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Photon-mediated interactions in subwavelength atomic arrays have numerous applications in quantum science.
In this paper, we explore the potential of three-level quantum emitters, or “impurities” embedded in a two-
dimensional atomic array to serve as a platform for quantum computation. By exploiting the altered behavior of
impurities as a result of the induced dipole-dipole interactions mediated by subwavelength arrays, we design and
simulate a set of universal quantum gates consisting of the

√
iSWAP and single-qubit rotations. We demonstrate

that these gates have very high fidelities due to the long atomic dipole-dipole coherence times, as long as the
atoms remain within a proximal range. Finally, we design and simulate quantum circuits leading to the generation
of the maximally entangled two-qubit Bell states, as well as the entangled three-qubit Greenberger-Horne-
Zeilinger state. These findings establish subwavelength emitter arrays as an alternative platform for quantum
computation and quantum simulation.
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I. INTRODUCTION

Recent experimental advances in atomic array configu-
rations with subwavelength spacing and long-range dipole-
dipole interactions [1] have opened up exciting possibilities
for exploring novel physical phenomena, such as superra-
diance [2–7] and subradiance [8–12], topological quantum
optics [13,14], efficient light-matter interactions [15–19], and
enhanced photon storage capabilities [9,20–22]. Additionally,
atomic arrays can be employed to modify the radiative envi-
ronment and properties of impurity emitters, illustrated by the
red atoms in Fig. 1. In that case, the array acts as a Markovian
bath for the embedded impurities, which acquire a suppressed
decay rate and exhibit long-range interactions mediated by the
delocalized spin waves of the lattice [23–26].

In this paper, we explore the potential of subwavelength
atomic arrays with embedded impurity emitters as candidates
for quantum computation. This is a relatively novel compu-
tational paradigm, with applications ranging from quantum
simulation [27–29] to cryptography [30,31] and optimiza-
tion [32–35]. However, the realization of universal quantum
computation; that is, the ability to perform any combination
of quantum operations efficiently [36] using highly scalable
systems with exceptionally low errors, has been an elusive and
long-standing goal [37,38]. To address this difficulty, a mul-
titude of quantum hardware platforms have been proposed.
Of these paradigms, superconducting qubits have consistently
ranked among the most popular and have attained numerous
noteworthy milestones [39–42], however error mitigation on
these platforms remains an engineering challenge [43–45].
Trapped ion systems are remarkable for their implementa-
tion in free space and their long coherence times [46,47],
however their utilization of motional quantum states presents
unique challenges for their design and scalability [48].

Neutral atoms have garnered increasing interest in the quan-
tum computing community due to their relatively scalable
configuration, which sports high uniformity and reproducibil-
ity [49,50], although quantum hardware efforts have so far
been largely limited to cold Rydberg atoms in optical arrays
[51–54]. While each platform offers unique advantages, they
also present their own limitations and challenges (e.g., de-
coherence, sensitivity to external noise, and scalability with
increasing qubit number), which have slowed the path towards
quantum computing’s full potential [55,56].

Here, we theoretically and numerically demonstrate that
impurities embedded in closely spaced atomic arrays can
serve as qubits suitable for quantum computation and simu-
lation protocols. For that, we show that the lattice-mediated
interactions implement an iSWAP gate between the impuri-
ties. Individual addressing of each impurity further allows
us to suppress these interactions and thereby enables precise
control over the iSWAP gate operation, as well as the imple-
mentation of the single-qubit X and Z rotations. Together,
these three operations form a universal set of gates for quan-
tum computation and simulation. Due to the low error rates of
these operations, they can be applied sequentially to generate
quantum circuits with large numbers of gates and qubits or
impurities.

While efforts to develop the useful quantum computing
platforms are multifaceted and their challenges ever-evolving,
our work demonstrates the remarkable attributes of lattice-
embedded atomic emitters, such as their coherent control-
lability. The ability to interact with three-dimensional (3D)
free space light and generate optical lattices makes it a useful
tool for quantum sensing and simulation. Moreover, due to
the high controllability, the utilization of impurities can be
instrumental in applications like direct manipulation and re-
trieval of quantum data, and generation of cluster states for
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FIG. 1. Square atomic array with subwavelength spacing a and
with embedded impurities (red or dark gray) at the center of the
square plaquette. The impurity emitters are three-level systems. The
|g〉 ↔ |e〉 transition exhibits light-induced dipole-dipole interactions
with the lattice atoms and the remaining impurities. The third level
|r〉 is a metastable state with a small decay rate. The lattice atoms
(blue or light gray) are two-level emitters with transition frequency
detuned by δLI with respect to that of the impurity atoms.

quantum communication and quantum internet. It can also
be used for entanglement generation, making single-photon
sources, and gaining control and access to dark lattice modes
[22]. Indeed, all of these advantageous prospects are comple-
mented by the fascinating effects that these quantum emitters
demonstrate.

The rest of the work is organized as follows: In Sec. II,
we introduce the system and derive the effective equations of
motion of the embedded impurities. In Sec. III, we derive
the feasibility of the aforementioned universal gate set. We
further illustrate the feasibility of quantum circuits in this
system by preparing a two-qubit Bell state and the three-qubit
Greenberger–Horne–Zeilinger (GHZ) state in Sec. IV. These
states serve as the universal computational primitive [57] and
thus highlight the robustness and efficacy of our platform
for implementing various quantum algorithms with high
precision.

II. MODEL

We consider a two-dimensional array of NL two-level
atoms with NI embedded three-level impurity atoms, as de-
picted by the blue and red emitters in Fig. 1, respectively. The
two levels of the array emitters are labeled as |G〉 and |E〉,
and the angular frequency of their transition is ωL = 2πc/λL.
As all frequencies in this paper are angular frequencies, we
henceforth unambiguously refer to them as “frequencies.” We
additionally consider a closely spaced lattice, such that the lat-
tice spacing a < λL. The three levels of the impurity atoms are
the ground state |g〉, the excited state |e〉 and the high-energy
metastable state (HMS) |r〉, as shown in Fig. 1. The frequency
of the |g〉 ↔ |e〉 and |g〉 ↔ |r〉 are ωI and ωR, respectively.

Both the lattice atoms and the impurities interact with
the vacuum electromagnetic field. Applying the Born-Markov
approximation, we trace out the electromagnetic vacuum ra-
diation field and obtain the master equation describing the
density operator of the emitters. In the quantum jump formal-
ism, the atomic dynamics are equally described by an effective

non-Hermitian Hamiltonian and the stochastic action of
quantum jumps, responsible for photon emission. In what fol-
lows, we assume that the action of the jumps can be neglected
and the dynamics of the system is fully characterized by
the non-Hermitian Hamiltonian H = HL + HI + HLI + HE .
As this effective non-Hermitian Hamiltonian provides a full
description of our quantities of interest, namely, atomic dy-
namics, we present it here for simplicity, however we also
offer its full derivation in Appendix F. Then, the lattice Hamil-
tonian ĤL can be written as

ĤL =
NL∑
i

(
wL − i

2
γL

)
σ̂

†
i σi +

NL∑
i, j �=i

(
Ji j − i

2
�i j

)
σ

†
i σ j, (1)

where γL is the spontaneous decay rate of the lattice atoms
and σ̂i = |Gi〉〈Ei| is the lowering operator for lattice atom
i. The eliminated vacuum field induces coherent and dissi-
pative interactions between the emitters, which arise from
virtual emission and reabsorption of photons. These couplings
Ji j ≡ Ji j (ri, r j ) and �i j ≡ �i j (ri, r j ) depend on the distance
ri j = |ri − r j | between atoms i and j, and are given by

Ji j (ri, r j ) = −3πγL

wL
d†

i · Re[G(ri j,wL )] · d j, (2a)

�i j (ri, r j ) = 6πγL

wL
d†

i · Im[G(ri j,wL )] · d j . (2b)

Here, G(r,w) is the dyadic Green’s tensor [58,59], and di

is the atomic dipole moment of atom i.
Similarly, the impurity Hamiltonian ĤI reads

HI =
NI∑
α

[(
wI − i

2
γI

)
s†
αsα +

(
wR − i

2
γR

)
r†
αrα

]

+
NI∑

α,β �=α

γI

γL

(
Jαβ − i

2
�αβ

)
s†
αsβ, (3)

where γI and γR are the spontaneous decay rates of excited
and HMS states of the impurities, and sα = |gα〉〈eα| and rα =
|eα〉〈rα| are the lowering operators of the |g〉 ↔ |e〉 and |e〉 ↔
|r〉 transitions, respectively. We consider only the |g〉 ↔ |e〉
transition to have a transition wavelength λI = 2πc/ωI of the
order of the impurity distance. Thus, only this transition ex-
hibits significant light-induced couplings Jαβ and �αβ . Thus,
the HMS states of different impurities do not interact with one
another and can therefore be used to store the quantum state
of the impurities for long times provided that γR � γI .

Provided that ωL ≈ ωI , impurity and lattice atoms ex-
perience the same near-resonant atom-atom coupling that
lattice atoms do with each other, as described by Eq. (1) and
Heisenberg-Langevin equation derivation in Appendix F. That
is, the lattice and impurity emitters also undergo light-induced
interactions given by

HLI =
√

γI

γL

NL∑
i

NI∑
α

[(
Jiα − i

2
�iα

)
σ

†
i sα

+
(

Jαi − i

2
�αi

)
s†
ασi

]
, (4)
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where the sole distinction between the atomic couplings in
Eqs. (1) and (4) is the relative coupling strength

√
γI/γL as

dictated by the relative linewidth of the impurity and lattice
atoms, respectively.

Finally, classical driving fields can be applied on the |g〉 ↔
|e〉 and |e〉 ↔ |r〉 transitions of the impurity atoms with fre-
quencies ωI and ω f , respectively,

HE = −
NI∑
α

[(�∗
αs†

α + �αsα )(e−iωIt + eiωIt )

+ (�∗
f αr†

α + � f αrα )(e−iω f t + eiω f t )], (5)

where the position-dependent strengths �α = −dαεα and
� f α = −dα f ε f α are the product of the corresponding dipole
moments and the electric field at the atomic positions. Here,
the position-dependent phases are absorbed into the strengths
�α and � f α [60].

For simplicity, we further consider that the system contains
at most two excitations. Applying the Schrödinger equation,
we can obtain the equations of motion of the amplitudes in
each of the states of the lattice and impurity atoms, derived in
Appendix A. If γL � γI , the lattice atoms act as a Markovian
bath for the impurities and can therefore be adiabatically
eliminated, as shown in Ref. [23] and derived in Appendix A.
We then obtain a reduced set of equations for the NI impurity
emitters only. Their wave function is then simply given by

|�(t )〉 = a(t )|g〉 +
NI∑
α

cα (t )e−iwIt |eα〉 +
NI∑
α

fα (t )e−i(wI+w f )t |rα〉 +
NI∑

α,β �=α

Cαβ (t )e−2iwIt |eα, eβ〉

+
NI∑

α,β �=α

yαβ (t )e−i(2wI+w f )t |eα, rβ〉 +
NI∑

α,β �=α

Fαβ (t )e−i(2wI+2w f )t |rα, rβ〉, (6)

where |g〉 denotes the state where all impurities are in ground state, |eα〉 the state where only impurity α is in the excited
state, |eα, eβ〉 the state where only impurities α and β are in the excited state, and similarly for |rα〉, |rα, rβ〉, and |eα, rβ〉. The
corresponding equations of motion applying the rotating-wave approximation are

ȧ = i�αcα (t ), (7a)

ċα (t ) = i�∗
αa(t ) + i

[
i

2
γI − α

]
cα (t ) − i

NI∑
β �=α

[�αβ + φαβ]cβ (t ) + i�βCαβ (t ) + i� fα fα (t ), (7b)

Ċαβ (t ) = i[iγI − α − β]Cαβ (t ) + i�∗
βcα (t ) + i�∗

αcβ (t ) + i� f αyβα (t ) + i� f βyαβ (t )

− i
NI∑

ε �=α,β

([�βε + φβε]Cαε + [�αε + φαε]Cβε ), (7c)

ḟα (t ) = i

(
δR + i

2
γR

)
fα (t ) + i�βFαβ (t ) + �∗

f αcα (t ), (7d)

ẏαβ (t ) = i

[
δR + i

2
γI + i

2
γR − α

]
yαβ (t ) + i�∗

βCαβ (t ) + i� fα Fαβ + i�∗
α fβ − i

NI∑
ε �=α,β

[�αε + φαε]yεβ, (7e)

Ḟαβ (t ) = 2i

(
δR + i

2
γR

)
Fαβ (t ) + i�∗

f αyαβ (t ) + i�∗
f βyβα (t ). (7f)

Here, �α and � fα denote the driving fields that excite impurity
α from the ground state to the excited state, and from the
excited state to the HMS state, respectively. As illustrated in
Fig. 1, we introduce δR = ω f − (ωR − ωI ). The term

�αβ = γI

γL

(
Jαβ − i

2
�αβ

)
(8)

describes the coherent and dissipative exchange of excitations
between impurities α and β mediated by the electromagnetic
field, and its value is therefore ≈γI . Additionally, the lattice
also mediates interactions between impurities. Defining the
light-induced interaction between impurity α and the lattice
atoms as Cα , and the light-induced coupling between the

lattice atoms as L, the lattice-mediated interactions between
both impurities, φα,β , reads

φαβ = C†
βL−1Cα, (9a)

C†
α =

√
γI

γL

(
Jα1 − i

2
�α1, . . . , JαN − i

2
�αN

)
, (9b)

L =

⎡
⎢⎣ δLI + i

2γL · · · −J1N + i
2�1N

...
. . .

...

−JN1 + i
2�N1 · · · δLI + i

2γL

⎤
⎥⎦, (9c)

where δLI = ωI − ωL denotes the detuning between the lat-
tice and impurity atoms. That is, φα,β describes an excitation
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transferred between both impurities through the normal
modes of the lattice.

Finally, α = φαα denotes the self-interaction of impurity
α mediated by the lattice. Its real part, Re[α], modifies the
transition frequency of the impurities. Since this term is equal
for all impurities provided that the lattice is large enough, it
can be simply canceled out by redefining the frequency of the
impurities. The imaginary part, however, alters the effective
decay rate of the impurity emitters

�eff = γI − 2Im[α]. (10)

That is, we can reduce the impurity decay rate and thus im-
prove the coherence time when Im[α] > 0. If all emitters are
circularly polarized (dL = dI = (1, i, 0)/

√
2), there exists an

optimal detuning δLI between the impurity and lattice atoms
for which �eff � γI and the impurities become long-lived
[23,26]. In that case, the frequency of the impurities lies
outside the energy band of the normal modes of the lattice and
the impurity-impurity interactions are off-resonantly coupled
by their guided, or nondecaying, modes. Crucially, this sup-
pressed decay rate allows for longer times (≈�−1

eff ) to perform
quantum operations or gates, thereby increasing the maximum
circuit depth. As a result, we consider this configuration for
the rest of this work. Note that it is precisely the existence
of this regime characterized by suppressed photon emission
that allows us to neglect the action of the quantum jumps. For
times smaller than the inverse effective decay rate (t � �−1

eff ),
i.e., for the relevant timescales where high-fidelity operations
can be performed, the dynamics can be simply computed
using the non-Hermitian Hamiltonian and a wave function,
instead of the full master equation and the atomic density
matrix.

III. UNIVERSAL SET OF GATES

A universal set of gates is a group of operations that can
implement any unitary transformation on a given number of
qubits. For an ensemble of impurity atoms or qubits coupled
to the atomic array, we devise a universal gate set comprised
of arbitrary single-qubit operations, using X and Z rotations,
and the two-qubit gate

√
iSWAP [61].

A. X rotation

First, we devise a gate that allows any desired rotation
around the X -axis of the single-qubit Bloch sphere. We per-
form the XR rotation on impurity α by applying a strong
resonant pulse �α on it. This results in Rabi oscillations
between the ground and excited state, given by the XR(φ)
rotation matrix

XR(φ) =
[

cos(φ/2) isin(φ/2)

isin(φ/2) cos(φ/2)

]
,

where φ = 2�ατ . A notable instance of this class of gates is
the X-gate, also known as the NOT gate or BIT-FLIP gate, which
is equivalent to a π rotation and flips the state of a qubit from
|g〉 to |eα〉, and vice versa. Applying the pulse for τ = π/2�α ,
we obtain an iX gate, which is equivalent to an X gate up to a
global phase. In Fig. 2(a), we plot the population of the ground
and excited state of an impurity initially in the excited state
after applying XR for different values of t (or analogously φ).

FIG. 2. In panels (a)–(d) we have considered an array with a =
d = 0.1λL . (a) X gate applied on impurity 1, which results in a
transfer from the excited to the ground state of that impurity. For
a strong drive, the gate time is τ = π/2�α � γ −1

I . Here, we use
�α = 104γI . (b) Z gate applied to impurity 1, which results in a
phase change of π with respect to the other impurities of the system
(red trace and left axis). During the process, the populations are left
unchanged. (c) Fidelity of single-impurity X and Z gates, after 700
sequential applications. We have considered an array with a = d =
0.1λL . (d) Circuit diagram of

√
iSWAP gate, which results in excita-

tion transfer from impurity 1 to impurity 2. (e) Error ε = 1 − F after
applying 100 iSWAP gates as a function of the distance d between the
impurities. The different traces correspond to varying lattice spacings
a. In all subfigures, we consider γI = 10−4γL .

Since |�α| � |� + φ∗| ≈ γI , the time taken to simulate
the X gate is much shorter than the characteristic timescale
of the array-mediated impurity-impurity interactions (≈γI ),
which have a negligible effect during the single-qubit oper-
ation. Consequently, we achieve a remarkably high fidelity
exceeding 99% when simulating the X gate, even with a circuit
depth of 700, as exemplified in Fig. 2(c).

B. Z rotation

The ZR rotation introduces a relative phase φ between
ground and excited states of a single qubit or impurity, and
is described by the matrix

ZR(φ) =
[

e−iφ 0
0 1

]
. (11)

We devise and simulate the ZR gate in our system by apply-
ing a far-detuned driving field between the excited state and
the HMS of a given impurity, such that δR � � f . If all other
drives are zero, the amplitudes in these two states are

ċα (t ) = −�eff

2
cα (t ) + i� f α fα (t ), (12a)

ḟα (t ) = i

(
δR + i

2
γR

)
fα (t ) + i�∗

f αcα (t ). (12b)
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Since δR � � f α, γI , the fast-evolving HMS state can be
adiabatically eliminated by setting ḟα → 0. We then obtain

ċα (t ) =
(

−�eff

2
− i

|� f α|2
δR

)
cα (t ). (13)

While the HMS state is never populated due to the off-
resonance, it introduces a Stark shift �z = |� f α|2/δR to the
excited state |cα〉. As a result, the excited state rotates at a
faster frequency than the ground state and acquires a phase
φ = �zτ after a time τ , thereby simulating the ZR gate given
by Eq. (11). Setting τ = π/�z, we can devise a Z gate,
which corresponds to a π rotation around the z axis of the
Bloch sphere [Fig. 2(b)]. Finally, it is worth noting that �z ∼
γL � γI . Consequently, the time required to simulate the Z

gate is once again significantly shorter than the characteristic
timescale of light-induced impurity-impurity interactions, all
while maintaining a fidelity well above 99% for a circuit depth
of 700, as illustrated in Fig. 2(c).

C.
√

iSWAP gate√
iSWAP is a two-qubit operation that results in universal

for quantum computation when used together with the set of
single-qubit rotations [see Fig. 2(d)] [61]. This two-qubit gate
is described by the unitary matrix

√
iSWAP =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦. (14a)

For instance, applying an
√

iSWAP gate on the state |e1, g2〉,
produces the state 1√

2
|e1, g2〉 + i√

2
|g1, e2〉.

We devise and simulate the
√

iSWAP gate between two
impurities of our system by setting all drives to zero, which
ensures that the excitation number in the system is conserved.
Then, the equations of motion for the system with two impu-
rities is

ġ(t ) = 0, (15a)

ċ1(t ) = −�eff

2
c1(t ) − i[�12 + φ12]c2(t ), (15b)

ċ2(t ) = −�eff

2
c2(t ) − i[�21 + φ21]c1(t ), (15c)

Ċ12 = −�effC12(t ), (15d)

where g denotes the amplitude of the total ground state, c1 and
c2 the amplitudes of the states with impurity 1 or 2 populated,
and C12 the amplitude of the state where both impurities are
excited. Equation (15) result in the

√
iSWAP gate given by

Eq. (14) after evolving for a time t = π/[4(� + φ∗)] [see
Fig. 2(d)]. Since both �12 and φ∗

12 are of the order of γI ,
the time required to perform this gate is ∝γ −1

I . That is, the√
iSWAP gate is much slower than the single qubit gates.
We can further define the fidelity of the iSWAP operation as

the overlap between a target state |ψt 〉 and the one obtained by
solving the full dynamics of the system |ψd〉, F = |〈ψt |ψd〉|2.
In Fig. 2(e), we show the error ε = 1 − F after 100 consecu-
tive operations of the iSWAP gate as a function of the distance

between the impurities d for different lattice spacing a. In
general, ε increases with a and d . If the impurities are in
neighboring plaquettes (d = a), we can perform 100 iSWAP

operations with small errors rates of about ε ≈ 10−3 and
ε ≈ 10−4 for a = 0.1λL and a = 0.05λL, respectively. While
this error remains relatively small for a = 0.05λL and d = 4a,
it approaches ε → 1 if the lattice spacing is increased to a =
0.1λL. This sets the maximum distance between impurities for
which the iSWAP gate can be applied with high fidelities, and
therefore sets the fundamental limit of this platform. The high
fidelity obtained for closely spaced impurities is comparable
with that observed in other quantum platforms. For instance,
a single

√
iSWAP gate using superconducting qubits typically

exhibits a fidelity of 98.2% [43]. Meanwhile, ion-trap-based
systems perform a similar iSWAP gate with a fidelity of 97.7%
[62]. Moreover, we also show in Appendix E that the fidelity
of our single and two-qubit gates remains intact in the pres-
ence of random fluctuations or atomic motion in our lattice
array which may take place due to experimental errors.

D. Decoupling impurities

To devise and simulate any arbitrary quantum circuit, we
need to control the interactions between any two qubits or
impurities during the whole process. In the platform at hand,
however, the

√
iSWAP operation continuously acts between all

impurities present and may introduce significant errors when
performing the slow two-qubit

√
iSWAP gate. To avoid this, we

require a method that decouples all qubits that are not involved
in a specific operation. In what follows, we describe multiple
techniques to decouple impurities that are in an arbitrary su-
perposition of the ground and excited state. It is worth noting
that such decoupling protocols only need to be implemented
when performing an iSWAP gate. The single impurity gates X

and Z are significantly faster than the characteristic timescale
of the lattice mediated impurity-impurity interactions and are
therefore unaffected by them.

1. Decoupling impurity in the ground state

First, we describe how to decouple an impurity that is
in the ground, thus hindering population transfer from other
impurities (i.e., turning off the iSWAP operation).

a. Detuning |g〉 ↔ |e〉 transition. To decouple impurity α,
we can apply a detuning to the |g〉 ↔ |e〉 of that impurity
larger than the lattice-mediated impurity-impurity interac-
tions, i.e., δα � |� + φ∗| ≈ γI . This energy shift can be either
applied to the ground or excited state, and can be respectively
modeled by adding the term δαsαs†

α or δαs†
αsα in the impurity

Hamiltonian given by Eq. (3). As shown in Appendix D, the
excited state can, for example, be detuned by coupling it to
an additional energy level with a strong drive, in a process
analogous to electromagnetically induced transparency.

b. Population transfer to another HMS state. Alternatively,
we can transfer the excitation in the ground state to another
auxiliary state that does not decay and does not interact
with the remaining impurities via light-induced dipole-dipole
interactions. Excitation exchange between both states can
simply be performed with a π pulse.
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2. Decoupling impurity in the excited state

An impurity α in the excited state |eα〉 does not decay only
at the optimal lattice-impurity detuning δLI . As opposed to
decoupling an impurity in the ground state, we cannot detune
the |g〉 ↔ |e〉 transition in this case, since it would result in a
quick decay of the excited impurity.

As a result, decoupling an excited impurity requires to
transfer the excitation to another metastable state |rα〉, which
again does not decay and does not interact with the other im-
purities. This is achieved by applying a π pulse with strength
� f α � |� + φ∗| which promotes |eα〉 → |rα〉.

3. Decoupling impurity in an arbitrary state

If impurity α is in an arbitrary superposition of ground
and excited state, we have to combine the methods described
above to decouple it. We do so by first transferring the ex-
cited part of the wave function to a metastable state and then
detuning the |g〉 ↔ |e〉 transition. Note that any extra phase
acquired by the impurity during this process can be simply
compensated by applying a local Z gate.

4. Addressing a single site with subwavelength spacing

Both detuning the |g〉 ↔ |e〉 transition and transferring
population to the HMS state require the selective control
of impurity atoms. While individually addressing tightly
spaced atoms may pose an experimental challenge, it has
been realized experimentally for quite some time [63]. Such
approaches employ high-aperture microscopic objectives to
focus off-resonant laser beams on single lattice sites, detuning
only the single selected atom into resonance with a more
broadly applied driving beam. Remarkably, not only is this
method suitable for atom arrays with lattice spacings on the
order of an optical wavelength, the full width at half maximum
of the focused detuning beam is narrow enough that nearest-
neighbor atoms experience but 10% of its peak intensity, while
its position is accurate enough to position it within a tenth of
a lattice spacing.

IV. OPERATIONS

The set of gates defined above is universal for quantum
computation, and can be therefore used to construct any
quantum operation or circuit [61]. As an example, we here
theoretically and numerically demonstrate how to generate
two- and three-qubit entangled states.

A. Entangling two impurities: Bell state

The Bell states, |�±〉 = 1√
2
(|00〉 ± |11〉) and |�+〉 =

1√
2
(|10〉 ± |01〉), are four maximally entangled two-qubit

states. That is, measuring of one of the qubits immediately
collapses the wave function of the other qubit, regardless of
the physical distance between them [64].

Figure 3(a) displays the decomposition of the Bell state
|�+〉 using the gate set available in our system. Assuming that
only one of the two impurities is initially excited, one needs to
applies a

√
iSWAP gate on both impurities, followed by a π/2

rotation around the Z axis and an X gate on the second qubit.
If the system contains extra impurities, we simply need to

FIG. 3. (a) Decomposition of Bell state, |�+〉 = 1√
2
(|00〉 +

|11〉), using the native gate set of our system, and state of the
three-impurity system after each gate. The third impurity is detuned
and remains always in the ground state. (b) Temporal evolution
of the state of the impurities throughout the protocol (line plot).
The different background colors correspond to the different gates
applied. We consider γI = 10−3γL , d = a = 0.1λL . Additionally, we
use δR2 = 200γL and � f 2 = γL when implementing the Z gate on
impurity 2, and �2 = γL for the X gate on impurity 2.

decouple them by applying a large detuning to render them out
of resonance. For the three-impurity system shown in Fig. 3,
the prepared state is thus |�+〉 ⊗ |g〉. As shown in Fig. 3(b),
the Bell state can be prepared with high fidelity (>0.999)
for a = 0.1γI . This error originates predominantly from the√

iSWAP and follows a similar trend as shown in Fig. 2(e).
Finally, it is worth noting that the remaining Bell states can be
obtained by applying suitable combinations of a π/2 rotations
around the Z axis and an X gate on the second qubit.

B. Entangling three impurities:
Greenberger-Horne-Zeilinger state

We further devise the implementation of the entangled
three-qubit Greenberger-Horne-Zeilinger (GHZ) state, which
is defined as |GHZ〉 = 1√

2
(|000〉 + |111〉) [65] and has po-

tential applications in various areas such as quantum error
correction, quantum teleportation, and quantum cryptography
[66,67]. The three-qubit GHZ state can be obtained from the
Bell state |�+〉 ⊗ |g〉 prepared in Sec. IV A by applying a
CNOT gate with the second and third qubits as the control
and target qubits, respectively. The CNOT gate can be effi-
ciently decomposed into our system’s gate set, as shown in

012613-6



QUANTUM COMPUTING WITH SUBWAVELENGTH ATOMIC … PHYSICAL REVIEW A 109, 012613 (2024)

FIG. 4. (a) Sequence of gates used to create a three-qubit GHZ
state using the native gate set of our system, as well as the intermedi-
ate quantum states attained after each gate. (b) Temporal evolution
of the state of the impurities throughout the protocol (line plot).
Again, the different background colors correspond to the different
gates applied. Same parameters as in Fig. 3.

the Fig. 4(a). Finally, we illustrate the evolution of the state
of the impurities during the protocol in Fig. 4(b), where the
initial state is taken to be |�+〉 ⊗ |g〉.

V. CONCLUSION

We have theoretically and numerically demonstrated that
the universal quantum gate set composed of the two-qubit√

iSWAP gate and the single-qubit X and Z rotations can be
readily devised and simulated on impurity emitters embedded
in atomic lattices with subwavelength spacing and illustrate
their operation by preparing two- and three-qubit entangled
states. We further show that this platform allows for very high
gate fidelities, provided that the impurities are sufficiently
close to one another. In real experimental implementations,
however, additional errors may arise from various sources
such as decoherence, environmental noise, and position or
frequency disorder of the emitters. This work paves the way
towards controlling and engineering long-range interactions
between emitters [16,22,68–72], and demonstrates the poten-
tial of using subwavelength arrays for quantum simulation
[28] and computation [73], as well as for quantum informa-
tion storage and processing [74,75]. In future works, more
sophisticated protocols such as optimization [32,35] and error
correction [76] could also be explored on this platform.

This theoretical proposal may be implemented using ul-
tracold atoms trapped using optical lattices [1,77], optical
tweezers [78], or metasurface holographic optical traps [79].
Atomic lattices are a particularly intriguing platform, due to
their ability to interface with free space light [15], their long
coherence times [23,24], and the resulting high fidelities of
gate operations (see Fig. 2). Among such atomic platforms for
quantum information, strontium has become a popular pro-
posal, due to its readily driven λs = 2.6 µm transition 3P0 →3

D1, which can be paired with a trapping, magic wavelength
of as = λs/16.3 [13,80]. Likewise, ytterbium’s telecom tran-
sitions and optical trapping wavelengths render it a promising
species [81]. As discussed in Sec. II, to ensure the feasibil-
ity of our impurity vs array atom criteria, we only require
that the two atom varieties demonstrate (i) similar transition
wavelengths, e.g., |ωI − ωL| � ωI, ωL, and (ii) that the decay
rate of the impurity transition is much slower than that of the
lattice atom, e.g., γI � γL. These properties can be furnished
by distinct isotopes of a given atomic species, such as the
strontium isotopes 87Sr and 88Sr [23,24,82], as well as by
simply choosing a species that satisfies the latter criterion and
ensuring the former by shifting the transition frequency of ei-
ther the lattice or impurity atoms via an AC Stark shift, such as
with an off-resonant beam or optical tweezers. Dual-element
arrays, which contain two entirely different atomic species,
could also be considered and have recently been demonstrated
experimentally [83].

A central experimental difficulty of the proposed protocol
in atomic lattices lies in individually addressing each impu-
rity emitter. This feature, which is needed to perform the
single-qubit gates and to turn on and off the two-qubit iSWAP

gate, could utilize a narrow focusing or localization of the
driving fields to focal points smaller than an optical transition
wavelength. As achieving such culminated beam focus can be
challenging, the high-aperture microscopic objective-focused
off-resonant laser technique of Ref. [63], which selectively
tunes single atoms in optical lattices into focus with a more
ubiquitous transition drive, represents a promising avenue.

Even in the event that single-site driving fields prove too
challenging in free-space platforms such as atomic arrays, this
difficulty could be circumvented by extending this proposal
to other types of baths or structures capable of mediat-
ing light-induced interactions. For instance, one-dimensional
waveguides have long demonstrated the ability to strongly
couple to target atoms with band-edge scattering behavior
very similar to that furnished by the lattice atoms of this work
[84–86]. More recently, analogous systems using supercon-
ducting qubits [71,72] and even color centers in silicon [87]
have been investigated, opening the possibility of carrying
out our proposal in the microwave regime. Likewise, strong,
engineerable atomic interactions can be obtained with cavi-
ties [70]. As a crucial feature, the above discussed platforms
provide controllable, strong couplings between emitters that
may be separated by distances much larger than the resonant
wavelength [24,68,69]. Not only do such coupling distances
enable individual addressing of each impurity, they facilitate
the design of more versatile quantum circuits involving gates
between more distant emitters.
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APPENDIX A: EQUATIONS OF MOTION

The wave function of the full system (impurities and lattice atoms) containing at most two excitations is given as

|�1(t )〉 = |�(t )〉 ⊗ |G〉 +
NL∑
i

bi(t )e−iwIt |Ei, g〉 +
NL∑
i

NI∑
α

viα (t )e−2iwIt |Ei, eα〉 +
NL∑
i

NI∑
α

ziα (t )e−i(2wI+w f )t |Ei, rα〉, (A1)

where |�(t )〉 corresponds to the wave function defined in Eq. (6), and |Ei, eα〉, for example, denotes the state where both impurity
α and the lattice atom i are excited. Note that we neglect the contribution from the states |Ei, Ej〉 where two lattice atoms are
simultaneously excited. As shown in Appendix B, the population in the states |Ei, Ej〉 is strongly suppressed and can therefore
be safely neglected.

The dynamics of the system are obtained by solving the Schrödinger equation using the wave function in
Eq. (A1),

ȧ =
NI∑
α

i�α c̃α (t ), (A2a)

ḃi(t ) = i

(
δLI + i

2
γL

)
bi(t ) − i

NL∑
j �=i

(
Ji j − i

2
�i j

)
b j (t ) − i

√
γI

γL

NI∑
α

(
Jiα − i

2
�iα

)
cα (t ) + i

NI∑
α

�αviα, (A2b)

ċα (t ) = −γI

2
cα (t ) − i

√
γI

γI

NL∑
i

(
Jαi − i

2
�αi

)
bi(t ) − i

γI

γL

NI∑
β �=α

(
Jαβ − i

2
�αβ

)
cβ (t )

+ i�∗
αa(t ) + i� fα fα (t ) + i

NI∑
β �=α

�∗
βCαβ (t ), (A2c)

ḟα (t ) = i

(
δR + i

2
γR

)
fα (t ) + i

NI∑
β �=α

�βFαβ(t ) + �∗
f αcα (t ), (A2d)

v̇iα (t ) = i

(
δLI + i

2
γL + i

2
γI

)
viα (t ) − i

NL∑
j �=i

(
Ji j − i

i

2
�i j

)
v jα (t ) − i

√
γI

γL

NI∑
β �=α

(
Jiβ − i

2
�iβ

)
Cαβ (t )

− i
γI

γl

NI∑
β �=α

(
Jαβ − i

2
�αβ

)
viβ (t ) + i�∗

αbi(t ) + i� f αziα (t ), (A2e)

Ċαβ (t ) = −γICαβ (t ) − i
√

γI

γL

NL∑
i

(
Jαi − i

2
�αi

)
viβ (t ) − i

√
γI

γL

NL∑
i

(
Jβi − i

2
�βi

)
viα (t ) + i�∗

βcα (t ) + i�∗
αcβ (t )

+ i� f αyβα (t ) + i� f βyαβ (t ), (A2f)

żiα (t ) = i

(
δLI + δR + i

2
γL + i

2
γR

)
ziα (t ) − i

NL∑
i �= j

(
Ji j − i

2
�i j

)
z jα (t )

− i
√

γI

γL

NI∑
β �=α

(
Jiβ − i

2
�iβ

)
yβα (t ) + i�∗

f αviα (t ), (A2g)

ẏαβ (t ) = i

(
δR + i

2
γI + i

2
γR

)
yαβ (t ) − i

√
γI

γL

NL∑
i

(
Jαi − i

2
�αi

)
ziβ (t ) + i�∗

f βCαβ (t ) + i� f αFαβ (t ) + i�∗
α fβ (t ), (A2h)

Ḟαβ (t ) = 2i

(
δR + i

2
γR

)
Fαβ (t ) + i�∗

f αyαβ (t ) + i�∗
f βyβα (t ). (A2i)
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Considering γL � γI , the characteristic timescale of the
lattice atoms is much faster than that of the impurities. Fur-
ther assuming �α � γL, we can adiabatically eliminate the
states containing an excitation in the lattice atoms. In other
words, the lattice immediately reaches its steady state after
any slow variation of the impurities. Defining the vectors
�b = [b1, . . . , bNL ]T and �vα = [v1α, . . . , vNLα]T , we obtain

�̇b = 0 → �b =
∑

α

L−1[Cαcα (t ) − �α�vα], (A3)

where L is an NL × NL matrix characterizing the interactions
between lattice atoms and Cα is an NL × 1 vector describing
the couplings between impurity α and the lattice, both defined
in Eq. (9).

Since �vα and �zα = [z1α, . . . , zNLα]T also contain factors
proportional to γL, they can also be adiabatically eliminated.
Keeping to terms to leading order in the small parameter
γI/γL, we obtain

�̇vα = 0 → �vα = L−1CβCαβ (t ), (A4a)

�̇zα = 0 → �zα = L−1Cβyβα (t ). (A4b)

Substituting these values in Eq. (A3), we find that the term
proportional to �vα is suppressed with respect to that propor-
tional to cα by a factor �α/γL, and can thus be neglected.
Finally, we substitute these instantaneous steady-state ampli-
tudes for �b, �vα , and �zα in Eq. (A2) and obtain the effective
equations of motion for the impurity emitters only, given in
Eq. (7).

Finally, it is worth noting that we work in the regime
�α ≈ γL when implementing the single-qubit gates described
in Sec. III. In that case, the driving strength in the impurity is
much larger than the light-mediated lattice-impurity interac-
tions, which can therefore be safely neglected for timescales
τ ∼ γ −1

L � γ −1
I . In other words, the impurity and lattice

atoms simply decouple in this regime.

APPENDIX B: EFFECT OF MULTIPLE EXCITATIONS
IN LATTICE ATOMS

In Appendix A, we neglect the contribution from the states
containing two excitations in the lattice atoms. Here, we jus-
tify this approximation.

For this, let us first consider a single impurity embedded
in an atomic array. If no driving fields are applied, the wave
function simply reads

|ψ ′〉 = cα|eα〉 +
NL∑
i

bi|Ei〉. (B1)

Adiabatically eliminating the lattice atoms, we obtain �b =
L−1Ĉαcα . Then,

〈ψ ′|ψ ′〉 = (1 + �b†�b)|cα|2 → |cα
2| = 1

1 + �b†�b . (B2)

Above the band-edge region (that is, if the impurity is off-
resonant with all normal modes of the lattice), the impurity
population |cα

2| is the vast majority of the wave function and
the population in the lattice atoms bi is hence negligibly small.

FIG. 5. We consider two initially excited impurities embedded in
an atomic array. Populations for both impurities excited (|C12|2), one
impurity and one lattice atom excited (

∑
i |vi1|2 + |vi2|2), and two

lattice atoms excited (
∑

i, j |bi j |2) are plotted as functions of time.
The solid lines correspond to the full wave function that contains
terms corresponding to two lattice atoms excited. The dashed lines
correspond to a simulation using the approximate wave function that
neglects two excitations in the lattice. We consider a 10 × 10 lattice
with spacing a = 0.1λL and distance between impurities d = a.

Performing a similar analysis for a two-impurity system, we
can conclude that the terms bi j containing both excitations in
the lattice are even further suppressed.

We can numerically confirm this intuition by simulating
the dynamics of the full system. For that, we write down the
full wave function containing up to two excitations,

|�2(t )〉 = |�1(t )〉 +
NL∑
i

NI∑
j �=i

bi j (t )e−2iωIt |Ei, Ej, g〉, (B3)

where |�1(t )〉 is given in Eq. (A1). Applying the Schrödinger
equation, we find the equations of motion for the terms bi j ,

ḃi j (t ) = 2i

(
δLI + i

2
γL

)
bi j (t ) − i

NL∑
i �= j

[(
Ji j − i

2
�i j

)
bi j (t )

+
(

Jji − i

2
� ji

)
b ji(t )

]

− i
√

γI

γL

NL∑
i �= j

NI∑
β �=α

(
Jiα − i

2
�iα

)
viα (t ). (B4)

In Fig. 5, we compare the dynamics resulting from the full
set of equations containing two excitations in the lattice (solid
lines) with the approximated version used in Appendix A
that neglects the terms bi j (dashed lines). The population in
the impurity emitters, as well as in the terms containing one
excitation in the lattice and one in an impurity (

∑
i,α |viα|2),

are approximately equal in both cases. As expected, the popu-
lation

∑
i, j |bi j |2 is heavily suppressed and can thus be safely

neglected. It is worth noting that this approximation largely
reduces the computational power required to simulate the
dynamics of the system.
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APPENDIX C: EQUATIONS OF MOTION FOR THREE EXCITATIONS

To implement the entangled Bell and GHZ states in Sec. IV, we need to consider states containing up to three excitations.
Then, the total wave function takes the form

|�2(t )〉 = |�1(t )〉 +
NI∑

α,β,ε �=α,β

Cαβε (t )e−3iwIt |G, eα, eβ, eε〉 +
NI∑

α,β,ε �=α,β

Fαβε (t )e−i3(wI+wR )t |G, rα, rβ, rε〉

+
NL∑
i

NI∑
α,β �=α

viαβ (t )e−i3wIt |Ei, eα, eβ〉 +
NL∑
i

NI∑
α,β �=α

ziαβ (t )e−i(3wI+2wR )t |Ei, rα, rβ〉

+
NI∑

α,β,ε �=α,β

Eαβε (t )e−i(3wI+wR )t |rα, eβ, eε〉 +
∑

α,β,ε �=α,β

Gαβε (t )e−i(3wI+2wR )t |eα, rβ, rε〉

+
NL∑
i

NI∑
α,β �=α

Riαβ (t )e−i(3wI+wR )t |Ei, rα, eβ〉. (C1)

Using the Hamiltonian in Eq. (A2) and the Schrödinger equation, we obtain the equations of motion describing the full system.
For concision, we only provide the equations that differ from those in Eq. (A2),

Ċαβ (t ) = · · · + i
NI∑

ε �=α,β

�εCαβε (t ), (C2a)

żiα (t ) = · · · + i
NI∑

β �=α

�βRiαβ (t ), (C2b)

ẏαβ (t ) = · · · + i
NI∑

ε �=α,β

�εEαβε (t ), (C2c)

Ḟαβ (t ) = · · · + i
NI∑

ε �=α,β

�εGεαβ (t ), (C2d)

Ċαβε (t ) = −3

2
γICαβε (t ) +

NL∑
i

NI∑
α

(
Jαi − i

2
�αi

)
viβε (t ) + i

NI∑
α

�∗
αCβε (t ) + i

NL∑
α

� f αEαβε (t ), (C2e)

Ṙαβε (t ) = 3i

(
δR + i

2
γR

)
Rαβε (t ) + i

NL∑
α

�∗
f αGαβε (t ), (C2f)

v̇iαβ (t ) = i

(
δLI + i

2
γL + iγI

)
viαβ (t ) − i

γI

γL

NI∑
α,ε �=α,β

(
Jαε − i

2
�αε

)
viεβ (t )

− i
γI

γL

NI∑
ε �=αβ

(
Jiε − i

2
�iε

)
Cαβε (t ) − i

NL∑
j �=i

(
Ji j − i

2
�i j

)
v jαβ (t ) + i

NI∑
α

�∗
αviα (t ) + i

NI∑
fα

� f αRiαβ (t ), (C2g)

żiαβ (t ) = i

(
δLI + i

2
γL + 2δR + iγR

)
ziαβ (t ) − i

γI

γL

NI∑
ε �=αβ

(
Jiε − i

2
�iε

)
Gεαβ (t )

− i
NL∑
j �=i

(
Ji j − i

2
�i j

)
z jαβ (t ) + i

NI∑
fα

�∗
f αRiβα (t ), (C2h)

Ėαβε (t ) = i

(
δR + i

2
γR + iγI

)
Eαβε (t )−i

√
γI

γL

NL∑
i

NI∑
β

(
Jβi − i

2
�βi

)
Riαε (t ) + i�∗

f αCαβε + i
NI∑

β �=α

�∗
βyβα (t ) + i

NI∑
β �=α

� f βGεβα (t ),

(C2i)
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Ġαβε (t ) = i

(
2δR + iγR + i

2
γI

)
Gαβε (t ) − i

√
γI

γL

NL∑
i

(
Jαi − i

2
�αi

)
Ziβε (t ) + i�∗

αFβε + i
NI∑

β �=α

�∗
f βEεβα (t ) + i� f αFαβε (t ), (C2j)

Ṙiαβ (t ) = i

(
δLI + i

2
γL + i

2
γI + δR + i

2
γR

)
Riαβ (t ) − i

√
γI

γL

NL∑
j �=i

(
Ji j − i

2
�i j

)
Rjαβ (t ) − i

γI

γL

NI∑
ε �=α,β

(
Jβε − i

2
�βε

)
Riαε (t )

− i
√

γI

γL

NI∑
ε �=α,β

(
Jiε − i

2
�iε

)
Eαβε (t ) + i�∗

f αviαβ + i
NI∑

β �=α

�βziα (t ) + i
NI∑

β �=α

� f βziαβ (t ). (C2k)

Here, the three dots stand for the terms already present in Eq. (A2). Note also that we have neglected all terms containing
more than one excitation in the lattice atoms, as justified in Appendix B.

APPENDIX D: DECOUPLING GROUND-STATE
IMPURITIES THROUGH ELECTROMAGNETICALLY

INDUCED TRANSPARENCY

To decouple an impurity in the ground state from the rest of
the system, we simply need to detune its resonance frequency.
This can be achieved by considering impurities with three
levels: the ground state |gα〉, the dipole-coupled excited state
|eα〉, and a noninteracting state |rα〉. For simplicity, let us
consider a two-impurity system such that impurity 2 is in
the excited state |e2〉 and impurity 1 is in the ground state
|g1〉. To suppress population transfer from impurity 2 to 1, we
apply a drive on impurity 1 with strength much larger than the
lattice-mediated interactions, i.e., |� f 1| � |�12 + φ12| ≈ γI .
The dynamics of the system are then governed by the follow-
ing Hamiltonian:

Ĥ = − i
�eff

2
(|e1〉〈e1| + |e2〉〈e2|)

+ (�12 + φ12)(|e1〉〈e2| + |e2〉〈e1|)
− i

γR

2
(|r1〉〈r1| + |r2〉〈r2|) − � f 1(|e1〉〈r1| + |r1〉〈e1|),

(D1)

where we have assumed that the drive is on resonance with
the |e1〉 ↔ |r1〉 transition, and that its Rabi frequency � f 1

is real. Due to the strong drive, the coupling between both
impurities can be treated perturbatively. Further assuming
that �eff , γR � |�12 + φ12| � � f 1, we can neglect the decay
rates. Then, the eigenstates of impurity 1 are approximately
the dressed states |χ±〉 ≈ (|e1〉 ± |r1〉)/

√
2, which are respec-

tively shifted by ∓� f 1 from the resonance frequency, and the
Hamiltonian in Eq. (D1) to lowest order in the perturbation to
� f 1 simply reads

Ĥ ≈ − � f 1|χ+〉〈χ+| + � f 1|χ−〉〈χ−|

+ 1√
2

(�12 + φ12)
∑
ν=±

(|χν〉〈e2| + |e2〉〈χν |), (D2)

where we have omitted the uncoupled state |r2〉. That is, the
coupling between the excited state of impurity 2, |e2〉, and
the normal modes of impurity 1, |χ±〉 is much smaller than
the frequency difference between these states. This strong off-
resonance strongly suppresses the population transfer between
both emitters, such that impurity 1 remains in the ground state
and is effectively decoupled from the remaining impurities.

We can alternatively understand this phenomenon as an
interference effect analogous to electromagnetically induced
transparency (EIT). For that, it is enough to note that the state
|e1〉 is coupled by Ĥ to the superposition

|B〉 ∝ � f 1|r1〉 − (�12 + φ12)|e2〉, (D3)

and is consequently decoupled from the orthogonal state,

|D〉 ∝ � f 1|e2〉 + (�12 + φ12)|r1〉. (D4)

That is, the interference between the drive to |r1〉 and the light-
induced coupling to |e2〉 renders |e1〉 dark with respect to |D〉.
For |� f 1| � |�12 + φ12|, the dark or uncoupled state takes
the form |D〉 ≈ |e2〉, and an excitation initially in impurity 2
is not transferred to impurity 1. In other words, the

√
iSWAP

operation |e2〉 → |e1〉 is no longer permitted.

APPENDIX E: IMPACT OF ATOMIC MOTION IN LATTICE
ON SINGLE AND TWO-QUBIT GATE FIDELITY

We examine the influence of random fluctuations in atomic
lattice positions, arising from thermal motion and experi-
mental errors, on the precision of both our single-qubit and
two-qubit gate operations. Employing Gaussian noise with a
zero mean and standard deviations equivalent to 1% of the
lattice spacing, we perform numerical simulations to cap-
ture these atomic displacements. As illustrated in Fig. 6, we

FIG. 6. Impact of random atomic motion on single and two-qubit
gate fidelity by adding Gaussian noise with 1% standard deviation.
We have considered an array with a = d = 0.1λL .
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achieve excellent fidelity for 1% error, although much more
precise lattices are built in practice [88]. In fact, even a 1% er-
ror margin overestimates the maximum fluctuations typically
observed experimentally [88]. These observations underscore
the robustness of our single and two-qubit gates. This aligns
with prior analytical investigations [15], where the dispersive
shift was found to follow the equation 〈δ�〉 ≈ 4π2(δr/λ)2�,
with δr representing statistically independent and identically
distributed atomic displacement fluctuations, where δr � �

for realistic atomic placement errors in a subwavelength
lattice.

APPENDIX F: HEISENBERG-LANGEVIN
EQUATION DERIVATION

We address the Fourier-transformed wave equation within
polarizable media, employing units where c = h̄ = 1. Then
the governing equation can be expressed as follows,

�∇ × �∇ × �E − ω2 �E = ω2

ε0

�P. (F1)

Here, the solution is decomposed into distinct photon po-
larizations, denoted as ν, and can be expressed through the

Green’s function G(r, ω),

�E+(�r, ω) = �E+
0 (�r, ω) + �E+

p (�r, ω) (F2)

= �E+
0 (�r, ω) + ω2

ε0

∫
d3�r′ ¯̄G(�r − �r′, ω) · �P+(�r′, ω),

(F3)

where �E+
0 (�r, ω) represents the positive homogeneous field so-

lution and the negative frequency counterpart of this field can
be obtained via the Hermitian conjugate. It is noteworthy that
this operator encompasses all electric field components unre-
lated to polarization or media scattering. In our context, these
include contributions from both vacuum and applied driving
fields. When considering an atomic lattice defined by posi-
tions �ri and a single impurity atom situated at �rs, the expres-
sion for the polarization �P+ in the medium can be written as

�P+(�r, ω) =
∑

ν

⎛
⎝∑

j

[ �d jνσ jν (ω)δ(�r − �ri )] + �dsνsν (ω)δ(�r − �rs)

⎞
⎠. (F4)

Here, �d jν and �dsν are the transition dipole moments associated with the atomic lattice positions �ri and the impurity atom position
�rs, respectively. The raising operators for lattice atoms and impurity are described as σ

†
jν (ω) and s†

ν (ω), respectively, and depend

on the frequency ω. The solution for the positive frequency component of the field �E+
p is given as follows,

�E+
p (�r, ω) = ω2

ε0

∑
ν

⎛
⎝∑

j

[ ¯̄G(�r − �r j, ω) · �d jνσ jν (ω)] + ¯̄G(�r − �rs, ω) · �dsνsν (ω)

⎞
⎠. (F5)

At this point, we can take the Markov approximation by assuming that the reservoir (vacuum) reaches equilibrium much
faster than our system (lattice). Then, we can approximate that σ

†
β (ω), s†

β (ω) are sharply peaked at their respective resonance

frequencies (ω0 and ωI ). This enables us to approximate the remaining terms of �E+
p (�r, ω) stationary around this point such that,

taking the reverse Fourier transform back into the time domain we obtain,

�E+
p (�r, t ) =

∫ ∞

−∞

dω

2π
�E+

p (�r, ω)e−iωt

≈ ω2

ε0

∑
ν

⎛
⎝∑

j

[
¯̄G(�r − �r j, ω0) · �d jν

∫ ∞

−∞

dω

2π
σ jν (ω)e−iωt

]
+ ¯̄G(�r − �rs, ω0) · �dsν

∫ ∞

−∞

dω

2π
sν (ω)e−iωt

⎞
⎠

= ω2

ε0

∑
ν

⎛
⎝∑

j

[ ¯̄G(�r − �r j, ω0) · �d jνσ jν (t )] + ¯̄G(�r − �rs, ω0) · �dsνsν (t )

⎞
⎠. (F6)

In this expression, we have assumed that |ωI − ω0| � ωI , ω0. The sharp peak assumption allows us to treat σ jν and σsν as
approximately constant around ω0. The system operator Q can be characterized by its evolution under the Hamiltonian H =
HLI + VAF , where

HLI = ω0

∑
ui

σ
†
iuσiu + ωI

∑
u

s†
usu, (F7)

VAF = − �E · d̂, (F8)

and

d̂ =
∑

iu

[ �d †
iu σ

†
iu(t ) + �diuσiu(t )] + �d †

sus†
u(t ) + �dsusu(t ).
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As the time-dependent operators in d̂ permit us to use the rotating-wave approximation to isolate slowly oscillating terms, the
portion of the interaction due to the positive frequency term is

V +
AF = −

∑
u

[∑
i

�d†
iuσ

†
iu(t ) + �d†

sus†
u(t )

]
· ( �E+

0 (�r, t ) + �E+
p (�r, t )). (F9)

The Heisenberg-Langevin equation of motion for Q is

Q̇ = −i[Q, H] = −i[Q, HLI + VAF ]. (F10)

Here,

−i[Q, HLI ] = − iω0

∑
u

{∑
i

([Q, σ
†
iu]σiu + σ

†
iu[Q, σiu]) + [Q, s†

u]su + s†
u[Q, su]

}
(F11)

−i[Q,VAF ] = i
∑

u

{∑
i

([Q, σ
†
iu] �d†

iu · �E+
0 (�ri, t )) + [Q, s†

u] �d†
su · �E+

0 (�rs, t )

}

+ i
∑

u

{∑
i

( �E−
0 (�ri, t ) · �diu[Q, σiu]) + �E−

0 (�rs, t ) · �dsu[Q, su]

}

+ i
∑

u

{∑
i

([Q, σ
†
iu] �d†

iu · �E+
p (�ri, t )) + [Q, s†

u] �d†
su · �E+

p (�rs, t )

}

+ i
∑

u

{∑
i

( �E−
p (�ri, t ) · �diu[Q, σiu]) + �E−

p (�rs, t ) · �dsu[Q, su]

}
(F12)

Taking the Hermitian conjugate of H+
E and employing the properties that ¯̄G(�ri, �r j ) = ¯̄G(�r j, �ri ) and ¯̄G†(�ri, �r j ) = ¯̄G∗(�ri, �r j ) on the

particular solution part of the expression we get

−i[Q,VAF ] = i
∑

u

{∑
i

([Q, σ
†
iu] �d†

iu · �E+
0 (�ri, t )) + [Q, s†

u] �d†
su · �E+

0 (�rs, t )

}
+ H.c. + −i

∑
u,ν,i �= j

Juν (�ri − �r j )[Q, σ
†
iuσ jν]

− i
√

γI

γ0

∑
u,ν,i

{
Juν (�ri − �rs)[Q, σ

†
iusν] + Juν (�rs − �ri )[Q, s†

uσiν]
} +

∑
u,ν,i, j

�uν (�ri − �r j )

(
σ

†
iuQσ jν − 1

2
Q, σ

†
iνσiu

)

+ γI

(
s†

uQsν − 1

2
Q, s†

usν

)
+

√
γI

γ0

{
�uν (�ri − �rs)

(
σ

†
iuQsν − 1

2
Q, σ

†
iusν

)
+ �uν (�rs − �ri )

(
s†

uQσiν − 1

2
Q, s†

uσiν

)}
.

(F13)

Here,

Juν (�ri − �r j ) = − 3πγ0

ω0
d̂†

iu · Re[ ¯̄G(�ri − �r j, ω0)] · d̂ jv

�uν (�ri − �r j ) = 6πγ0

ω0
d̂†

iu · Im[ ¯̄G(�ri − �r j, ω0)] · d̂ jv

Note that d̂ = �d/|d|. Additionally, this provides us with specific values for the decay rates γ0 = ω3
0|d|2/3πε0 and γI =

ω3
0|dI |2/3πε0, where ω0 ≈ ωI . In the context of an initial state p0, which represents a product state of coherent light with

atomic operators and impurity operators, it is possible to separate out the homogeneous field component as follows:

�E+
0 (�ri, t ) = 〈 �E+

0 (�ri, t )〉 + ( �E+
0 (�ri, t ) − 〈 �E+

0 (�ri, t )〉).

Thus we can replace �E+
0 (�ri, t ) with 〈 �E+

0 (�ri, t )〉 and define a Langevin noise term F as

F = i
∑

u

{∑
i

(σ †
iu

�d†
iu · ( �E+

0 (�ri, t ) − 〈 �E+
0 (�ri, t )〉)) + s†

u
�d†
iu · ( �E+

0 (�rs, t ) − 〈 �E+
0 (�rs, t )〉)

}
− H.c., (F14)

such that 〈F 〉 = 0. Thus, the Langevin noise does not affect any expectation value of the atomic operators 〈Q〉, and we omit it
for simplicity. Equations (F11) and (F13) then results in the total Hamiltonian H = HLI + HAF with an interaction Hamiltonian
given by

HAF =
∑

u,ν,i �= j

Juν (�ri − �r j )σ
†
iuσ jν +

√
γI

γ0

∑
u,ν,i

{Juν (�ri − �rs)σ †
iusν + Juν (�rs − �ri)s

†
uσiν}, (F15)
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as well as the dissipator

D[Q] =
∑

u,ν,i, j

�uν (�ri − �r j )

(
σ

†
iuQσ jν − 1

2
{Q, σ

†
iνσ ju}

)
+ γI

(
s†

uQsν − 1

2
{Q, s†

usν}
)

+
√

γI

γ0

∑
u,ν,i

{
�uν (�ri − �rs)

(
σ

†
iuQsν − 1

2
{Q, σ

†
iusν}

)
+ �uν (�rs − �ri )

(
s†

uQσiν − 1

2
{Q, s†

uσiν}
)}

. (F16)

This finally results in the equation of motion for the expectation value of operator Q:

d

dt
〈Q〉 = i[HLI + HAF , Q] + D[Q]. (F17)

Noting that 〈Ô〉 = Tr{Ôρ̂M}, one can readily derive the equation of motion for the atomic density matrix ρ, commonly referred
to as the master equation:

d

dt
ρ = −i[HLI + HAF , ρ] + D†[ρ], (F18)

where D†[ρ] indicates the Hermitian conjugate of the dissipator. Notably, D†[ρ] = −i[HnH , ρ] + DL[ρ] can be split into a
non-Hermitian Hamiltonian

HnH = − i
∑

u,ν,i, j

�uν (�ri − �r j )

2
σ

†
iνσ ju − i

γI

2
s†

usν − i
√

γI

γ0

∑
u,ν,i

(
�uν (�ri − �rs)

2
σ

†
iusν + �uν (�rs − �ri )

2
s†

uσiν

)
, (F19)

that describes the dissipative exchange of an excitation between different atoms or emitters and a loss-term

DL[ρ] =
∑

u,ν,i, j

�uν (�ri − �r j )σiuρσ
†
jν + γI suρs†

ν +
√

γI

γ0

∑
u,ν,i

(
�uν (�ri − �rs)σiuρs†

ν + �uν (�rs − �ri )suρσ
†
iν

)
, (F20)

that describes the loss of an atomic excitation in form of photon emission. In the case where photon emission is heavily
suppressed, the action of the loss term can be neglected for times smaller than the inverse effective decay rate. Then, the
dynamics of the system can be simply described by a wave function and a non-Hermitian Hamiltonian, as discussed in the
main text.
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