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ZZ-interaction-free single-qubit-gate optimization in superconducting qubits
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Overcoming the issue of qubit-frequency fluctuations is essential to realizing stable and practical quantum
computing with solid-state qubits. Static ZZ interaction, which causes a frequency shift of a qubit depending
on the state of neighboring qubits, is one of the major obstacles to integrating fixed-frequency transmon
qubits. Here we propose and experimentally demonstrate ZZ-interaction-free single-qubit-gate operations on a
superconducting transmon qubit by utilizing a semianalytically optimized pulse based on a perturbative analysis.
The gate is designed to be robust against slow qubit-frequency fluctuations. The robustness of the optimized gate
spans a few megahertz, which is sufficient to suppress the adverse effects of the ZZ interaction. Our result paves
the way for an efficient approach to overcoming the issue of ZZ interaction without any additional hardware
overhead.
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I. INTRODUCTION

Practical quantum information processing requires high-
fidelity and stable quantum gate operations. In the platforms
with solid-state qubits such as superconducting qubits and
semiconductor spin qubits, a qubit frequency often drifts or
fluctuates due to the influence of surrounding environments.
The changes of qubit frequencies cause infidelity of their gate
operations.

Previous studies reported that two-level systems (TLSs),
charge noise, and parity switching are sources of frequency
fluctuations in superconducting qubits [1–5], which cause de-
phasing and gate errors due to detuning. Most importantly,
the residual ZZ interaction between qubits, which changes
the qubit frequency of interest depending on the neighboring
qubit states, is an obstacle to integrating superconducting
qubits. Multipath couplings [6,7], tunable couplers [8–10],
weakly driven couplers [11], simultaneous ac Stark ef-
fects [12,13], and utilizing low-degree graphs [14] have
been proposed as countermeasures against the residual ZZ
interaction.

To achieve high-fidelity quantum control in the pres-
ence of a device instability, such as a qubit-frequency
drift, a robust control scheme against the fluctuations is re-
quired. The concept of dynamically corrected gates [15] is
known for its ability to realize fluctuation-resilient quan-
tum control. It was first introduced in nuclear magnetic
resonance as a generalization of composite pulses [16–19].
We can regard the dynamically corrected optimal gates
as an extension of the spin echoes or dynamical decou-
pling [20], given that the control pulse refocuses faulty qubit
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dynamics due to fluctuating sources. Using a perturbative
analysis with the Magnus expansion [21], the dynamical-
correction-based gate designs are free from sampling a large
number of data sets of error strength unlike fully numeri-
cal robust quantum-gate designs [22–24]. Incorporating the
concept of dynamically corrected gates into quantum optimal
control theory [25–28] enables one to analytically [29,30] or
semianalytically [31–35] design robust quantum gates with
smooth pulses. Beside dynamically corrected gates, we also
note that robust quantum-gate designs using deep reinforce-
ment learning [36] have been proposed for solid-state qubits.
It is also recognized that the echoed cross resonance [37,38]
and the rotary pulses [38,39] are effective in mitigating the
frequency shift due to the ZZ interaction during the execution
of two-qubit cross-resonance gates between fixed-frequency
transmon qubits.

In this paper we mitigate the negative impact of the residual
ZZ interaction between neighboring qubits on single-qubit
gates by semianalytically optimizing the pulse waveform
based on dynamical correction. Our pulse optimization em-
phasizes the practicality of the pulse for use in experiments.
By properly choosing the waveform ansatz, we avoid imprac-
tical pulse shapes with a large derivative. Another feature of
our method lies in its universality. The optimal waveform is
determined independently of the individual qubit parameters,
and the experimental protocol for gate calibration is as simple
as those for conventional waveforms such as Gaussian. This
approach for ZZ-interaction suppression is distinct from other
existing methods mentioned above since it requires no hard-
ware overheads, such as additional circuit elements, flux bias
lines, or drive channels.

II. DYNAMICALLY CORRECTED GATES

Our strategy for optimizing a single-qubit gate robust
against detuning is based on the concept of dynamically
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corrected gates (DCGs) [15,31–35]. In the DCG-based syn-
thesis, we begin by classifying the Hamiltonian of the system
into an unperturbed term Ĥ0(t ) and an error term Ĥerror (t ) as

Ĥtotal(t ) = Ĥ0(t ) + Ĥerror (t ). (1)

With the classification, we separate the overall time propa-
gator Ûtotal(t ) into nonperturbative dynamics Û0(t ) and faulty
dynamics ÛI(t ) as Ûtotal(t ) = Û0(t )ÛI(t ), where we define

˙̂U0(t ) = −iĤ0(t )Û0(t ) (2)

and
˙̂UI(t ) = −iĤI(t )ÛI(t ) (3)

by using the toggling-frame Hamiltonian

ĤI(t ) = Û †
0 (t )Ĥerror (t )Û0(t ). (4)

It is useful to approximate the faulty dynamics over a time
interval T by defining the effective time-independent average
Hamiltonian

ÛI(t ) � exp(−iĤT ). (5)

The average Hamiltonian can be expressed by the Magnus
expansion [20,21]

Ĥ =
∑

n

Ĥ
(n)

. (6)

The lowest- and second-lowest orders of the Magnus expan-
sion are given by

Ĥ
(1) = 1

T

∫ T

0
dt ĤI(t ), (7)

Ĥ
(2) = −i

2T

∫ T

0

∫ t

0
dt dt ′[ĤI(t ), ĤI (t

′)]. (8)

The precision of the approximation is guaranteed when
‖ĤerrorT ‖ � 1. By designing the unperturbed term Ĥ0(t ) so

that the average Hamiltonian Ĥ vanishes, we can consider that
the effect of the error term on the system’s time evolution
is stroboscopically negligible at time T . Since the Magnus
expansion is defined with the integrals, whether the average
Hamiltonian is zero or not is independent of the norm of
the error terms and depends only on the functional form of
Ĥerror (t ) and Ĥ0(t ).

Under a single-qubit control drive at the qubit frequency
and with the rotating-wave approximation, the unperturbed
term Ĥ0(t ) becomes

Ĥ0(t ) = �x(t )
σ̂x

2
+ �y(t )

σ̂y

2
. (9)

Therefore, a dynamically corrected single-qubit gate can be
designed in two steps: First, we decide which errors to gain
robustness against, and second, we optimize the waveforms
�x(t ) and �y(t ) so that the average Hamiltonian in the tog-
gling frame vanishes. As discussed above, the vanishing of
the average Hamiltonian depends only on the functional form
of the error term and the drive waveform, not on the norm of
the error terms. In other words, by using the toggling frame
and average Hamiltonian, we can naturally acquire robustness
against the amplitude of the error. Therefore, our strategy is
to find through a numerical optimization the optimal control

waveforms �x(t ) and �y(t ) that simultaneously satisfy two
conditions

Û0(T ) = Ûtarget (10)

and

Ĥ = 0, (11)

where Ûtarget is the unitary that expresses the target gate. The
former condition aims to achieve the desired gate operation
and the latter aims to acquire robustness against errors.

III. PULSE SYNTHESIS

We synthesize an optimal waveform of a single-qubit Xπ/2

gate robust against the time-independent or slowly varying
detuning of the qubit frequency modeled as Ĥerror = ξ σ̂z/2.
Because of the noncommutativity of σ̂z and σ̂x, the in-phase
component of the drive �x(t ) is sufficient for mitigating
the detuning error that we focus on. This simplification
reduces the number of optimization parameters and acceler-
ates the convergence. By using the unitary operator Û0(t ) =
T exp[−i

∫ t
0 �x(τ )dτ σ̂x

2 ], where T stands for the time-ordered
product, the error Hamiltonian on the toggling frame ĤI(t ) =
Û †

0 (t )ĤerrorÛ0(t ) is derived as

ĤI(t ) = ξ

(
cos �(t )

σ̂z

2
+ sin �(t )

σ̂y

2

)
, (12)

where �(t ) = ∫ t
0 �x(τ )dτ . We then approximate the faulty

dynamics introduced by the error term using the Magnus
expansion based on the average Hamiltonian theory [40].
The exact expression of the Magnus expansion is found in
Sec. II. The deviation of the dynamics from the ideal one can
be neglected when the drive is designed such that the error
Hamiltonian vanishes stroboscopically under the truncation
in the Magnus expansion. We numerically optimize the drive
waveforms �x(t ) by adopting a waveform ansatz expressed as
the product of polynomials and cosine

�x(t ) =
∑

n

a(x)
n

(
t − T

2

)n

cos2

[
π

T

(
t − T

2

)]
, (13)

where {a(x)
n } are the parameters to be optimized and T is the

gate length. We suppose that the pulse of Eq. (2) is applied
during the period 0 � t � T , and otherwise �x(t ) = 0. This
ansatz forces the pulse and its derivative to start and end
at zero. Considering the use of the derivative removal by
adiabatic gate (DRAG) correction, as discussed later, this is
essential to enhance the practicality of the optimized gate
in experiments since we can minimize the probability of a
nonadiabatic transition. The careful choice of the waveform
ansatz enables us to realize relatively fast and high-fidelity
single-qubit gates compared to the previous work [35]. The
pulse optimization is executed to satisfy two conditions: (i)
The overall time evolution of the qubit is identical to the target
gate and (ii) the error Hamiltonian on the toggling frame is
averaged to zero.

The optimization problem is to minimize a cost func-

tion C = 1 − 1
2 |Tr[Û †

targetÛ0(T )]| subject to Ĥ = 0. We treat
this constrained optimization problem as a multiobjective
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TABLE I. Parameters of the optimal Xπ/2 pulse robust against
detuning.

n a(x)
n

0 0.31831
2 −0.00515

optimization problem to minimize

Call
({

a(x)
n

}) = wCfidelity
({

a(x)
n

}) + (1 − w)Crobust
({

a(x)
n

})
,

(14)

where the parameters {a(x)
n } are defined as Eq. in (2) to

parametrize the shape of the X -control pulse. We define two
parts of the cost function as

Cfidelity
({

a(x)
n

}) =
∣∣∣�(T ) − π

2

∣∣∣ (15)

and

Crobust
({

a(x)
n

}) = 1

T

(∣∣∣∣
∫ T

0
cos �(t )dt

∣∣∣∣ +
∣∣∣∣
∫ T

0
sin �(t )dt

∣∣∣∣
)

,

(16)

where �(t ) = ∫ t
0 �x(τ )dτ is used for simplification. Note

that Eq. (16) characterizes the L1-norm of the lowest-order
average Hamiltonian calculated from Eq. (1). These two parts
of the cost function correspond to the conditions (10) and (11)
explained above, respectively. The weight factor w in Eq. (14),
which determines the balance between maximizing fidelity
and minimizing the norm of the average Hamiltonian, is
deliberately chosen between 0 and 1 to achieve the desired
optimization. The value of w is set to be 0.999 in our opti-
mization since we empirically find that it is more likely to
make both terms in the cost function (14) smaller when w is
close to 1.

The parameters of the synthesized waveform expressed
with the ansatz (2) are listed in Table I. Using higher-degree
polynomials increases the freedom of expression of the wave-
form but likely results in a larger derivative of the waveform,
which may increase the probability of nonadiabatic transi-
tions. In addition, instruments impose bandwidth limitations
in experiments. We use polynomials up to the second or-
der (n � 2). We also fix the first-order coefficient (n = 1) to
zero to synthesize a time-symmetric waveform, which is not
mathematically essential. The gate duration T is chosen to be
40 ns. The initial guess of the parameters are a(x)

0 = π/T and
a(x)

n = 0 for n �= 0. We utilize the limited-memory Broyden-
Fletcher-Goldfarb-Shanno. method [41] for the optimization.
The numerical integrals necessary for the cost evaluation are
performed by dividing 1 ns into 64 equal fractions.

It is worth mentioning that since the cost function (14)
does not include any information about the system, such as
the qubit frequency or magnitude of the frequency drift, the
obtained values in Table I are universal and commonly ap-
plicable to any qubit that can be expressed by this model as
long as the convergence condition for the Magnus expansion,
‖ξT ‖ � 1, is fulfilled.

IV. EXPERIMENT

We use fixed-frequency transmon qubits Q0 and Q1 in the
experiments. For detailed information on the whole device
and the qubits used in the experiments, see Appendix A.

First, we use the target qubit Q0 to evaluate the gate fidelity
and the robustness against detuning error. We set the pulse
length T to be 40 ns and construct the optimized pulse with
the polynomials up to n = 2. We also apply the DRAG with
Y -only correction, mentioned in Ref. [42], since we empiri-
cally find through numerical simulations that the impact of the
use of Y -only DRAG on the robustness of the optimized gate
against the detuning is small. We emphasize that the optimized
waveform is universal in the sense that it is independent of the
individual qubit parameters; we only need to experimentally
calibrate the absolute pulse amplitude and DRAG weight for
each qubit. Thus, the calibration protocol is as simple as
the one for conventional waveforms like Gaussian. It should
also be noted that the maximum amplitude of the optimal
waveform is about four times larger than that of the Gaussian
waveform for the identical gate length, as shown in Fig. 1(a).
In general, the more degrees we include in the polynomials
in the ansatz, the more robustness we gain. However, the time
derivative of the waveform becomes larger and nonadiabatic
transitions become more significant. This tradeoff is a factor
that needs to be considered when one seeks to realize fast
and robust quantum gates. An analysis of leakage error to the
higher excited state is shown in Sec. V.

Next we evaluate the gate fidelity and robustness of
the optimized pulse based on randomized benchmarking
(RB) [43,44]. See Appendix B for the calibration details.
Figures 1(a) and 1(b) are the calibrated waveform and the
result of interleaved randomized benchmarking (IRB), respec-
tively. In the RB sequence, all single-qubit Clifford gates
consist of two Xπ/2 gates and three virtual-Z gates [45]. The
gate fidelity measured by the IRB is 99.81 ± 0.02%. We note
that this fidelity is mainly limited by the coherence of the
qubit. The energy relaxation time T1 and the echo dephasing
time T2 of Q0 are 13 and 10 µs, respectively. The theoretical
coherence limit of the gate fidelity is numerically obtained
using measured T1 and T2. We also note that the numerically
obtained error rate per gate of the optimized waveform with-
out decoherence is less than 10−6, which implies that there is
significant room to achieve much better fidelity by improving
the coherence time. In Fig. 2 we show the error rate per gate
(EPG) versus drive detuning to investigate the robustness of
the optimized waveform against the detuning. As our qubit is a
fixed-frequency qubit, we detune the frequency of the driving
pulse instead of the qubit frequency. Here we apply the inten-
tional detuning only to the interleaved gates. The robustness
is compared with the widely used DRAG-optimized Gaussian
pulse with the same pulse length of 40 ns and shows a signif-
icant improvement. The increase in EPG is well suppressed
even with a few-megahertz detuning. The range of robustness
is consistent with the condition |ξT | � 1, which justifies the
lowest-order Magnus expansion.

Considering that the designed gate maintains high fidelity
over the wide bandwidth and that the typical magnitude of
frequency drift due to TLSs and parity switching in super-
conducting transmon qubits is at most an order of megahertz
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(a)

(b)

FIG. 1. (a) Optimized waveform �x (t ) (blue solid line) for the
Xπ/2 gate with calibrated DRAG correction �y(t ) (red dashed line).
The real (x) and imaginary (y) parts of the Gaussian waveform
�G,x (t ) with calibrated DRAG correction �G,y(t ) for the same
gate are shown as black dash-dotted and dotted lines, respectively.
(b) Interleaved randomized benchmarking of the Xπ/2 gate using the
optimal waveform at zero detuning. The plot is averaged over 40
random Clifford sequences per point. The measured error rate per
gate is 1.9(2)×10−3.

[1,3–5], such broadband quantum gates can be an effective
countermeasure to the degradation of control fidelity due to
these slow fluctuations. Although transmon qubits are gen-
erally insensitive to the charge noise, it cannot be ignored
when one implements quantum gates in noncomputational
spaces such as |e〉 − | f 〉. Such control has recently been
found useful for an efficient decomposition of Toffoli gates on
qutrits [46,47]. Aside from superconducting qubits, another
platform that can benefit from this optimized gate robust
against detuning is semiconductor spin qubits. In silicon-
based spin qubits, it is reported that the magnitude of slow
drift in the qubit frequency is on the order of hundreds of kilo-
hertz [48,49]. In addition, it is commonly known that the slow
dynamics of nuclear spin bath affects the energy splitting of
an electron spin via hyperfine interaction. Maintaining control
fidelity under such frequency fluctuations is a prerequisite in
quantum computing.

Next we study the impact of the residual ZZ interaction on
the synthesized optimal single-qubit gate, using a spectator

(expt.)

(expt.)

FIG. 2. Error rate per gate extracted from IRB versus drive
detuning for the Xπ/2 gate with the optimized (blue circles) and
Gaussian (red triangles) waveforms with the theoretical predictions
(dashed line for the optimal waveform and dash-dotted line for the
Gaussian waveform). The solid line represents the theoretical limit
to the gate error with infinite coherence times. The dotted line repre-
sents the theoretical coherence limit to the gate error.

qubit Q1 which is capacitively coupled to the target qubit Q0,
as shown in Appendix A. Under the ZZ interaction with a
spectator qubit, Ĥerror is expressed as

Ĥerror = ξZZ
σ̂z0 ⊗ σ̂z1

2
. (17)

Here σ̂z0 and σ̂z1 are the Pauli-Z operators of the target and
the spectator qubits, respectively, and ξZZ denotes the ZZ
coupling strength in between. Assuming that the state of the
adjacent qubit is unchanged during the gate execution, we can
reduce Ĥerror to a frequency shift of the target qubit

Ĥerror = χ
σ̂z0

2
, (18)

where χ = ±ξZZ . Note that this expression scales when
the number of adjacent qubits increases if we assume that
the states of all the adjacent qubits are unchanged. In the
present device, the ZZ interaction ξZZ between Q0 and Q1 is
2π×0.73 MHz. Since our single-qubit gate length T is 40 ns,
satisfying |χT | � 1, the legitimacy of the approximation with
the lowest-order Magnus expansion is guaranteed.

We incorporate an RB-like methodology to quantify the
impact of the spectator error. In the sequence, we run the
standard IRB on the target qubit. In addition, we randomly
apply single-qubit Xπ pulses to the spectator qubit in synchro-
nization with the reference Clifford gate to the target qubit.
By averaging the result over a sufficiently large number of
samplings, the spectator qubit’s expectation value right before
the Xπ/2 pulse on the target qubit is averaged to 〈σ̂z〉 = 0. The
deviation of the fidelity measured with this averaging from the
one measured without operation to the spectator qubit shows
the influence of the changes of the spectator’s state, that is,
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(                   )LQtarget

Qspectator

(a)

(b)

(c)

FIG. 3. (a) Interleaved randomized benchmarking with spectator
averaging for Gaussian and optimal waveforms. The plot is averaged
over 200 random Clifford sequences and 2000 shots per point. The
gate schematic is shown in the inset. (b) Comparison of the error rates
per gate with and without averaging the state of the spectator qubit.
The dotted line indicates the coherence limit to the EPG. (c) Dis-
tributions of ground-state population for the Gaussian and optimal
waveforms for Clifford length L = 43 in the spectator-averaging RB.

the impact of the residual ZZ coupling. In the following, this
technique is referred to as spectator-averaging RB. The gate
schematic is shown in the inset of Fig. 3(a).

Figure 3(a) shows the results of spectator-averaging RB for
the optimal and Gaussian waveforms. The comparison of error
rates with and without the spectator averaging shows that the

averaging significantly affects the fidelity of the Gaussian Xπ/2

gate, as shown in Fig. 3(b). The EPG with spectator averaging
is about four times worse than that without averaging. On the
other hand, when the optimal waveform is employed, the EPG
with spectator averaging is 1.9(1)×10−3, which is almost
equal to the EPG obtained with the standard IRB. Figure 3(c)
shows the distributions of the ground-state population after
applying 43 Clifford gates in the spectator-averaging RB for
the Gaussian and optimal waveforms, respectively. We ob-
serve a significantly larger spread in the distribution for the
Gaussian waveform than the optimal one. The asymmetric
shape of the distribution for the Gaussian gate is a conse-
quence of the systematic error [50,51], which in this case is
the spectator-dependent phase error due to the ZZ interaction.
On the other hand, the relatively small spread in the distri-
bution for the optimized gate indicates that it is insensitive
to such phase error. Therefore, the optimized gate robust to
detuning can reduce the negative impact of the ZZ interaction
between the target and spectator qubits. As the magnitude of
the ZZ interaction between qubits in typical transmon inte-
grated circuits is several tens or hundreds of kilohertz [11,12]
and the optimized gate has broadband robustness over a few
megahertz of detuning, the scheme should work even when
the number of adjacent qubits increases and the target qubit
is exposed to ZZ interactions from them. The robustness
contributes to the architectures with high qubit connectivity,
including square lattices, while other issues, such as frequency
collisions and two-qubit gates, remain. Since this implemen-
tation of a robust quantum gate does not require any additional
wiring, circuit element, or drive channel, it serves as an alter-
native approach to tackling the issue of ZZ interaction.

Furthermore, the single-qubit gate robust to ZZ interaction
is potentially useful for quantum computation scheme control-
ling always-on internal interactions through decoupling and
selective recoupling [52–55]. The X gates are necessary for
decoupling and recoupling sequences, which are not trivial
under always-on coupling. Our optimized gate robust to ZZ
interaction can be applied to implement high-fidelity X gates
in such architectures.

V. LEAKAGE ANALYSIS

We evaluate the leakage error to the second excited state
by leakage randomized benchmarking (LRB) [56]. The pulse
sequence of LRB is the same as standard RB. We fit the pop-
ulation of the second excited state averaged over 40 random
Clifford sequences as a function of the sequence length L to
the decay model p2(L) = ApL + B. The leakage rate per gate
(LPG) is then computed as

l = B(1 − p)/2 (19)

since all single-qubit Clifford gates can be represented by
two Xπ/2 gates and three virtual-Z gates. In Fig. 4 we show
LRB curves for the Gaussian and optimal waveforms. The
LPGs measured by LRB are 1.3(1)×10−4 and 2.0(2)×10−4

for the Gaussian and optimal waveforms, respectively. On the
other hand, numerically obtained LPGs are 1.3×10−4 and
1.5×10−4 for the Gaussian and optimal waveforms, respec-
tively. The optimal waveform induces slightly more leakage to
the noncomputational state than the simulation. We suppose
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FIG. 4. Leakage randomized benchmarking of the Xπ/2 gate us-
ing the Gaussian and optimal waveforms. The plot is averaged over
40 random Clifford sequences per point. The measured leakage rate
per gate is 1.3(1)×10−4 and 2.0(2)×10−4 for the Gaussian and
optimal waveforms, respectively. The solid lines represent the fits
to the decay model.

that this is because of the influence of surrounding qubits
that is not included in the simulation. We also obtain the
lower bound on the LPG due to finite-temperature heating [57]
by numerical simulation. Using measured T1 and T2 and the
thermal excitation rate of the qubit, we calculate the lower
bound as 1.3×10−4. Furthermore, we simulate the LPG of
the optimal waveform without decoherence. The obtained
LPG without decoherence is less than 10−6, implying that
the leakage error would not limit the gate fidelity until the
coherence time becomes by far longer. Therefore, although
the experiment shows that the optimal waveform induces
slightly more leakage to the noncomputational state than the
Gaussian waveform of the same length, the leakage error is
basically dominated by incoherent state transfer due to finite
temperature and not limiting the gate fidelity.

VI. CONCLUSION

In this paper we proposed and experimentally demon-
strated suppression of the adverse effect of ZZ interaction on
single-qubit gates in transmon qubits using a semianalytically
optimized waveform. We optimized the pulse waveforms to
obtain robustness by utilizing dynamically corrected gates.
Our pulse optimization emphasized the practicality of the
pulse for use in experiments. By properly choosing the wave-
form ansatz, we avoided impractical pulse shapes with a large
derivative or discontinuity. Our approach is distinct from other
existing methods for mitigating the ZZ interaction, such as
tunable or multipath couplers and simultaneous ac Stark ef-
fects, since it requires no additional circuit elements, wiring,
or drive channels.

The error rate per gate of our optimized single-qubit gate is
1.9(2)×10−3, which is mainly limited by decoherence of the
qubit. The error rate per gate remains unchanged even under a
few megahertz of detuning.

The broadband robustness of the optimized gate was ex-
ploited to mitigate ZZ interaction during single-qubit gate
operation. Using a qubit pair with a ZZ interaction of

0.73 MHz, we demonstrated significant improvement in the
gate fidelity in comparison to the Gaussian waveform.

Our results pave the way for hardware-efficient ZZ-
interaction-free quantum control in superconducting qubits. It
also serves as a countermeasure against the issue of frequency
fluctuations in quantum computation based on solid-state
qubits.
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APPENDIX A: EXPERIMENTAL APPARATUS

The device studied in this work consists of 16 qubits
arranged in a 4×4 square lattice. The schematic and connec-
tivity of the device are shown in Fig. 5(a). The experiments
are run on two of the qubits, Q0 and Q1. Individual qubit pa-
rameters are listed in Table II. We treat Q0 as the target qubit
and Q1 as the spectator qubit. During the experiments, other
qubits are not controlled or measured. The qubits are disper-
sively read out through coplanar waveguide resonators with
Purcell filters [58], and the readout is frequency multiplexed
for four qubits in one unit. We utilize an impedance-matched
Josephson parametric amplifier [59,60] for the qubit readout.

APPENDIX B: CALIBRATION

We apply the Y -only DRAG presented in Ref. [42] to
suppress unwanted effects due to the presence of noncompu-
tational states. We first roughly estimate the pulse amplitude
for the Xπ/2 gate as shown in Fig. 6(a). We select an
amplitude that results in a ground-state population closest
to 0.5 after the pulse is applied. Although the amplitude-
population curve should be cosinelike, this is not the case
here. We suppose this is because when strongly driven,
the unwanted interaction is induced between the target and
surrounding qubits. We repeat the DRAG-weight and pulse-
amplitude calibrations alternately until the optimal condition
remains constant. In Fig. 6(b) we show the gate schematic for
calibrating the DRAG weight, which is based on Ref. [61].
In the pulse sequence, we apply (Xπ/2 X−π/2)n to the initial
state (|0〉 − i |1〉)/

√
2 so that the phase error is amplified

and then measure 〈±σx〉. We run this pulse sequence with
sweeping the DRAG weight to determine the optimal point
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0 1

FIG. 5. Schematic of the 16-qubit square lattice. The qubits used
in the experiments are shaded in purple.
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TABLE II. Summary of qubit parameters.

Parameter Q0 Q1

qubit frequency ωq/2π (GHz) 8.508 7.943
qubit anharmonicity α/2π (MHz) −432 −357
qubit energy relaxation time T1 (µs) 13.2 25.3
qubit echo dephasing time T2 (µs) 10.4 15.9
ZZ interaction ξZZ/2π (MHz) −0.73 −0.73
readout drive frequency ωr/2π (GHz) 10.203 9.900
resonator dispersive shift χ/2π (MHz) −1.4 −0.8
resonator external decay rate κext/2π (MHz) 6.3 4.5
readout error rate (%) 3.8 3.3
thermal excitation rate (%) 5.5 8.7

where 〈±σx〉 = 0 for any n. Examples of the DRAG-weight
calibration results are shown in Fig. 6(c). Figure 6(d) shows
the pulse sequence to finely calibrate the pulse amplitude.
In this sequence, we apply (Xπ/2)n to the initial state |0〉
and measure the ground-state population. The optimal pulse
amplitude is the point where the ground-state population is
0.5 for any odd n.

APPENDIX C: COMPARISON WITH COMPOSITE PULSES

Composite pulses are known as a way to achieve quantum
gates robust against systematic errors. Here we compare the
performance between our optimal gate and a composite pulse
family called compensation for off-resonance with a pulse
sequence (CORPSE) [17] that is robust against detuning error.

(                                   )n
(b)

(a)

(c)

(              )n(d)

(e)

FIG. 6. Experimental calibration of the designed Xπ/2 gate on Q0. (a) Rough estimation of the pulse amplitude. (b) Gate schematic and
(c) the results of DRAG-weight calibration. (d) Gate schematic and (e) the results of pulse-amplitude calibration. The vertical dashed lines and
the horizontal dotted lines in (a), (c), and (e) indicate the calibrated values and the ground-state population Pg = 0.5, respectively.
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FIG. 7. Quadrature components of the waveform of the CORPSE
Xπ/2 gate with DRAG correction.

In general, CORPSE assumes that the individual pulses are
rectangular shapes of equal amplitude. However, rectangular
pulses are hard to execute because of the bandwidth limitation
and the discontinuous turning on and off of the pulses. Here
we instead utilize flat-top raised-cosine pulses to relax the
sharp edges. This modification results in the deviation of the
time evolution from the original theory and the reduction of
the robustness. The rotation angles of the three pulses that
construct the CORPSE Xθ gate are given by [17]

θ1 = 2n1π + θ

2
− arcsin

sin(θ/2)

2
, (C1)

θ2 = 2n2π − 2 arcsin
sin(θ/2)

2
, (C2)

θ3 = 2n3π + θ

2
− arcsin

sin(θ/2)

2
, (C3)

where n1, n2, and n3 are integers, subject to the physical re-
striction that the resulting pulse angles must be positive. While
choosing n1 = 1, n2 = 1, and n3 = 0 is best since it minimizes
remaining second-order error [17], such a choice makes the
third pulse too short and experimentally impractical in terms
of the adiabaticity. We thus choose n1 = n2 = n3 = 1, which

FIG. 8. Comparison of the Xπ/2 gate in the robustness against the
drive detuning with the CORPSE, optimal, and Gaussian pulses.

is still first-order insensitive against detuning error. The rota-
tion angles of the three pulses that construct the CORPSE Xπ/2

gate are given by {2.135π, 1.770π, 2.135π} and pulse phases
are {0, π, 0}, respectively. We set the rise-up and ring-down
times to be 5 ns each. The maximum amplitudes of each pulse
are the same as the optimal pulse used in the experiment.
Figure 7 shows the waveforms of the CORPSE composite
pulses. Each pulse includes numerically optimized DRAG
correction. The comparison in robustness against the detuning
error is shown in Fig. 8. Although the CORPSE compos-
ite pulse shows better robustness against detuning than the
Gaussian pulse, the gate fidelity at zero detuning is orders of
magnitude worse than the optimal and Gaussian pulses. This
inferiority is due to the significant leakage error caused by
the sharp edges and broad spectral distribution. If the rise-up
and ring-down times of the flat-top pulses are made slower
to reduce the leakage error, the advantage of the composite
pulse is lost because the robustness is reduced. Therefore,
the comparison made in this section highlights the advantage
of our proposal over the composite pulse. Our method com-
bines practicality in experimental applications with robustness
against errors due to the careful choice of the waveform
ansatz.
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