, such as
trapped ions [14–16], superconducting circuits [17–19], linear
optics [20–22], and neutral atoms [23–31]. Among them, the
neutral atoms have remarkable advantages with a long life-
time and a strong Rydberg-Rydberg interaction (RRI), i.e.,
the dipole-dipole or van der Waals interaction between the
Rydberg states. By virtue of RRI, the neutral atoms demon-
strate two opposite phenomena in dynamics which are useful
in quantum control: (i) the Rydberg blockade [32–34], in
which once an atom is excited to the Rydberg state, then the
other atoms within the blocking radius will be inhibited from
being excited, and (ii) the Rydberg antiblockade [35–38], in
which the RRI is compensated by the detuning of laser fields
and then more than one atom can be excited. Though two-
and multiqubit gates based on RRI have been realized in
experiments [23,39–43], they are still subject to the inevitable
environmental noises and systematic errors.

Noise-resilient quantum gates [44–47] can be generated by
using the geometric phase [48–51] that relies on the global
rather than the local properties of the evolution path. The
adiabatic geometric gates [52–54] based on either Abelian
[49] or non-Abelian [48] phases, however, require an adia-
batic (slow) evolution. Considerable errors will otherwise be
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accumulated and then give rise to undesired transition and
decoherence. Fast evolution could be realized by nonadiabatic
holonomic quantum computation (NHQC) [55]. It was further
improved by using the decoherence-free subspace [56,57],
the single-shot-shaped pulses [58], a single-loop path [59],
and the dynamical decoupling technique [60,61]. Among the
NHQC variants that have been implemented in experiments
[62–66], the geometric gates have been found to be sensi-
tive to the systematic errors [67,68] from the imperfect state
preparation and operation [69,70]. To overcome this weak-
ness, nonadiabatic holonomic quantum computation with two
dark paths (NHQCTD) [71,72] has been proposed with the
dressed-state technique [73]. In the closed-system scenario for
the single-qubit [71] and single-qutrit gates [72], the dark-path
scheme prevails over the standard NHQC method in resistance
to the global error in Rabi frequency. In the open-system
scenario [71,72], a tiny global error in Rabi frequency would
however result in the NHQCTD scheme being worse than
NHQC scheme in gate performance.

In this paper we construct nonadiabatic holonomic gates
with two dark paths (NHGTD) in an N-partite system by the
strong and stable Rydberg-like interaction between atoms. In
our scheme, the typical resonant driving fields on the target
atom [74,75] in NHQC are replaced with the off-resonant
driving fields, which compensate for the ultrastrong interac-
tions between the control and target atoms. Distinct from the
dark-path schemes in the trapped-ion systems [71,72], our
scheme shows global advantages in resisting systematic errors
over the NHQC scheme since it is free of the ancillary level
as well as the relevant unwanted leakage. In particular, we
focus on an effective four-level configuration in a multiple-
Rydberg-atom system through tuning the off-resonant driving
fields on the target atom and one of the control atoms. The
effective time-evolution operator U (τ ) can be obtained by
the dark-path method rather than the time-ordered integral
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FIG. 1. Sketch of two coupled Rydberg atoms under off-resonant
driving. The control atom consists of the ground state |g〉 and the
Rydberg state |e〉. The target atom consists of two ground states
|0〉 and |1〉 and one Rydberg state |r〉. Here U12 is the Rydberg-like
interaction between atoms.

in NHQC. In our scheme, one dark path is provided by the
dark state of the system Hamiltonian with zero eigenvalue,
which is decoupled from the dynamical process. Another one
is obtained by the time-dependent Schrödinger equation with
a vanishing expectation value about the effective Hamiltonian.
The two dark-path states and the other two states out of
the computational space constitute a completed space for the
system evolution. Moreover, it is interesting to find that the
N-qubit gates in our scheme can be realized with one instead
of approximately N steps [76].

The rest of the paper is structured as follows. In Sec. II we
derive the effective Hamiltonian in a double-Rydberg-atom
system for our NHGTD scheme, which generates a univer-
sal set of nonadiabatic holonomic two-qubit controlled gates.
We verify the robustness of both controlled-NOT (CNOT) and
controlled-Z (CZ) gates against the systematic errors and the
external decoherence. In Sec. III we provide the effective
Hamiltonian for the three-qubit controlled gates and demon-
strate the robustness of the controlled-controlled-NOT (CCNOT)
gate. In Sec. IV our scheme is generalized to N-qubit con-
trolled gates, which is exemplified with N = 4. We summarize
the paper in Sec. V.

II. NONADIABATIC HOLONOMIC TWO-QUBIT
CONTROLLED GATES

A. Gate construction with dark paths

Consider two coupled Rydberg atoms under driving by
three laser fields as shown in Fig. 1. The control atom con-
sists of the ground state |g〉 and the Rydberg state |e〉. The
target atom has two stable low-energy states |0〉 and |1〉 and
one Rydberg state |r〉. The control atom is driven by an
off-resonant laser with detuning � and time-dependent Rabi
frequency �0(t ). In the target atom, the transitions |0〉 ↔ |r〉
and |1〉 ↔ |r〉 are driven by the laser fields �1(t ) and �2(t ),
respectively, with the same detuning �; ϕ1 and ϕ2 are two
time-independent initial phases. The two atoms are actually
of the same type. The transitions associated with the state
|1〉 of the control atom do not contribute to our scheme. The
states |0〉 and |r〉 for the control atom are labeled |g〉 and |e〉,

respectively; hence the control atom can be distinguished from
the target atom.

In the interaction picture with respect to the free Hamilto-
nian of the two atoms, the full Hamiltonian can be written as
(h̄ ≡ 1)

H (t ) = Hc(t ) ⊗ It + Ic ⊗ Ht (t ) + U12|er〉〈er|, (1)

with

Hc(t ) = �0(t )e−i�t |e〉c〈g| + H.c.,

Ht (t ) = �1(t )e−i(�t+ϕ1 )|r〉t 〈0|
+ �2(t )e−i(�t+ϕ2 )|r〉t 〈1| + H.c., (2)

where Ic and It represent the identity operators for the control
and target atoms, respectively. The Rydberg-like interaction
U12|er〉〈er| in Eq. (1) plays a key role in our scheme, which
could result from an energy shift of the operator |er〉〈er|
[77]. The coupling strength U12 can be obtained by either the
perturbation theory [77] for a comparatively small quantum
principle number n or a more accurate energy-level analysis
[78,79] for a general n. It could be in the form of the van
der Waals interaction (scaling with d−6

12 ) or the dipole-dipole
interaction (scaling with d−3

12 ), where d12 is the atomic dis-
tance. Typically, when d12 is in the range of 0.5–5 µm [77],
the interaction is in the dipole-dipole interaction form, and
a closer separation indicates a stronger interaction as well
as a larger interaction fluctuation induced by the position
fluctuation [80]. The magnitude of the position fluctuation
δd12 between atoms is proportional to the duration of the
laser applied on the atom and inversely proportional to the
wavelength of the laser and the mass of the atom [80].
To achieve a stable and strong interaction, the atoms could
be sufficiently separated and excited to a high-lying Ryd-
berg state |r〉 = |103S, J = 1/2, mJ = 1/2〉 [57,75,79]. When
d12 > 5 µm, the dominant interaction is in the van der Waals
form U12 = C6/d6

12, where the coefficient could be as large as
C6/2π = 1.043 × 105 GHz µm6. When d ≈ 9 µm, we could
have a van der Waals interaction strength U12/2π ≈ 200 MHz
and the interaction fluctuation is about δU12/2π ∼ 0.1 MHz
for δd12 ∼ 10−3 µm [80]. When d12 = 5.54 µm, the van der
Waals interaction could be as strong as U12/2π ≈ 3600 MHz
[75]. We therefore set U12/2π = 500 MHz in the following
theoretical analysis. In an optical lattice [29] or ion crystals
[30,81], the Rydberg atoms can be strongly confined within a
harmonic potential via the phonon mode [29,30,81], by which
the position fluctuation is almost completely suppressed.

In the rotating frame with respect to U (t ) =
exp(−iU12t |er〉〈er|), the Hamiltonian in Eq. (1) is
transformed to

Hrot (t ) = �0(t )e−i�t (|e0〉〈g0| + |e1〉〈g1| + eiU12t |er〉〈gr|)
+ �1(t )e−i(�t+ϕ1 )(|gr〉〈g0| + eiU12t |er〉〈e0|)
+ �2(t )e−i(�t+ϕ2 )(|gr〉〈g1| + eiU12t |er〉〈e1|) + H.c.,

(3)

as shown by the transition diagram in Fig. 2(a). Under the
far-off-detuning condition U12 ≈ � 	 {�0(t ),�1(t ),�2(t )},
a number of unwanted transitions [see the gray solid lines in
Fig. 2(a)] are strongly suppressed. As long as U12 and � are
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(a)

(b)

FIG. 2. (a) Transition diagram for the double-Rydberg-atom sys-
tem. The transitions plotted with the gray solid lines can be strongly
suppressed under the condition of U12 ≈ � 	 �0(t ),�1(t ),�2(t ).
(b) Effective four-level configuration for the double-Rydberg-atom
system.

sufficiently large and close to each other in magnitude, one
can always omit the fast-oscillating terms in Hrot (t ) under the
rotating-wave approximation. Then the Hamiltonian in Eq. (3)
can be effectively expressed by a four-level configuration

Heff (t ) = �0(t )|er〉〈gr| + �1(t )e−iϕ1 |er〉〈e0|
+ �2(t )e−iϕ2 |er〉〈e1| + H.c., (4)

as shown in Fig. 2(b). When the laser field on the control atom
is turned off, i.e., �0(t ) = 0, Fig. 2(b) reduces exactly to the
�-level configuration in the standard NHQC scheme [55].

To construct the nonadiabatic holonomic two-qubit con-
trolled gates with dark paths, the driving fields on the target
atom can be parametrized with �1(t ) = �(t ) sin θ/2 and
�2(t ) = −�(t ) cos θ/2, where �(t ) and θ are time dependent
and time independent, respectively. With the Morris-Shore
transformation [82], the effective Hamiltonian in Eq. (4) can
be recast as

Heff (t ) = �(t )eiϕ2 |b〉〈er| + �0(t )|gr〉〈er| + H.c. (5)

in the dark-bright basis with

|b〉 = sin

(
θ

2

)
eiϕ|e0〉 − cos

(
θ

2

)
|e1〉,

|D1〉 = cos

(
θ

2

)
|e0〉 + sin

(
θ

2

)
e−iϕ |e1〉, (6)

where ϕ ≡ ϕ1 − ϕ2 and |D1〉 is the dark state with zero eigen-
value. |D1〉 remains time independent during the evolution for
invariant θ and ϕ and forms the first dark path in our scheme.

The second dark path |D2〉 = |D2(t )〉 is generally time
dependent in our scheme, whose ansatz could be derived by
two constraints: (i) |D2〉 is always orthogonal to |D1〉, i.e.,
〈D1|D2〉 = 0, and (ii) the expectation value 〈D2|Heff (t )|D2〉
remains vanishing during the gate construction, which ac-
cumulates no dynamical phase. Accordingly, |D2〉 can be
expressed by

|D2〉 = cos u(t ) cos v(t )eiϕ2 |b〉 − i sin u(t )|er〉
− cos u(t ) sin v(t )|gr〉, (7)

with two time-dependent parameters u(t ) and v(t ). By
the Schrödinger equation Heff (t )|D2(t )〉 = id|D2(t )〉/dt , the
time-dependent Rabi frequencies �(t ) and �0(t ) can be in-
versely determined by

�(t ) = v̇(t ) cot u(t ) sin v(t ) + u̇(t ) cos v(t ),

�0(t ) = v̇(t ) cot u(t ) cos v(t ) − u̇(t ) sin v(t ). (8)

Under the cyclic condition for the gate construction lasting a
period of τ , i.e., {|D1〉, |D2(τ )〉} = {|e0〉, |e1〉}, the boundary
conditions of u(t ) and v(t ) have to be u(τ ) = u(0) = v(τ ) =
v(0) = 0. We follow Refs. [71,72] and choose

u(t ) = π

2
sin2

(
πt

τ

)
, v(t ) = η[1 − cos u(t )] (9)

to ensure the cyclic evolution. By Eqs. (8) and (9) the tunable
parameter η controls both the driving laser applied on the
control atom and the transition between |er〉 and |gr〉 as shown
in Fig. 2(b). Specifically, a vanishing η indicates v(t ) = 0 in
Eq. (9) and it leads to �(t ) 
= 0 and �0(t ) = 0 in Eq. (8),
which describes the standard NHQC scheme [59], while a
nonzero η describes our NHGTD scheme.

To implement a universal set of nonadiabatic holonomic
two-qubit controlled gates, we adopt the multipulse single-
loop method [59], in which the loop for gate construction is
divided into two segments with equal intervals. Accordingly,
the cyclic evolution is completed by concatenating two unitary
operators in the effective subspace

U (τ/2, 0) = |D1〉〈D1| + |D2(τ/2)〉〈D2(0)|
= |D1〉〈D1| − i|er〉〈b|,

U (τ, τ/2) = |D1〉〈D1| + |D2(τ )〉〈D2(τ/2)|
= |D1〉〈D1| + ieiγ |b〉〈er|, (10)

where the phase shift γ appears to be ϕ2 in the second path
segment. Consequently, the holonomic matrix for the whole
geometric evolution is given by

U (τ, 0) = |D1〉〈D1| + eiγ |b〉〈b|. (11)

In the gate space spanned by {|e0〉, |e1〉}, it can be rewritten
as

U (θ, ϕ, γ ) = U (τ, 0) = |e〉〈e| ⊗ ei(γ /2)e−i(γ /2)�n·�σ , (12)

where �n ≡ (sin θ cos ϕ, sin θ sin ϕ, cos θ ), �σ is the Pauli ma-
trix, and exp(iγ /2) is a global phase factor. The unitary matrix
U (θ, ϕ, γ ) in Eq. (12) allows the target atom to rotate about
the desired axis �n by an arbitrary angle γ , provided the control
atom is prepared at the Rydberg state |e〉. The parameters θ ,
ϕ, and γ can be controlled by the Rabi frequencies and phases
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of the driving lasers. Therefore, U (θ, ϕ, γ ) constructs an ar-
bitrary nonadiabatic holonomic two-qubit controlled gate.

B. Gate performance

The performance of any quantum gates should be practi-
cally measured by the gate fidelity subject to external noises
and systematic errors. The former could be described by the
master equation [83]

∂ρ

∂t
= − i[H (t ), ρ] + κ

2
L(σ−

c ) + κz

2
L

(
σ z

c

)
+ κ0

2
L(|0〉t 〈r|) + κ1

2
L(|1〉t 〈r|) + κz

2
L

(
σ z

t

)
. (13)

Here ρ is the density matrix for the coupled Rydberg atoms,
H (t ) is their full Hamiltonian in Eq. (1), and L(o) is the Lind-
blad superoperator defined as L(o) ≡ 2oρo† − o†oρ − ρo†o
[84], where o = σ−

c , σ z
c , |0〉t 〈r|, |1〉t 〈r|, σ z

t . The superscripts
and subscripts of these operators indicate the type of quantum
channels and the atom under decoherence, respectively. For
example, σ−

c ≡ |g〉c〈e| represents the dissipation channel of
the control atom with a decay rate κ , and |0〉t 〈r| and |1〉t 〈r|
represent the spontaneous emission of the target atom from the
Rydberg state |r〉 to the ground states |0〉 and |1〉 with decay
rates κ0 and κ1, respectively. For simplicity, we assume κ0 =
κ1 = κ/2. The dephasing processes of the control atom and
the target atom are described by σ z

c ≡ |g〉c〈g| − |e〉c〈e| and
σ z

t ≡ |0〉t 〈0| + |1〉t 〈1| − |r〉t 〈r|, respectively, with the same
rate κz. The decoherence rate κ of Rydberg states of the alkali-
metal atoms [24,85,86] with a low angular momentum relates
to the quantum numbers n and l [86], which are typically in
the range of 0.75–2.48 kHz [24,57,75,85] around room tem-
perature; κz is close to κ in magnitude [75]. In our simulation,
κ is set in the order of kilohertz [57,57,75] and the dephasing
channel indicated by κz = 2π × 1 kHz is always on.

The systematic errors in Rabi frequencies (driving
strengths) could be grouped into global and local types,
representing the deviation for the full system and for the
target atom, respectively. Practically, the Hamiltonian H (t ) in
Eq. (13) becomes

H (t ) = (1 + ε)[Hc(t ) + (1 + α)Ht (t )] + U12|er〉〈er|, (14)

where ε and α are the dimensionless coefficients for the global
and local Rabi-frequency errors, respectively.

To evaluate the gate performance of our NHGTD scheme,
we adopt the average fidelity function defined in Refs. [16,87],

F = 1

N

N∑
n=1

〈ψn(0)|U †ρ(τ )U |ψn(0)〉. (15)

Here ρ(τ ) is obtained by Eqs. (13) and (14) with the
nth benchmark state |ψn(0)〉 = |ψc(0)〉 ⊗ |ψt (0)〉 and the
fixed operation time τ for quantum gate. In addition, U =
U (θ, ϕ, γ ) is the ideal two-qubit controlled gate (holonomic
transformation) given in Eq. (12). In numerical simulation,
the initial states of the control atom |ψc(0)〉 and the target
atom |ψt (0)〉 are sampled from the state sets {|g〉, |e〉, (|g〉 +
|e〉)/

√
2, (|g〉 − |e〉)/

√
2, (|g〉 + i|e〉)/

√
2, (|g〉 − i|e〉)/

√
2}

and {|0〉, |1〉, (|0〉 + |1〉)/
√

2, (|0〉 − |1〉)/
√

2, (|0〉 +
i|1〉)/

√
2, (|0〉 − i|1〉)/

√
2}, respectively. Thus N = 62 = 36
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FIG. 3. Comparison of the average fidelity of our NHGTD (with
η = 4) and the existing NHQC (with η = 0) schemes under the
global error ε in Rabi frequency of driving fields for (a) and (c) CNOT

gates and (b) and (d) CZ gates in the (a) and (b) absence and (c) and
(d) presence of dissipation. The detuning and the Rydberg-like inter-
action strength are � = U12 = 5 × 105κz and in (c) and (d) the decay
rate is set as κ = κz, where the dephasing rate is κz = 2π × 1 kHz.
The Rabi frequencies defined in Eq. (8) are not greater than 3 MHz.
The local error in Rabi frequency is set as α = 0.

states are used in testing the two-qubit controlled gates.
The choice of benchmark states does not have a significant
influence on the gate performance. The type of controlled
gate and the parameters θ , ϕ, and γ are determined by the
amplitudes and phases of the driving fields. We focus here on
the CNOT gate U (π/2, 0, π ) and the CZ gate U (0, 0, π ).

In Fig. 3 we compare our NHGTD scheme and the standard
NHQC scheme in the gate fidelities against the global error
in Rabi frequency. It demonstrates that in the presence or in
the absence of the dissipation channels of the Rydberg atoms,
the driving field on the control atom (η = 4) enhances signif-
icantly the gate robustness against the global Rabi-frequency
error of the NHQC scheme (η = 0) for both CNOT and CZ gates
in the whole range of ε ∈ [−0.2, 0.2]. More interesting is
that the fidelity of our dark-path scheme is almost insensitive
to a positive ε, which makes an asymmetric performance of
our gates around ε = 0. It is reasonable because a positive
deviation means an enhanced driving laser that will reduce
the running time of the holonomic gates.

For the CNOT gate with no dissipation in Fig. 3(a), its
fidelity can be maintained over F = 0.97 with η = 4, higher
than F = 0.91 with η = 0, even when the relative global error
is as large as ε = −0.2. For both CNOT and CZ gates [see
Figs. 3(a) and 3(b)] with ε � 0, our fidelity remains almost
unit. Turning on the dissipation channel does not violate the
advantage of our NHGTD scheme over the NHQC scheme,
although it slightly reduces the fidelities for both CNOT and CZ

gates. Note that, around the zero global error about the Rabi
frequency, the previous dark-path scheme in the trapped-ion
system [71,72] has a worse performance than the standard
NHQC scheme. In contrast, we can find that in both Figs. 3(c)
and 3(d) the fidelity F = 0.99 with driving on the control
atom η = 4 prevails over F = 0.98 with no driving η = 0.
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FIG. 4. Fidelity landscapes of NHGTD [with η = 4 in (a) and
(b)] and NHQC [with η = 0 in (c) and (d)] schemes in the space of
global error ε in Rabi frequency of driving fields and decay rate κ

for (a) and (c) CNOT gates and (b) and (d) CZ gates. The local Rabi
frequency error is set as α = 0. The other parameters are the same as
those in Fig. 3.

This is due to the fact that our dark-path scheme in Rydberg
atoms is conveniently controlled by an off-resonant laser field
on the control atom without coupling the upper level of the
target atom to an ancillary level accompanied by unwanted
leakage.

The advantage of our NHGTD scheme over NHQC
schemes can be extended to the whole space of the global
error coefficient ε and the decay rate κ as shown in Fig. 4.
The fidelity landscape is divided into the regimes of F � 0.97
(dark green area), 0.97 � F � 0.99 (light green area), and
F � 0.99 (yellow area). For either the CNOT or CZ gate, our
scheme tolerates a much stronger decoherence in the presence
of a positive global error. In particular, for ε = ±0.04, a CNOT

gate attains F = 0.99 even if κ = 1.7κz within our scheme. In
contrast, the same high-fidelity gate survives when κ � 0.2κz

within the NHQC scheme.
Similarly, Fig. 5 demonstrates the fidelity landscape for

both CNOT and CZ gates in the parameter space of local error
coefficient α and decay rate κ . Note that the high-fidelity
regimes of our scheme (η = 4) are much broader than those
of the NHQC scheme (η = 0) as well. In particular, when κ =
κz, the CNOT-gate fidelity of our scheme can be maintained as
F = 0.99 under the local Rabi-frequency error α = ±0.05. In
contrast, the same performance can survive up to α = ±0.03
in the NHQC scheme. For α = ±0.2, the CNOT-gate fidelity
F = 0.99 is preserved when κ = 1.1κz within our scheme,
while κ = 0.4κz within the NHQC scheme. The off-resonant
laser field on the control atom can thus improve the gate
robustness in resisting both global and local errors in Rabi
frequency.

III. NONADIABATIC HOLONOMIC THREE-QUBIT
CONTROLLED GATES

A. Gate construction with dark paths

The three-qubit controlled gates can be constructed with a
system of three coupled Rydberg atoms as shown in Fig. 6.
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FIG. 5. Fidelity landscapes of our NHGTD [with η = 4 in
(a) and (b)] and the NHQC [with η = 0 in (c) and (d)] schemes in
the space of local error α in Rabi frequency of driving fields and
decay rate κ for (a) and (c) CNOT gates and (b) and (d) CZ gates. The
global Rabi frequency error is set as ε = 0. The other parameters are
the same as those in Fig. 3.

Again the control atoms and the target atom are considered
as two-level and three-level systems, respectively. Note that
the second control atom is not under driving, which is merely
coupled to the target atom and the first control atom via the
Rydberg-mediated interactions U23 and U12, respectively.

In the interaction picture with respect to the free Hamilto-
nian of the atoms, the full Hamiltonian reads

H (t ) = Hc1 (t ) + Ht (t ) + HI , (16)

FIG. 6. Sketch of three coupled Rydberg atoms, where the first
control atom and the target atom are under off-resonant driving. Here
Ui j (i < j) is the Rydberg-mediated interaction between the Rydberg
states of atoms.

012619-5



ZHU-YAO JIN AND JUN JING PHYSICAL REVIEW A 109, 012619 (2024)

where

Hc1 (t ) = �0(t )e−i�t |e〉c1〈g| + H.c.,

Ht (t ) = �1(t )e−i(�t+ϕ1 )|r〉t 〈0|
+ �2(t )e−i(�t+ϕ2 )|r〉t 〈1| + H.c. (17)

are the driving Hamiltonians for the first control atom and the
target atom, respectively, and

HI =U13|e〉c1〈e| ⊗ Ic2 ⊗ |r〉t 〈r| + U23Ic1 ⊗ |er〉c2t 〈er|
+ U12|ee〉c1c2〈ee| ⊗ It (18)

describes the interactions among the three atoms. In the op-
tical lattice [23,29,30,74,75,88] where the Rydberg atoms
are strongly confined (δdi j ≈ 0) within a harmonic potential
via the phonon mode, the atomic interaction consists of the
bare Rydberg-like interaction and the effective Rydberg-like
interaction induced by the electron-phonon coupling, both of
which depend on the atomic distance. Our scheme works with
an interaction strength similar to that in the optical lattice
[29], e.g., Ui j ∼ 500 MHz when di j ∼ 5.3 µm. The three driv-
ing intensities � j , j = 0, 1, 2, are much smaller than Ui j . In
contrast, the conventional NHQC scheme [75] for the three-
qubit gates demands that U12 is in the strong-coupling regime
(approximately 500 MHz) and U13 and U23 are even in the
ultrastrong-coupling regime (approximately 3600 MHz). In
addition, the intensities of the driving fields on the target atom,
�1 and �2, have to be much smaller than that on the control
atom, �0, limiting the gate speed.

In the rotating frame with respect to U = exp(−iHIt ), the
Hamiltonian in Eq. (16) can be rewritten as

Hrot (t ) = H ′
c1

(t ) + H ′
t (t ), (19)

where

H ′
c1

(t ) = �0(t )e−i�t (|eg0〉〈gg0| + |eg1〉〈gg1|
+ eiU13t |egr〉〈ggr| + eiU12t |ee0〉〈ge0|
+ eiU12t |ee1〉〈ge1| + ei(U12+U13 )t |eer〉〈ger|)
+ H.c. (20)

and

H ′
t (t ) = �1(t )e−i(�t+ϕ1 )(|ggr〉〈gg0| + eiU23t |ger〉〈ge0|

+ eiU13t |egr〉〈eg0| + ei(U13+U23 )t |eer〉〈ee0|)
+ �2(t )e−i(�t+ϕ2 )(|ggr〉〈gg1| + eiU23t |ger〉〈ge1|)
+ eiU13t |egr〉〈eg1| + ei(U13+U23 )t |eer〉〈ee1|
+ H.c., (21)

as shown by the transition diagram in Fig. 7(a). Under the
far-off-detuning condition � ≈ U12 + U13 ≈ U13 + U23 and
Ui j 	 �0(t ),�1(t ),�2(t ) (i < j), unwanted transitions [see
the gray lines in Fig. 7(a)] are strongly suppressed. Note that
U13 is not necessarily the same as U12 and U23. In Fig. 7(a)
the gray solid lines represent the off-resonant terms with
Rabi frequency �0(t ) in H ′

c1
(t ) and the gray dashed lines and

gray dot-dashed lines represent the off-resonant terms with
Rabi frequencies �1(t ) and �2(t ), respectively, in H ′

t (t ). The

(a)

(b)

FIG. 7. (a) Transition diagram for the three-Rydberg-atom
system. The transitions plotted with the gray lines can be
strongly suppressed when � ≈ U12 + U13 ≈ U13 + U23 and Ui j 	
{�0(t ),�1(t ),�2(t )} (i < j). (b) Effective four-level configuration
for the three-Rydberg-atom system.

survival transitions constitute an effective Hamiltonian again
with a four-level configuration

Heff (t ) = �0(t )|eer〉〈ger| + �1(t )e−iϕ1 |eer〉〈ee0|
+ �2(t )e−iϕ2 |eer〉〈ee1| + H.c., (22)

as shown in Fig. 7(b). Similar to the double-atom system,
Fig. 7(b) reduces exactly to the standard NHQC scheme when
the driving field on the first control atom is turned off.

Using the same parametric setting as in Eq. (5) and the
Morris-Shore transformation, the effective Hamiltonian in
Eq. (22) can be written as

Heff (t ) = �(t )eiϕ2 |b〉〈eer| + �0(t )|ger〉〈eer| + H.c., (23)

where the bright state and the first dark path are

|b〉 = sin

(
θ

2

)
eiϕ |ee0〉 − cos

(
θ

2

)
|ee1〉,

|D1〉 = cos

(
θ

2

)
|ee0〉 + sin

(
θ

2

)
e−iϕ |ee1〉, (24)

respectively. Under the similar constraints as those in the
double-qubit-gate case, the second dark path can be given by

|D2(t )〉 = cos u(t ) cos v(t )eiϕ2 |b〉 − i sin u(t )|eer〉,
− cos u(t ) sin v(t )|ger〉, (25)

where the two time-dependent parameters u(t ) and v(t ) could
also be chosen as in Eq. (9) due to the boundary condition.
The time-dependent parameters �(t ) and �0(t ) still follow
the same relation given by Eq. (8) with u(t ) and v(t ).
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The multipulse single-loop method [59] adapts to construct
a universal set of nonadiabatic holonomic three-qubit con-
trolled gates, by which the cyclic evolution loop U (τ, 0) is
a product of

U
(τ

2
, 0

)
= |D1〉〈D1| − i|eer〉〈b|,

U
(
τ,

τ

2

)
= |D1〉〈D1| + ieiγ |b〉〈eer|, (26)

resulting in the same form of Eq. (11). In the gate space
spanned by {|ee0〉, |ee1〉}, the unitary matrix for an arbitrary
nonadiabatic holonomic three-qubit controlled gate can be
written as

U (θ, ϕ, γ ) = U (τ, 0) = |ee〉〈ee| ⊗ ei(γ /2)e−i(γ /2)�n·�σ . (27)

The target atom can therefore rotate around the desired axis
�n by a desired angle γ as long as both control atoms are
simultaneously at the high-lying Rydberg state. We focus here
on the controlled-controlled-NOT gate by choosing θ = π/2,
ϕ = 0, and γ = π .

B. Gate performance

Taking the second control atom into consideration, the
master equation (13) becomes

∂ρ

∂t
= − i[H (t ), ρ] +

2∑
i=1

(κ

2
L(σ−

ci
) + κz

2
L

(
σ z

ci

))

+ κ

4
L(|0〉t 〈r|) + κ

4
L(|1〉t 〈r|) + κz

2
L

(
σ z

t

)
, (28)

where H (t ) is the full Hamiltonian of three coupled Rydberg
atoms in Eq. (16). With the systematic errors in the driving
strengths (Rabi frequencies), the Hamiltonian in Eq. (16) be-
comes

H (t ) = (1 + ε)[Hc1 (t ) + (1 + α)Ht (t )] + HI , (29)

where ε and α represent again the dimensionless coefficients
for the global and local errors, respectively. We use the
average fidelity defined in Eq. (15) to evaluate the perfor-
mance of our NHGTD scheme in constructing the three-qubit
gates, where the benchmark states for the control atoms
are chosen from the set of {|g〉, |e〉, (|g〉 + |e〉)/

√
2, (|g〉 −

|e〉)/
√

2} and those for the target atom from {|0〉, |1〉, (|0〉 +
|1〉)/

√
2, (|0〉 − |1〉)/

√
2}. Therefore, N = 43 = 64 states are

used in the simulation.
In Fig. 8 we compare our scheme and the standard NHQC

scheme in the CCNOT gate fidelities under the global error in
Rabi frequency. In the absence [see Fig. 8(a)] and in the pres-
ence [see Fig. 8(b)] of quantum dissipation, it is demonstrated
that our NHGTD scheme prevails over the NHQC scheme. It
is deterministic that enhancing the driving field on the first
control atom can improve significantly the capacity of our
CCNOT gate in resisting the global Rabi-frequency error in the
whole range of ε ∈ [−0.2, 0.2]. As for the dissipation-free
CCNOT gate in Fig. 8(a), the fidelities in our scheme can be
maintained as high as F ≈ 0.97 and F ≈ 0.99 and almost unit
with η = 2, 4, and 6, respectively, even when ε = −0.2. In
contrast, the fidelity with η = 0 (NHQC) is less than 0.96.
Note that a high-fidelity gate still favors a positive ε instead

0.95

0.96

0.97

0.98

0.99

1

CCNOT

-0.2 -0.1 0 0.1 0.2
0.94

0.95

0.96

0.97

0.98

0.99

1

CCNOT

FIG. 8. Comparison of the CCNOT-gate fidelity for NHGTD
(with nonvanishing η) and NHQC (with η = 0) schemes under the
global error ε in Rabi frequency of the driving fields for (a) κ = 0
(dissipation-free) and (b) κ = κz, with �/2 = U13 = U23 = U12 =
5 × 105κz and κz = 2π × 1 kHz. The other parameters are the same
as in Fig. 3.

of a negative ε. In the presence of dissipation in Fig. 8(b), the
fidelity of the CCNOT gate will drop about 1%.

One can find that the CCNOT gate has a better performance
than the CNOT gate by comparing Fig. 8(a) to Fig. 3(a) or
by comparing Fig. 8(b) to Fig. 3(c). Under the same driving
of η = 4 and when ε = −0.2, the fidelity of the CCNOT gate
is higher than that of the CNOT gate by almost 1%. This
indicates that the holonomic three-qubit gate of our scheme
is less susceptible to the global error in Rabi frequency than
the double-qubit gate.

The response of our CCNOT gate to the local error in the
Rabi frequency can be reflected in the comparison of the
landscape in Fig. 9(a) for our NHGTD scheme and that in
Fig. 9(b) for the standard NHQC scheme. It is found that the
high-fidelity regimes in our NHGTD scheme are much wider
than those in the NHQC scheme. When κ = 0.5κz, we have
F � 0.99 in the range of α = [−0.05, 0.05] in Fig. 9(a). In
contrast, when κ = 0.5κz, the fidelity could be maintained
about F � 0.99 in the range of α = [−0.04, 0.04] in Fig. 9(b).

Additionally, by comparing Fig. 9(a) to Fig. 5(a), one can
find that the CCNOT gate is more resistant to the local Rabi
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FIG. 9. Comparison of the CCNOT-gate fidelity landscape for
NHGTD [with η = 4 in (a)] and NHQC [with η = 0 in (b)] schemes
in the space of local error α in Rabi frequency of driving fields and
decay rate κ . The global error is set as ε = 0. The other parameters
are the same as in Fig. 8.

frequency error α than the CNOT gate, yet it is more susceptible
to the environmental dissipation κ 
= 0 in the presence of a
small α. The bright yellow regime for F � 0.99 in Fig. 9(a) is
much wider than that in Fig. 5(a). In addition, the upper bound
of κ/κz around α ≈ 0 for F � 0.99 is nearly 2.0 in Fig. 5(a),
which is about two times that in Fig. 9(a).

IV. NONADIABATIC HOLONOMIC N-QUBIT
CONTROLLED GATES

To generalize our NHGTD scheme to the N-qubit case, one
can consider N Rydberg atoms confined in a two-dimensional
optical lattice [23,75,88], as shown in Fig. 10. Still, only one
of the control atoms (the first one) and the target atom (the
N th one) are under driving, i.e., the number of driving fields
does not scale with N and remains as 3. The control atoms (in
a two-level configuration) are coupled to the target atom (in
a three-level configuration) via the Rydberg-mediated interac-
tion UiN (i < N) and the interactions among the control atoms
are Ui j (i < j < N).

In the interaction picture with respect to the free Hamil-
tonian of all these Rydberg atoms, the full Hamiltonian of

FIG. 10. Sketch of N Rydberg atoms trapped in a two-
dimensional lattice. The orange, blue, and black circles represent
the target atom, control atom, and position with no trapped atoms,
respectively.

the system has the same form as Eq. (16), with the driving
Hamiltonians for the first control atom and the target atom
defined in (17) and

HI =
N−1∑
i=1

UiN |er〉cit 〈er| +
∑

i< j<N

Ui j |er〉cic j 〈er|. (30)

In particular, the term UiN |er〉cit 〈er| represents the Rydberg-
like interaction between the ith control atom and the target
atom, and the term Ui j |er〉cic j 〈er| represents the interaction
between the ith control atom and the jth control atom. In the
rotating frame with respect to U = exp(−iHIt ), the Hamilto-
nian in Eq. (16) can be written as

Hrot (t ) = H ′
c1

(t ) + H ′
t (t ), (31)

where

H ′
c1

(t ) = �0(t )e−i�t (|eg · · · g0〉〈gg · · · g0|
+ |eg · · · g1〉〈gg · · · g1| + eiU1N t |eg · · · gr〉〈gg · · · gr|

+ · · · + exp

⎡
⎣i

⎛
⎝N−1∑

j=2

U1 j

⎞
⎠t

⎤
⎦(|ee · · · e0〉〈ge · · · e0|

+ |ee · · · e1〉〈ge · · · e1|
+ eiU1N t |ee · · · er〉〈ge · · · er|)) + H.c. (32)

and

H ′
t (t ) = �1(t )e−i(�t+ϕ1 )(|gg · · · gr〉〈gg · · · g0|

+ eiUN−1,N t |gg · · · er〉〈gg · · · e0| + · · ·

+ exp

[
i

(
N−2∑
i=1

UiN

)
t

]
|ee · · · gr〉〈ee · · · g0|

+ exp

[
i

(
N−1∑
i=1

UiN

)
t

]
|ee · · · er〉〈ee · · · e0|)

+ �2(t )e−i(�t+ϕ2 )(|gg · · · gr〉〈gg · · · g1|
+ eiUN−1,N t |gg · · · er〉〈gg · · · e1| + · · ·
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+ exp

[
i

(
N−2∑
i=1

UiN

)
t

]
|ee · · · gr〉〈ee · · · g1|

+ exp

[
i

(
N−1∑
i=1

UiN

)
t

]
|ee · · · er〉〈ee · · · e1|) + H.c.

(33)

Under the conditions � ≈ ∑N
j=2 U1 j ≈ ∑N−1

i=1 UiN and
{U1 j,UiN } 	 �0(t ),�1(t ),�2(t ), the Hamiltonian in
Eq. (31) can be reduced to an effective four-level
configuration as

Heff (t ) = �0(t )|ee · · · er〉〈ge · · · er|
+ �1(t )e−iϕ1 |ee · · · er〉〈ee · · · e0|
+ �2(t )e−iϕ2 |ee · · · er〉〈ee · · · e1| + H.c., (34)

which is necessary in constructing the N-qubit controlled
gates within our scheme. Using parametric settings similar to
those in Eqs. (5) and (23) and the Morris-Shore transforma-
tion, the effective Hamiltonian in Eq. (34) can be recast in the
form

Heff (t ) = �(t )eiϕ2 |b〉〈ee · · · er|
+ �0(t )|ge · · · er〉〈ee · · · er| + H.c., (35)

with the bright and dark states

|b〉 = sin

(
θ

2

)
eiϕ |ee · · · e0〉 − cos

(
θ

2

)
|ee · · · e1〉,

|D1〉 = cos

(
θ

2

)
|ee · · · e0〉 + sin

(
θ

2

)
e−iϕ |ee · · · e1〉, (36)

respectively, where the time-independent dark state |D1〉 con-
stitutes the first dark path. Similar to the preceding few-qubit
gates, the second dark-path state can be constructed as

|D2(t )〉 = cos u(t ) cos v(t )eiϕ2 |b〉 − i sin u(t )|ee · · · er〉
− cos u(t ) sin v(t )|ge · · · er〉, (37)

with the same time-dependent setting about u(t ) and v(t ) as
in the few-qubit controlled gates. The time-dependant param-
eters �(t ) and �0(t ) are determined by Eq. (8) as well.

Arbitrary holonomic N-qubit controlled gates can be im-
plemented by using the multipulse single-loop technique [59],
which results in the holonomic matrix of the same forma-
tion in Eq. (11). In the gate subspace {|ee · · · e0〉, |ee · · · e1〉},
the unitary transformation can be written as U (θ, ϕ, γ ) =
U (τ, 0) = |ee · · · e〉〈ee · · · e| ⊗ ei(γ /2)e−i(γ /2)�n·�σ , which indi-
cates that the rotation of the target atom can be launched
when N − 1 control atoms are prepared at the Rydberg state
|e〉. Different multiqubit geometric gates can be realized
through modulating the amplitudes and phases of driving
fields, such as the CN -NOT gate U (π/2, 0, π ) and the CN -Z
gate U (0, 0, π ). In sharp contrast to the previous N-qubit
scheme in a Rydberg-atom system [76], the required holo-
nomic transformation in our scheme is constructed by only
one step, which means a great reduction in the parametric
manipulation.

FIG. 11. Sketch of four coupled high-lying Rydberg atoms,
where only the first control atom and the target atom are under driv-
ing. Here Ui4 is the van der Waals interaction between the ith control
atom and the target atom; Ui j (i < j) is the interaction between the
ith and jth control atoms.

We now consider an example with N = 4 (see Fig. 11)
to estimate the feasibility of our theoretical scheme. We use
the high-lying Rydberg atoms with n = 103 that are cou-
pled through van der Waals interactions with the coefficient
C6 ≈ 2π × 1 × 105 GHz µm6 [57,75,79]. To realize the four-
qubit gates, we can set d12 = d13 = d24 = d34 ≈ 9 µm and
d14 = 8 µm, which correspond to the interaction strengths
U12 = U13 = U24 = U34 ≈ 2π × 200 MHz and U14 ≈ 2π ×
400 MHz, respectively. According to the far-off-resonant con-
dition for the effective Hamiltonian in Eq. (34), the detuning
and Rabi frequencies can be tuned as � = 2π × 800 MHz
and {�0(t ),�1(t ),�2(t )} ≈ 2 MHz, respectively.

V. CONCLUSION

In summary, we have constructed an arbitrary nonadia-
batic holonomic N-qubit controlled gate based on the dark
paths in the Rydberg-atom system. Our scheme relies only
on the Rydberg-like interaction U |er〉〈er| with an accessi-
ble coupling strength U in experiments, irrespective of its
construction or origin. It features an extraordinary robustness
against both external noises and systematic errors by virtue
of significant modifications over both conventional nonadia-
batic holonomic quantum computation and dark paths. The
Rydberg-atom system of arbitrary size N could be effectively
described with a four-level configuration as long as the com-
mon detuning of driving fields on the target atom and the
first control atom � is nearly resonant with both the sum of
coupling strengths between the first control atom and the other
atoms U1 j and the sum of those between the target atom and
the other atoms UjN . Thereby, the holonomic transformation
in our NHGTD scheme for geometric controlled gates of
arbitrary type and arbitrary size can be inversely engineered
by dark paths and the multipulse single-loop method. It is
basically a one-step operation and greatly reduces the cost
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of parametric modulation in existing schemes. With the high
performance in gate fidelity and the convenient scalability
to more qubits, our scheme is of interest in the pursuit of
high-speed and large-scale quantum computation.
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