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We present an adaptive procedure for aligning quantum nonlocality experiments without any knowledge of
the two-qudit state shared by the participating parties. The quantum state produced by the source, its unitary
evolution, as well as the actual measurement bases remain unknown to both parties at all times. The entanglement
of the quantum state helps establish desired correlations between individual measurement bases of the two distant
parties. We implement the procedure in a fiber-based quantum key distribution (QKD) setup with polarization-
entangled photons, where we do not rely on any additional alignment tools such as lasers or polarizers. In a
QKD scenario, the procedure can be done without any additional measurements beyond those that are performed

regardless.
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I. INTRODUCTION

Quantum entanglement plays an increasing role not only in
fundamental science but also in application-driven research.
The correlations exhibited by entangled systems lead for in-
stance to violations of Bell inequalities in tests of local realism
[1] or can be utilized for unconditionally secure communica-
tion via quantum key distribution (QKD) protocols [2,3]. In
these setups, two parties, commonly referred to as Alice and
Bob, each hold a part of an entangled state and subject their
parts to local quantum measurements in several (usually two)
measurement bases. Provided the bases are chosen properly,
the measurement results exhibit correlations that cannot be
explained by a local realistic description alone. For making
use of quantum phenomena, precise alignment of measure-
ment apparatuses of both participating parties is therefore
crucial. This is further complicated by disturbing effects of the
environment. In polarization-encoded protocols, for example,
temperature drifts or mechanical stress in fiber-based QKD
systems [4] and rotating reference frames in some free-space
settings like satellite-based QKD systems [5,6] require com-
pensation. This adds complexity to the experimental setups
and can result in a loss of operating time, when the compen-
sation requires temporary interruption of the key distribution,
or photons are lost for key generation due to additional
measurements.

In this paper, we demonstrate how measurement bases in
nonlocality experiments can be aligned properly even in the
absence of a global reference frame and costly compensa-
tion techniques. The key is to utilize the very entanglement
that is subsequently used to violate the Bell inequalities or
to extract a secret key in QKD protocols. In a sense, it is
the entanglement itself that serves to establish a common

“robert.kindler @ oeaw.ac.at

2469-9926/2024/109(1)/012614(7)

012614-1

reference frame for both parties. Both Alice and Bob measure
in two bases each, which are completely unknown to them
and can be different when running the experiment again at
a later time. Our alignment procedure only makes sure that
Alice’s first basis is mutually unbiased to her second basis,
while being simultaneously perfectly correlated to Bob’s first
basis and completely uncorrelated to his second basis (and
analogously for Bob). We neither know nor need to know what
these bases actually are, and no further information about the
shared entangled state is required [7]. We demonstrate our
alignment procedure for the specific case of the fiber-based
polarization-encoded two-party QKD BBM92 [8] protocol.
Nevertheless, the procedure can be modified also for other
degrees of freedom, for higher-dimensional qudits, and is not
restricted to QKD settings.

The early works on compensating polarization rotation in
glass fibers were based on modified versions of the BB84
protocol [2] and required a significant experimental overhead.
Unlike the original protocol, the modified versions relied on
sending entangled photon pairs along the same channel [9,10]
and required postselection, which makes these approaches
more sensitive to photon loss. Our approach does not suffer
from any of these restrictions.

More recently a polarization compensation scheme for the
BB84 protocol was demonstrated by Ding et al. [11], and
one for entanglement-based QKD was demonstrated by Shi
et al. [12]. The latter required a known [ ™) state and unbi-
ased measurement bases on each side. In other experiments
of this kind, the polarization of the photons needed to be
corrected by first measuring the polarization explicitly at the
end of the glass fiber and then adjusting it accordingly by
using a polarization controller. Sometimes this included the
use of reference lasers, and sometimes a part of the signal
was channeled off. In all of these experiments, the polarization
was measured and set explicitly at one point. Additionally, the
entangled state of photons was well known and set explicitly
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FIG. 1. The entangled photon source is of Sagnac type and is based on type-II spontaneous parametric down-conversion (SPDC) from 405
to 810 nm (the exact same source was used in [16,17]). The entangled photons are sent to the receivers Alice and Bob via glass fibers. An
in-fiber 50:50 beam splitter (BS) randomly routes each photon to one of two measurement bases (A1 and A2 for Alice and B1 and B2 for Bob),
each consisting of a polarizing beam splitter (PBS) followed by two single-photon detectors (Da1 2, Dav >, D12, and Dgyr »). The alignment
procedure consists of three steps, indicated by the three boxes below, where the in-fiber polarization controllers (PCA2, PCB1, and PCB2) are
used to properly align the measurement bases relative to each other. A given pair of bases is aligned such that the corresponding visibility is
maximized (minimized). These pairs are marked by arrows in each box, where the respective polarization controller is highlighted and is the

one closest to the arrow base.

by the experimenter [4,13—15]. The main advantage of our
approach is the fact that we can disregard all of these methods
and tools. We can align our setup only by measuring single
counts and coincidence counts on Alice’s and Bob’s side in
two unknown (arbitrary and not characterized) bases. A small
fraction of counts is communicated publicly. This fraction can
be changed dynamically to minimize the impact on the secure
key rate. For the polarization alignment and stabilization we
use fully automated polarization controllers, allowing us to
perform quantum key distribution for in principle unlimited
time, in a plug-and-play scheme without any further alignment
and external control.

II. METHODS

The receivers in entanglement-based QKD systems need
to perform measurements on pairs of qubits in certain mea-
surement bases. For protocols like BB84 [2] and BBM92 [8]
it is necessary for each party to measure in two mutually
unbiased bases. Alice and Bob both use four detectors each
(two for each basis) and write down time stamps for each
detection event. These data are processed in real time and
whenever one detector of Alice and one of Bob click at the
same time (within a certain short time window) the two events
are regarded as a coincidence count and assumed to corre-
spond to one detected photon pair. The alignment procedure
presented below is based on monitoring these coincidence
count rates for different combinations of measurement bases
for Alice and Bob. The rates are used as a feedback signal

for adaptive modifications of the measurement bases. A1 and
A2 correspond to Alice’s first and second basis. Bob’s bases
are labeled accordingly as B1 and B2. The schematic setup is
depicted in Fig. 1. An entangled photon source produces in
this case polarization entangled photon pairs and sends them
to the receivers Alice and Bob.

Both transmission channels are subjected to local random
unitary transformations U, and Up respectively, which alter
the polarization and are slowly changing over time. These
changes are out of Alice’s and Bob’s control and caused by
environmental effects. Additionally, Alice and Bob can freely
manipulate the transformations Uy /Uy, and Ug; /Up, after
the 50:50 beam splitter by fiber paddles, but are unaware
about the actual mathematical form of these transformations.
These channels, given by Uy /Ug, Us/Uaz, and Up; /Up,, can
either be seen as part of the source or part of the measure-
ment basis. If they are seen as part of the entangled photon
source, this means that they transform the source’s original
state into another maximally entangled state, which is un-
known to Alice and Bob. If these transmission channels are
seen as part of the detection setup, the transformations sim-
ply rotate the measurement bases into something unknown
to Alice and Bob. The intermediate case is also possible,
where unitaries Uy /Up are included in the source, whereas
unitaries Uy1/Usp and Up; /Up, rotate the bases. Unlike in the
two previous cases, however, one cannot make any specific
claims about the form of the bases as well as the form of the
entangled state, as both include transformations that remain
unknown.
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With the alignment steps listed below, Alice and Bob en-
sure that their bases A1 and Bl (i.e., (UJU, | |H), U;U},|V)}
and {UjU} |H), U'*Ul;l IV)}) as well as A2 and B2 (i,
(UIULIH), UTUL V) and (USULIH), USULL V)Y are cor-
related, while the other two combinations (A1 and B2, A2 and
B1) are uncorrelated. Furthermore, the procedure guarantees
that A1 is mutually unbiased to A2 as well as Bl is mutually
unbiased to B2 (for proof see the Appendix):

(k| Un U, I =
[(k|Upi U, I1))* =

and

(ST ST

fork,l € {H,V}. @))

As a feedback signal for our polarization controllers, we cal-
culate the visibilities for all combinations of measurement
bases. For example, the visibility V4; p; between Al and Bl
is defined as

V1,81

_ CCpai,pp1 + CCpar,per — CCpai,pprr — CCpar,pp1
CCpai.ps1 + CCpar .pp1 + CCpar.psrr + CCparr.pp1’
()

where CCpa; pp1 denotes the coincidence detection rate be-
tween the detector DA1 in the transmitted arm in A1 and the
detector DBI1 in the transmitted arm in B1. All other visibili-
ties and coincidence rates are denoted likewise. The quantum

bit error rate QBER; 5; can be computed out of the visibility

V41,81 by using the simple formula QBER,, 5, = %

The easiest and fastest alignment procedure involves the
following steps.

(1) Maximize the visibility V4, g1 (for instance, with the
polarization controller PCB1). This is equivalent to trying to
get the QBER, g to zero.

(2) Minimize the absolute value of the visibility [Va; p|
between Al and B2 to zero, i.e., the QBER,; 5, between Al
and B2 to 50% (for instance with the polarization controller
PCB2).

(3) Maximize Vg pp, i.e., the quantum bit error rate
QBER,; g, should be set to zero (for instance with the po-
larization controller PCA2).

In Fig. 1 each of these three steps is highlighted by arrows
in their respective boxes. The blue (horizontal) arrows indicate
that the corresponding visibility is maximized and red (diago-
nal) arrows indicate that it is minimized. Instead of performing
all three alignment steps in chronological order, one can also
perform them simultaneously.

Alignment of Vy4; p; in step 1 cannot be disturbed by PCB2
and PCA2, which are used to perform steps 2 and 3. Likewise,
Va1.g2 (in step 2) cannot be disturbed by PCA2, which is used
for step 3. Therefore step 1 and step 2 are completely inde-
pendent of each other and can be performed simultaneously.
Even though the setting of PCA2 in step 3 directly depends
on the setting of PCB2 in step 2, the last step can nonetheless
be started with the first two. However, the value of V4, g, will
only start to converge when step 2 is close to being completed
and Vj; g no longer experiences significant changes.

This procedure is sufficient to align the setup for QKD (see
the Appendix), even though Alice and Bob neither know nor
need to know what exact basis they are measuring in. Alter-
natively, one can also align this setup the exact same way on

BasiAs Al 1,[)_ BasiAs B1
o VAl,Bl =1 [ ] s
o
Basis A2 Basis B2
A A
<
{ ~

FIG. 2. The Poincaré spheres visualize how the measurement
bases are fixed by our alignment protocol if Alice and Bob share
a |y ) state. Note that the spheres are arbitrarily oriented (but all in
the same way). A basis corresponds to two antipodal points on the
sphere. Basis A1l is never changed and allowed to take any arbitrary
position. At the first alignment step, B1 is changed to be correlated
with A1 and therefore antiparallel to it. B2 is set to be uncorrelated
to A1, which is fulfilled for all bases lying perpendicular to A1 on the
blue circle. At last, A2 is set to be correlated and therefore antiparallel
to B2. In case the shared state is not [y ™), the procedure works
exactly the same, but correlating or uncorrelating two bases does not
anymore imply they are antiparallel or perpendicular, respectively.

anticorrelations by setting V41 51 = —1 and/or Vo g = —1.
An intuitive picture of this can be obtained by assuming the
source emits a [y ~) state. For this state, the visibility only
depends on the relative angle between the two measurement
bases on the Poincaré spheres relative to each other and is
given by V¥~ = — cos(a — ), whereby we assumed without
loss of generality that both bases lay within a plane and are
described only by the angles « and 8. This is not restricted to
linear polarization, but true for any two measurement bases,
and can intuitively be understood when keeping in mind that
the |1y ™) state is rotation invariant. The final aligned form of
the four measurement bases is visualized in Fig. 2. Note that
if and only if the source emits the |y ~) state, this also implies
that A1 = £B1, A2 = £B2, and Al is mutually unbiased to
B2 as well as A2 is mutually unbiased to B1. Also note that
when talking about different bases, we refer to the whole
transmission channel from the detectors back to the source
(including U, and Upg). Therefore, in this case, the relative
position of measurement bases on the Poincaré sphere is im-
portant, while the global orientation of the sphere is irrelevant.

Without considering the |1 ~) state, the geometrical pic-
ture is not as intuitive anymore, as the correlations do not
necessarily depend on the angle between the measurement
bases. However, the alignment procedure still works exactly
the same way and Alice as well as Bob will end up with
two mutually unbiased bases, as long as the input state is
maximally entangled. It is noteworthy to point out that in
this general case, two uncorrelated bases are not necessarily
mutually unbiased and even two identical measurement bases
do not need to be correlated. Details and an analytic proof of
these statements can be found in the Appendix.
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FIG. 3. Automated alignment procedure of the setup with three
polarization controllers, each assigned to align one visibility curve:
black (stars), |Va1 51| (set by PCB1); red (triangles), |Va; p2| (set by
PCB2); green (dots), |Vaz p2| (set by PCA2); blue (circles), |Vaz p1|-
Here we plot the absolute value of each visibility. All polarization
controllers were active at the same time and the alignment was stable
after around 180 s. The residual fluctuations after all alignment steps
were finished are dominated by the intrinsic statistical fluctuations
(Poissonian counting statistics). Additionally, a small contribution
caused by the running polarization controllers might be visible.

III. RESULTS

We established a proof-of-principle QKD setup using only
the visibility (or QBER) as alignment and stabilization tool.
The source is based on a Sagnac interferometer generating
polarization-entangled photon pairs with their state of the
form

L
V2

Fiber-based beam splitters were used on each side to choose
the measurement bases. We used fully automated, in-fiber
piezo-based polarization controllers to change Alice’s and
Bob’s measurement bases. Subsequently, the light was colli-
mated and analyzed by free space polarizing beam splitters
(PBSs) [18]. After each output port of the PBS, the pho-
tons were coupled into multimode fibers and detected by—in
total—eight single-photon detectors. The electrical signals
were time tagged by a time to digital converter and recorded
on a PC. A freely choosable fraction of all registered counts
was used to calculate visibilities in real time. This information
was then used in a feedback loop to adjust the polarization
controllers. All polarization controllers were controlled via
a homemade LABVIEW program that performed the whole
alignment procedure automatically. The setup is schematically
displayed in Fig. 1. Figure 3 shows the alignment procedure
as described in Sec. II. A maximally polarization-entangled
state is distributed between Alice and Bob. The whole proce-
dure was automated by assigning each of the three alignment
steps mentioned above to motorized polarization controllers.
All three steps were not done in chronological order, but
performed simultaneously. After all alignment conditions
were fulﬁlled, we obtained VA],BI = 957(i09)%, VAZ,BZ =
94.2(£0.6)%, Va1 g2 = 4(£2)%, and Vay g1 = 5(£3)% at a
photon pair rate [19] of 21900(4+400)/s by averaging the
visibilities over 100 s while the alignment program was still
running. Our achieved visibilities were limited by the state
fidelity of our entangled photon source, rather than by our

l¥) = —=(IHV) + €?|VH)). 3)

FIG. 4. A basic alignment procedure, which fails as Alice and
Bob do not share an entangled state. Step 1 and 2 can be completed,
but step 3 (getting a high visibility |V, p>| in the superposition basis)
always fails. Here we plot the absolute value of each visibility.
The three steps are separated by vertical gray lines. The residual
fluctuations after all alignment steps were finished are caused by the
intrinsic statistical fluctuations (Poissonian counting statistics).

homemade alignment software and the polarization con-
trollers. It is noteworthy that in general the visibility in the
computational basis is higher than in the superposition basis.
Our alignment procedure does not scan specifically for the
computational basis as we do not control the polarization
controller for the first measurement basis at Alice (PCA1), and
therefore end up most likely in arbitrary superposition bases.
An unsuccessful alignment attempt is shown in Fig. 4. In
this case, Alice and Bob are sharing separable states. The
alignment steps are executed with manual fiber polarization
controllers in chronological order. The first two alignment
steps can still be completed successfully by setting A1 and
Bl to H/V, resulting in a maximized Vj; p; (here both po-
larization controllers PCA1 and PCB2 need to be iteratively
adjusted). The second alignment step is completed by setting
B2 to any basis lying in the R-L-D-A plane. During the third
step, A2 can be set to be parallel to B2, but no visibility
between those bases is observed, as Alice and Bob do not
share an entangled state. The only visible effect during this
alignment step is the fluctuation of V4, p; (blue), indicating
how close A2 is to H/V. In case the shared state might be
separable, the procedure will simply fail, and the sum Vy; 51 +
Vaz.p2 < 1 can be seen as an entanglement witness [20].

IV. DISCUSSION

We demonstrated an alignment and stabilization procedure
for the required correlated and uncorrelated measurement
bases for a QKD system solely based on the visibility
(QBER). No information about the entangled state and the
measurement bases is required. No additional polarizers or
alignment lasers are necessary, thus reducing the cost and
complexity of QKD systems, therefore representing a step
towards technological maturity. The alignment procedure is
done on the fly, hence no time-consuming interruption of
key distribution is required. However, a fraction f of the
distributed photon pairs is lost for key distillation because the
measurement results have to be communicated to the other
party to calculate the QBER in order to perform the alignment
procedure. During the initial alignment phase as described
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FIG. 5. Error propagation for the visibility formula in Eq. (2)
assuming Poissonian statistics for different total numbers of coin-
cidence counts (CCs). The higher the desired visibility is, the fewer
CCs are required for its precise adjustment.

in Sec. II, the fraction f does not need to be minimized, as
no secure key could be distilled at this point anyway and
one can use all photon pairs available. Once these alignment
conditions are fulfilled, a secure key can be generated and f
should be minimized to a level that only just allows stabilizing
the setup. Thereby, one is only limited by the timescale of
polarization fluctuations inside the glass fibers due to temper-
ature gradients or other disturbances [15] and the statistics or
accuracy of the visibility measurement. Figure 5 shows the
error propagation for the visibility calculation for different
total numbers of coincidence counts. One can see that for
high visibilities one needs only a small number of coincidence
counts to get an accurate estimation of the visibility. This
gives a rough estimate on how many coincidence counts are
necessary for a wanted level of alignment precision. In a typi-
cal laboratory-based scenario where hundreds of coincidences
are detected every second, the fraction f might be negligible.
If one however wants to maximize the possible distance of
a QKD link (i.e., a maximum-loss scenario), the fraction f
necessarily converges to 1.

The alignment procedure was demonstrated for the
BBM92 protocol but works also for prepare-and-measure
QKD schemes (BB84 [2]) and copes with biased basis choices
[21]. For the BB84 case, the alignment can be understood in
terms of the Klyshko advanced wave picture [22]: Instead of
sharing some measurement outcomes as in the entangled case,
here the sender (Alice) needs to communicate information
about which of her four states was sent. In the first step, the
receiver (Bob) sets one measurement basis to be maximally
correlated and therefore aligned with Alice’s first basis (up
to unitary evolution given by the environment). In the second
step, Bob sets his second basis to be uncorrelated with and
therefore mutually unbiased to Alice’s first basis. In the third
and last step, it is Bob who sends information about his choice
of the basis to Alice. Alice then sets her second basis to be
correlated with Bob’s second basis.

As a distinct feature of our alignment method, we do not
only align on (ideally) perfect correlations in bases A1, B1 and
A2, B2, but also require no correlations between Al and B2.
Imperfections in the setup lead to small residual visibilities
(IVa1,2] and |Va2. 51| # 0), hence nonperfect mutually unbi-
ased measurement bases. This needs to be taken into account
in postprocessing, as additional information potentially avail-
able to an eavesdropper needs to be removed.

Note that our procedure is not meant to optimize key rate.
In order to achieve the highest possible key rate or the longest
distance possible in a QKD scenario (i.e., a maximum-loss
scenario), one might not prefer low complexity and a small
experimental overhead as in our approach. In this case the
entire alignment scheme can be adapted to a scenario in which
Ua1/Uay and Ug; /Up, are well known to Alice and Bob (for
example by using bulk optics after the 50:50 beam splitter).
Only one polarization controller is then required that allows
us to manipulate either U, or Up in order to align Alice’s
bases with those of Bob. Both local bases for Alice (Bob) can
be already prealigned to ensure mutual unbiasedness, which
allows for precise alignment with significantly fewer coinci-
dence counts as indicated by Fig. 5. For instance, the scenario
of [23] with five coincidence counts per second over a distance
of 248 km would require the fraction f to be around 0.3. For
the highest possible key rate, one should overlap the quantum
channel with a reference laser before coupling into single-
mode fibers, which can be channeled off again after leaving
the fiber. This reference signal could then be used to analyze
and correct for polarization drifts inside the fiber in an entirely
classical manner, without using any entangled photons.

The procedure described in this paper is general and ap-
plies also to other degrees of freedom as long as one has access
to the corresponding general unitary operations. For the exam-
ple of structured light, general unitaries can be implemented
using spatial light modulators [24]. In the case of energy-time
entanglement, our procedure could also be used in principle.
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APPENDIX: THEORETICAL BACKGROUND

In this Appendix, we provide theoretical support for the
claims made in the main text, while we restrict our discussion
to the case when the source emits pure two-qubit states |y/).
As illustrated in Fig. 1, Alice and Bob then share the state

[¥i ;) = (UaiUa @ Up;Up)|Yr) (A1)
=Un®Ug)ly), (A2)

which is subsequently subjected to local polarization mea-
surements. These can be without loss of generality fixed to
be measurements in the eigenbasis of Pauli Z operator since
operators U ; and U g; might be arbitrary. The visibility intro-
duced in Eq. (2) in the main text can then be identified with
the expectation value of Pauli Z measurement:

EV = (Y jlo. ® 0¥ ;).

In the following, we demonstrate the feasibility of the align-
ment procedure by showing that there indeed exist unitaries
Ugi, Ug,, and Uy, such that EY11 = EV22 = 1 and EV'2 =0
and that these conditions automatically lead to EV>1 = 0. At
last, we show that by fulfilling all alignment conditions, Al-
ice’s two bases will always end up mutually unbiased to each
other and the same is true for Bob’s bases.

(A3)
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1. Expectation values

At first, we draw the link between E i and the correspond-
ing unitaries. Let the source produce a maximally entangled
state |1). Then there exists a unitary V such that

V) =UV)IY™),

where the singlet state | ~) has the useful property that it
remains invariant when the same unitary transformation is
applied to both sides:

UU)Y™)=e“ly).

This allows us to rewrite Alice’s and Bob’s state in the follow-
ing way:

(A4)

(AS5)

Vi) = Ua @UgV)IY™)
=URUpVU)Ua @ Ua)¥r™)
= (I@UY )Y, (A6)
where we defined
UL =T VUL, (A7)

Using Eq. (A6) the expectation values can be rewritten as
follows:

EVY = (Y jlo, ® o.lv ;)
= (W QU (0. @ 0.) (I @UL) 1Y)
=W [l ® (U 0.U o)) (0. ® o)1y )
=W SipIY ),

where we defined

(A8)

S =U o Ul o, (A9)

We can use a general parametrization for an arbitrary unitary
matrix U,

U= e (e_iwzm cos (§)  —e™ sin ()§)>, (A10)

¢'3” sin (%) 5" cos (%

to express Ukj and calculate the explicit form of S; ;:
—esin(y; ;)
Sij= <_ : (All)

cos(yi,;)
If we now plug this expression into Eq. (A8), the expectation
value takes a very simple form:

cos(¥;.;)
e~ sin(y;, ;)

EVi = —cos(yi)). (A12)

This formula together with Eq. (A7) represents the link be-
tween measured visibilities and the form of measurement
bases.

2. Feasibility

Considering the alignment procedure described in the main
text, Bob can adjust PCBI in such a way that E¥1 = —1 by
setting ;.1 = 0, without knowing what this actually means in
terms of his own unitary transformation Ug;, only based on
observing the measured expectation value (visibility). Like-
wise, the conditions E¥12 = 0 and E¥22 = —1 can be fulfilled

by choosing y1 > = 7/2 and y, , = 0 respectively. By insert-
ing the three values y; i, ¥2.2, and y; » back into U we get

. ) —igii 0
L __ 10 €
Uy =e ( 0 eiif.f) and

ioty 2 —i —i
U1,2 e e~ i1 —e M2
A \/E eima el

with real parameters &; ; = (8;; + 6;;)/2 and n; ; = (B;; —
di,j)/2. We can use Eq. (A7) to express Bob’s unitaries UBj in
terms of Alice’s unitaries U 4;:

(A13)

Up; =UTULV". (Al14)

This way, Bob’s unitaries are fully determined from (A13) and
U 41. The form of U 4, is determined in the next section.

3. Vanishing cross correlation

Next we need to confirm that fulfilling conditions EV' =
E%22 = —1 and EV12 = 0 forces E¥2! = 0 as well. First, let
us emphasize that Eq. (A14) is actually four different matrix
equations. By reducing U ; from them, one can simplify the
rest into

Up = U 0N Up = U UL T (A15)
Solving this for the unknown matrix Uﬁ’l yields
Rl (A
Uy =UyU7U = ﬁ(ei’m it (A16)

with substitutions oy = a1 — a2 + o2, {1 = {11 — ;12 +
L2, and oy = &1 — {22 + n12 + 7. The structure of U o1
identical to that of U} A 2 and so we can conclude that V2.1 =
/2 and E¥>' = 0. From Eq. (A15) one also retrieves the
form of unitary U 4,.

4. Mutual unbiasedness

In order to ensure security of a QKD setup, we also prove
that Alice and Bob measure in two mutually unbiased bases.
We present the proof for Alice’s bases, and the calculation for
Bob is analogous. We define Ups = UpnU AT |» Which represents
the transformation a photon would undergo when traveling
from Al to A2. Using Eq. (A15) this can be expressed as
follows:

7 7 777 2,2%771,2
Uar =UnU,, =U*'UL
ellan—an) /o=itn—tn)  _ p=iln2—{n)
ﬁ (ei(mz—sz) ei(t12—t2) > (A17)

Note that every component of this matrix has a modulus
squared of 1/2 and that Alice’s measurement bases Al and
A2 are defined as (U, |H), U, |V)} and (U4, |H), U 4, |V)},
respectively. From there it follows that the overlap of any two
vectors |x;) € Al and |¢;) € A2 reads

Urlxi) 1 = 1[(KIT aall)? = 4

for all k,1 € {H,V}. Bases Al and A2 are thus mutually
unbiased.

(A18)
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Note that when investigating similar relations between Al-
ice’s and Bob’s bases, Eq. (A14) leads to

—_— —t PR *_T
[(k1U 5;U ;111> = [(kIUR T4V U |11 (A19)

Only if V = I, does the overlap of both bases always reduce
to expressions that depend only on U’

i=j

i,j 2
kailUp 8| =
|A A BJ| 12 i

(A20)

fori, j € {1,2} and k, [ € {H, V}. This means that only in the
case when the source emits a | ~) state are Alice and Bob’s
bases guaranteed to be aligned with respect to each other
or mutually unbiased (depending on the correlations). If any
other maximally entangled state is used, this might no longer
be the case. Two uncorrelated bases are then not necessarily
mutually unbiased, and even two identical measurement bases
do not need to be correlated. However, the whole procedure
still works and Alice’s (Bob’s) two bases will be mutually
unbiased with respect to each other after the procedure is
finished.
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