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Detecting quantum critical points at finite temperature via quantum teleportation: Further models
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In previous work [Phys. Rev. A 107, 052420 (2023)] we showed that the quantum teleportation protocol
can be used to detect quantum critical points (QCPs) associated with a couple of different classes of quantum
phase transitions, even when the system is away from the absolute zero temperature (T = 0). Here, working in
the thermodynamic limit (infinite chains), we extend the previous analysis for several other spin- 1

2 models. We
investigate the usefulness of the quantum teleportation protocol to detect the QCPs of those models when the
temperature is either zero or greater than zero. The spin chains we investigate here are described by the XXZ
model, the XY model, and the Ising model, all of them subjected to an external magnetic field. Specifically,
we use a pair of nearest-neighbor qubits from an infinite spin chain at thermal equilibrium with a reservoir at
temperature T as the resource to execute the quantum teleportation protocol. We show that the ability of this pair
of qubits to faithfully teleport an external qubit from the chain is dramatically affected as we cross the QCPs
related to the aforementioned models. The results here presented together with the ones of aforementioned work
suggest that the quantum teleportation protocol is a robust and quite universal tool to detect QCPs even when the
system of interest is far from the absolute zero temperature.

DOI: 10.1103/PhysRevA.109.012612

I. INTRODUCTION

A quantum phase transition (QPT) is a qualitative change
in the ground state of a many-body system that theoreti-
cally happens at the absolute zero (T = 0) as we slowly
change the system’s Hamiltonian H [1–4]. This qualitative
change in the physical properties of the system is driven by
genuine quantum fluctuations (Heisenberg uncertainty princi-
ple) since at T = 0 there are no thermal fluctuations at stake.
A QPT is usually characterized by a symmetry change in
the system’s ground state and by the emergence of an order
parameter such as the total magnetization that is no longer
zero after a ferromagnetic QPT.

Most of the theoretical analysis studying QPTs, in partic-
ular those employing quantum-information-theory concepts,
assume that the system is at T = 0 [5–8]. Experimentally,
though, we cannot cool a many-body system to T = 0 (third
law of thermodynamics) and thus it is crucial to build and de-
velop robust tools to characterize QPTs, assuming the system
is at finite T . This becomes even more important whenever
kT ≈ �E , where k is Boltzmann constant and �E is the
energy gap between the system’s ground and first excited
states. In this scenario, thermal fluctuations cannot be ignored
and it is a necessity to develop robust quantum critical point
(QCP) detectors that still work in this regime. For instance, the
entanglement of formation [9] and the magnetic susceptibility
no longer detect a QPT in spin chains when T > 0 and other
tools are needed to detect a QCP at finite T [10,11].

A very useful and robust tool to detect QCPs at finite T
is quantum discord (QD), usually called thermal quantum
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discord (TQD) in this context [11]. Although very successful
in detecting QCPs when T > 0 [11], QD [12,13] has its hand-
icaps. The computation of QD is NP-complete [14], which
implies that the evaluation of QD is an intractable problem for
systems described by a large Hilbert space [15]. Also, QD has
no operational interpretation. We do not have an experimental
procedure to directly measure QD. We can only compute QD
if we have access to the system’s whole density matrix.

We should note that, recently, a quantity derived from the
quantum coherence [16–18] was shown to be very robust
to detect QCPs using finite-T data, outperforming QD for
certain models [19]. This quantity was called the logarithm
of the spectrum of quantum coherence (LQC) [19]. However,
similarly to QD, LQC has no operational interpretation, i.e.,
there is no experimental procedure for its direct determination.
One needs the density matrix (measured or calculated) of the
system investigated to compute it. For a two-qubit density
matrix ρ, this means that we always need to know (compute
or measure) its one- and two-point correlation functions. Fur-
thermore, to compute LQC one needs the eigenvalues of the
squared commutator [ρ, K]2 whose computational complexity
does not scale linearly with the size of the system as we
increase its Hilbert space dimension. The computation of LQC

has also an arbitrariness in the choice of the observable K [19].
Depending on the observable chosen, LQC does not detect
QCPs. In addition, for high-dimensional systems, the number
of observables becomes very large, making it difficult to test
all cases and increasing the arbitrariness for the choice of the
right observable.

In Ref. [20] we developed a QCP detection tool that has
the most useful characteristics of TQD in spotlighting QCPs
at finite T and in addition is free from the handicaps out-
lined above. That tool is based on the quantum teleportation
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FIG. 1. (a) Alice and Bob agree that spins 2 and 3 of the spin
chain are the entangled resource used to teleport the external qubit 1.
Alice implements a Bell measurement onto qubits 1 and 2. (b) Alice
tells Bob her Bell measurement result via a classical communication
channel. Bob then applies a unitary operation on qubit 3, depending
on the news received from Alice. This finishes one run of the proto-
col.

protocol [21–24] and will be described in Sec. II. We should
also mention another recent tool to detect QCPs at T = 0
based on the quantum energy teleportation protocol [25,26]. It
was show in Refs. [27–30] that for several models the amount
of teleported energy depends on the phase of the system.

In this work we apply the teleportation-based QCP detector
of Ref. [20] to several other models. Here we study the XXZ
model subjected to an external magnetic field, complementing
the analysis of Ref. [20], where we studied this model without
an external field. We also investigate the efficiency of the
teleportation-based QCP detector in spotlighting the QCPs of
the Ising model and of the XY model in a transverse magnetic
field. As we will see, the present tool allows us to determine
all the QCPs of these models even if the system’s temperature
is not zero.

II. TELEPORTATION-BASED CRITICAL
POINT DETECTOR

Let us start by reviewing the standard teleportation proto-
col [21], in particular its mathematical description when the
shared entangled state between Alice and Bob is not a pure
state [23,24]. We label the qubits from the entangled resource
shared by Alice and Bob as qubits 2 and 3, respectively (see
Fig. 1). The density matrix describing those qubits is ρ23. The
qubit that Alice wants to teleport to Bob is a pure state external
to the spin chain and its density matrix is ρ1 = |ψ〉〈ψ | (qubit
1 in Fig. 1), where

|ψ〉 = r|0〉 +
√

1 − r2eiχ |1〉
= cos(θ/2)|0〉 + sin(θ/2)eiχ |1〉, (1)

with 0 � r � 1 (0 � θ � π ) and 0 � χ < 2π .
At the beginning of the teleportation protocol, the state

describing the three qubits is

ρ = ρ1 ⊗ ρ23. (2)

At the end of the protocol (after one run of the protocol), Bob’s
spin (qubit 3) is given by [20,23]

ρB j
= UjTr12(PjρPj )U

†
j

Q j (|ψ〉)
. (3)

Here Tr12 is the partial trace on Alice’s spins (qubits 1 and 2),
j denotes the Bell measurement (BM) result obtained by Alice
( j = �−, �+,	−,	+), and Pj represents the four projectors
describing the BMs,

P�± = |�±〉〈�±|, (4)

P	± = |	±〉〈�±|, (5)

with the Bell states given by

|�∓〉 = (|01〉 ∓ |10〉)/
√

2, (6)

|	∓〉 = (|00〉 ∓ |11〉)/
√

2. (7)

The probability to measure a given Bell state j is [20,23]

Qj (|ψ〉) = Tr(Pjρ ) (8)

and the unitary correction that Bob should implement on his
qubit after receiving the news about Alice’s BM result is Uj .

The unitary operation that Bob should apply on his qubit
at the end of a given run of the protocol also depends on
the entangled state shared with Alice. When they share a
maximally entangled pure state |k〉 (Bell state) [21], the set Sk

below lists the four unitary operations that Bob should apply
on his qubit [20,23],

S	+ = {U	+ ,U	− ,U�+ ,U�−} = {1, σ z, σ x, σ zσ x}, (9)

S	− = {U	+ ,U	− ,U�+ ,U�−} = {σ z,1, σ zσ x, σ x}, (10)

S�+ = {U	+ ,U	− ,U�+ ,U�−} = {σ x, σ zσ x,1, σ z}, (11)

S�− = {U	+ ,U	− ,U�+ ,U�−} = {σ zσ x, σ x, σ z,1}, (12)

where 1 is the identity matrix and σα (α = x, y, z) is the
standard Pauli matrix [31]. In other words, Sk represents the
set of unitary operations that Bob should apply if Alice and
Bob share the Bell state |k〉, with k = �±,	±. For instance,
S	+ means that they share the state |	+〉 and that if Alice’s
BM result is |	+〉, |	−〉, |�+〉, or |�−〉, the corresponding
unitary corrections that Bob should apply is 1, σ z, σ x, or σ zσ x.

In the models we will be studying in what follows, the state
ρ23 shared between Alice and Bob is a mixed state. In one
quantum phase ρ23 is closer to one of the four Bell states and
in another phase closer to a different one. Thus, when studying
the QCPs of a spin chain we will employ the four sets of
unitary operations above, eventually picking the set yielding
the optimal teleportation protocol.

To determine the optimal teleportation protocol, we need a
quantitative measure of the similarity between the teleported
state at the end of a run of the protocol and the initial state
teleported by Alice. As usual, we employ the fidelity [32] to
quantify the similarity between those states. When we have a
pure input state the fidelity is

Fj (|ψ〉, Sk ) = 〈ψ |ρB j
|ψ〉, (13)
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where |ψ〉 is given by Eq. (1) and ρB j
by Eq. (3). Note that

the subscript j denotes which Bell state Alice obtained after
implementing the BM on qubits 1 and 2. For a teleported
state exactly equal to the input state we have Fj = 1, while
Fj = 0 if the teleported state is orthogonal to the input. We
should note that in addition to depending on the initial state,
Fj also depends through ρB j

on the entangled state shared by
Alice and Bob and on the set of unitary operations Sk that he
can apply on his qubit. In this work the entangled resource is
determined by the model being investigated and we can freely
choose |ψ〉 and Sk , with k = �∓,	∓.

If we fix the input state, after a single run of the protocol
its fidelity is given by Eq. (13) and after several runs of the
protocol the mean fidelity (efficiency) is [20,23,24,33]

F (|ψ〉, Sk ) =
∑

j=�∓,	∓
Qj (|ψ〉)Fj (|ψ〉, Sk ). (14)

Equation (14), as we show here, is the building block leading
to the most sharp QCP detector and can be understood as the
efficiency of the teleportation protocol for a fixed input state
and a given set Sk of unitary operations.

In order to obtain an input-state-independent measure of
the efficiency of the quantum teleportation protocol, we take
the average over all states on the Bloch sphere. This Bloch
sphere average is equivalent to assuming in Eq. (1) that r2 and
γ are two independent continuous random variables over their
domain [24,33]. We can write this state-independent mean
fidelity as [23,24,33]

〈F (Sk )〉 =
∫



F (|ψ〉, Sk )P (|ψ〉)d|ψ〉. (15)

In Eq. (15) the integration over the sample space  includes
all qubits on the Bloch sphere and P (|ψ〉) is the appropriate
uniform probability distribution over  [20]. From now on,
the quantity defined in Eq. (14) will be called mean fidelity
and the quantity given by Eq. (15) will be the average fidelity.

III. THE XXZ MODEL IN AN EXTERNAL FIELD

The Hamiltonian describing the XXZ model in an external
longitudinal field is (h̄ = 1)

H =
L∑

j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1 − h

2
σ z

j

)
. (16)

We will be dealing with a spin- 1
2 chain in the thermody-

namic limit (L → ∞) satisfying periodic boundary conditions
(σα

L+1 = σα
1 ). The subscript j above means that σα

j acts on
the spin at the lattice site j. The anisotropy � is our tuning
parameter and h is the external magnetic field, which will be
fixed as we vary � across the QCPs for this model.

At T = 0 and for a finite external magnetic field h, this
model has two QCPs [34–40]. At �1 we have the first QCP,
where the ground state changes from a ferromagnetic phase
(� < �1) to a critical antiferromagnetic phase (�1 < � <

�2). At �2 another phase transition takes place, with the
system becoming an Ising-like antiferromagnet for � > �2.
The two QCPs depend on h and are given as follows [34–40].
The critical point �1 is obtained by solving the following

TABLE I. Quantum critical points for different values of the
external field h. The values for �2 when h > 0 are accurate within
an error of ±0.001.

Critical point h = 0 h = 6 h = 12

�1 −1.00 0.50 2.00
�2 1.00 3.299 4.875

equation once we fix the value of h:

h = 4J (1 + �1). (17)

The critical point �2 is the solution of

h = 4 sinh(η)
∞∑

j=−∞

(−1) j

cosh( jη)
, (18)

where η = cosh−1(�2). In Table I we list the QCPs for the two
values of h that we will be dealing here and also the QCPs for
the zero-field case (h = 0).

A physical system in equilibrium with a thermal reservoir
at temperature T is described by the canonical ensemble
density matrix. As such, the density matrix describing the
thermalized spin chain (16) is � = e−H/kT /Z , where Z =
Tr(e−H/kT ) is the partition function and k is Boltzmann’s
constant. To obtain the density matrix describing a pair of
nearest-neighbor spins, we trace out from � all the other spins.
This leads to [11]

ρ23 =

⎛
⎜⎜⎝

a 0 0 0
0 b c 0
0 c b 0
0 0 0 d

⎞
⎟⎟⎠, (19)

where

a = 1 + 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

, (20)

b = 1 − 〈
σ z

2σ z
3

〉
4

, (21)

c =
〈
σ x

2 σ x
3

〉
2

, (22)

d = 1 − 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

. (23)

Note that the translational symmetry of H implies that 〈σα
j 〉 =

〈σα
k 〉 and 〈σα

j σ
β

j+1〉 = 〈σα
k σ

β

k+1〉 for any value of j and k.
In the thermodynamic limit, the calculation for arbitrary

values of T , �, and h of the one-point correlation function
〈σ z

j 〉 = Tr(σ z
j �) and of the two-point correlation functions

〈σα
j σα

j+1〉 = Tr(σα
j σα

j+1 �), where α = x, z, was carried out in
Refs. [36–39] and reviewed in Ref. [11]. In Appendix A we
show the behavior of 〈σ z

j 〉 and 〈σα
j σα

j+1〉 for several values of
T , �, and h.

If we use Eqs. (1), (2), and (19), a direct calculation with
Eq. (8) gives

Q�± (|ψ〉) = (1 − z cos θ )/4, (24)

Q	± (|ψ〉) = (1 + z cos θ )/4, (25)
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where

z = 〈
σ z

j

〉 = Tr
(
σ z

j �
)
. (26)

Contrary to the case with no field [20], where Qj (|ψ〉) = 1
4

for all j and |ψ〉, the chances of Alice measuring a given
Bell state depend on the input state |ψ〉 through θ and on
the one-point correlation function z. However, averaging over
the whole Bloch sphere [20], it is not difficult to see that
〈Qj (|ψ〉)〉 = 1

4 for any j. Note that one should not confuse
the Bloch sphere average notation 〈 〉 introduced in Eq. (15)
with the standard notation for correlation functions as given,
for instance, in Eq. (26).

With the aid of Eqs. (13), (24), and (25), we can compute
the mean fidelity (14) for each one of the four sets of unitary
operations available to Bob,

F (|ψ〉, S�− ) = f (r,−xx, zz), (27)

F (|ψ〉, S�+ ) = f (r, xx, zz), (28)

F (|ψ〉, S	− ) = g(r, χ,−xx, zz), (29)

F (|ψ〉, S	+ ) = g(r, χ, xx, zz), (30)

where

f (r, xx, zz) = [1 + 4r2(1 − r2)(xx + zz) − zz]/2, (31)

g(r, χ, xx, zz) = [1 + (1 − 2r2)2zz

+ 4r2(1 − r2)xx cos(2χ )]/2, (32)

xx = 〈
σ x

j σ
x
j+1

〉 = Tr
(
σ x

j σ
x
j+1 �

)
, (33)

zz = 〈
σ z

j σ
z
j+1

〉 = Tr
(
σ z

j σ
z
j+1 �

)
. (34)

Looking at Eqs. (31) and (32), we realize that they do not
depend on the one-point correlation function (26). They only
depend on the two-point correlation functions (33) and (34).
Hence, the four mean fidelities (27)–(30) depend only on the
two-point correlation functions too. Moreover, this also im-
plies that the expressions given by Eqs. (27)–(32) are formally
the same as the ones we have for the XXZ model without
an external field [20]. Thus, the calculations leading to the
maximum mean fidelity and to the maximum averaged fidelity
reported in Ref. [20] can be literally carried over to the present
case.

Maximizing over all pure states and over Sk , we get for the
maximum mean fidelity [20]

F = max
{|ψ〉,Sk}

F (|ψ〉, Sk ) = max

[
1 + |zz|

2
,

1 + |xx|
2

]
. (35)

The maximum or minimum of F (|ψ〉, Sk ) occurs for the input
states |ψ〉 = |0〉, |1〉, and (|0〉 + eiχ |1〉)/

√
2. The role of these

states in maximizing or minimizing F (|ψ〉, Sk ) depends on
the sign and on the magnitude of the two-point correlation
functions xx and zz.

On the other hand, Eq. (15) implies that [20]

〈F (S�± )〉 = (3 ± 2xx − zz)/6, (36)

〈F (S	± )〉 = (3 + zz)/6. (37)

FIG. 2. Maximum mean fidelity F [Eq. (35)] as a function of �

with h = 6.0 [see Eq. (16)]. At T = 0 (see the inset), both QCPs are
detected by a discontinuity in the derivatives of F with respect to �.
For T > 0, these discontinuities in the derivatives are smoothed out.
The maxima (or minima) of the derivatives are displaced away from
the critical points. However, for kT � 0.5 these extremum values lie
close together and by extrapolating to kT → 0 we are able to infer
the correct critical points. The dotted lines mark the QCPs and for
the solid curves the temperature increases from top to bottom. Here
and in all other graphs all quantities are dimensionless.

Maximizing over all sets Sk we obtain the maximum average
fidelity

〈F〉 = max
{Sk}

〈F (Sk )〉 = max

[
3 + 2|xx| − zz

6
,

3 + zz

6

]
. (38)

Equations (35) and (38) are the two teleportation-based
QCP detectors that turned out to be extremely useful and
robust to detect at finite T the QCPs for the XXZ model with
no external field [20]. Our goal now is to investigate their
ability in detecting the QCPs for this model when we turn on
the external magnetic field.

In Figs. 2 and 3 we show F as a function of � for several
temperatures and for the two external fields given in Table I.
For T = 0 it is clear from Figs. 2 and 3, in particular the insets,
that both QCPs �1 and �2 are detected by discontinuities
in the derivatives of F with respect to � as we cross the
QCPs. We also see two other discontinuities in the deriva-
tives of F for values of � between the two QCPs, i.e., for
�1 < � < �2. One of these extra cusplike behaviors for F
as a function of � is also seen when we study the behavior
of the thermal quantum discord as a function of � [11]. Also,
preliminary calculations [41] show that the logarithm of the
spectrum of the quantum coherence (LQC) [19] also has a cusp
not related to a quantum phase transition. These cusps are
robust to temperature changes since they are not smoothed out
as we increase the temperature (see Figs. 2 and 3).

The underlying reason for these two cusps of F is its
particular functional form. As we change �, the magnitudes
of the two-point correlation functions xx and zz change. As we
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FIG. 3. Same as Fig. 2 but now h = 12.0. The dotted lines mark
the QCPs and for the solid curves the temperature increases from top
to bottom.

cross the two cusps, the correlation function with the greater
magnitude changes. This change is reflected in a discontinuity
in the value of F [see Eq. (35)].

As an illustrative example, in Fig. 4 we show for T = 0 the
behavior of |xx| and |zz| as a function of � assuming h = 6.0.
A similar behavior is seen for T > 0 and also when we have
h = 12.0. Looking at Fig. 4, it is clear that |xx| > |zz| in the
yellow-shaded region, while |xx| < |zz| outside that region.
The yellow-shaded region was drawn such that it represents
the region between the two cusps of F that are not related
to QPTs (see Fig. 2). Looking at Fig. 4, it is clear that the
boundaries of the yellow-shaded region coincide with the two
values of � for which the roles of xx and zz are exchanged

FIG. 4. Magnitudes of 〈σ x
j σ

x
j+1〉 and 〈σ z

j σ
z
j+1〉 as a function of �

when h = 6.0 and T = 0. The yellow-shaded region is the region
between the two cusps of F that do not correspond to QCPs.

FIG. 5. Plot of F (Sk ) [Eq. (39)] as a function of � when T = 0
and h = 6.0.

in the evaluation of (35) and (38). It is this property of |xx|
and |zz| as we cross those two points that causes the two extra
cusps seen in F .

It is worth mentioning that when we do not have an external
field (h = 0), the QCPs �1 and �2 are located exactly at the
points at which |xx| = |zz|. This is why F is very robust in
detecting those two QCPs for finite T , retaining its cusplike
behavior at the QCPs as we increase T [20]. When h = 0 we
only have two discontinuities, exactly at the locations of the
two QCPs [20]. When h 
= 0, on the other hand, the points
where |xx| = |zz| are shifted away from the QCPs and four
cusps instead of two are seen when T = 0. Two of them are
related to the two QCPs and the other two are associated with
the points where |xx| = |zz|.

We can also better understand the behavior of F if we
analyze the behavior of the quantity

F (Sk ) = max
{|ψ〉}

F (|ψ〉, Sk ). (39)

Equation (39) is obtained from F (|ψ〉, Sk ) by maximizing it
over all input states only. In this way, as we show in Fig. 5,
we are able to study how F (Sk ) behaves for each one of the
possible values of k,

F (S�± ) = max

[
1 − zz

2
,

1 ± xx

2

]
, (40)

F (S	± ) = max

[
1 + zz

2
,

1 + |xx|
2

]
. (41)

Looking at Fig. 5, we notice that before �1 (the first QCP)
and up to where |xx| = |zz| (before the yellow-shaded region),
the maximum mean fidelity F is given by F (S	± ). In the
yellow-shaded region, we have either F (S	± ) or F (S�− ) as
the maximum mean fidelity. After the yellow-shade region,
F (S�± ) dominates. Furthermore, the points where the roles of
F (S�± ) and F (S	± ) are exchanged in furnishing the greatest
mean fidelity occur exactly where |xx| = |zz| (the boundaries
of the yellow-shaded region). This is why we see the two
cusps of F that are not related to QPTs. The other two deriva-
tive discontinuities, associated with the two QCPs, are due to
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(a)

(b)

FIG. 6. Estimated QCPs after determining the extrema of (a) the
first-order and (b) the second-order derivatives with respect to � for
F , 〈F〉, 〈σ x

j σ
x
j+1〉, 〈σ z

j σ
z
j+1〉, and 〈σ z

j 〉 at several different values of T .
See the text for details on how the QCPs were estimated. The dashed
lines mark the exact values of the QCPs.

the particular behavior of the two-point correlation functions
at those points. The discontinuities in the derivatives of zz in
the first and second QCPs are reflected in the discontinuities
of the derivatives of F at those points (cf. Figs. 4 and 5). Had
we worked with the minimum mean fidelity [20], the relevant
two-point correlation function would be xx.

When T > 0, the cusps located at the two QCPs are
smoothed out and displaced away. The other two cusps are
not smoothed out although they are displaced too. As such, in
order to determine the two QCPs in this scenario, we follow
a strategy similar to that used in Ref. [11] to deal with the
smoothing out of the cusps of the thermal quantum discord
around the QCPs at finite T . As we increase the temperature,
the discontinuities in the derivatives of F that occur exactly at
the QCPs when T = 0 are now manifested in very high values
for the magnitudes of those derivatives, with those maxima
displaced from the correct locations of the QCPs. However,
for kT � 0.5 the maxima (or minima) of the derivatives as a
function of kT lie more or less along a straight line and by
extrapolating to zero from a few finite T data we can correctly
predict the exact locations of the two QCPs.

In Fig. 6(a) we show, as a function of T , the values of �

where we find the maximum of |dy/d�|, with y representing
the quantities shown in Fig. 6. In Fig. 6(a) we picked the
maxima of |dy/d�| around �1. In Fig. 6(b) we show, as a
function of T , the spots of the maximum values of |d2y/d�2|
about �2. Note that although in Fig. 6 we chose the external
field to be h = 12.0, the analysis reported below applies to
other values of fields as well.

For kT = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, we computed F ,
〈F〉, and the one- and two-point correlation functions as a
function of � in increments of 0.01. Then we numerically
computed the first-order derivatives of those quantities about
�1 and their second-order derivatives about �2. The values
of � leading to the greatest values for the magnitudes of
those derivatives are shown in Fig. 6. If we take into account

FIG. 7. Plot of 〈F〉 [Eq. (38)] as a function of � with h = 6.0
[see Eq. (16)]. At T = 0 (see the inset), both QCPs are detected
by a discontinuity in the derivatives of 〈F〉 with respect to �. For
T > 0, these discontinuities in the derivatives are smoothed out. The
maxima (or minima) of the derivatives are displaced away from the
critical points. However, for kT � 0.5 these extremum values lie
close together and by extrapolating to kT → 0 we are able to infer
the correct critical points. The dotted lines mark the QCPs and for
the solid curves the temperature increases from top to bottom.

that � was changed in increments of 0.01, the spots of the
maxima of the magnitudes of the first-order derivatives are ob-
tained within an accuracy of ±0.01 about the values shown in
Fig. 6(a). Also, since the second-order derivatives are obtained
from the first-order ones, which already have a numerical error
of 0.01, we estimate that the error for the location of the
maxima of the absolute values of the second-order derivatives
are at least ±0.02 about the values shown in Fig. 6(b). Exclud-
ing the data for T = 0, we made linear regressions with the
remaining data (kT = 0.1, 0.2, 0.3, 0.4, 0.5) in order to check
whether a straight line would correctly predict the QCPs at
T = 0. For all quantities shown in Fig. 6(a) and for all but one
in Fig. 6(b), the linear coefficients (y-axis intercepts) correctly
predicted the QCPs within an accuracy of ±0.01. For 〈F〉,
however, we needed a quadratic regression to extrapolate to
the correct value of �2 with an accuracy of ±0.01.

To end this section we show in Figs. 7 and 8 the behavior
of 〈F〉 as a function of � for several temperatures and for
the two external fields shown in Table I. Looking at Figs. 7
and 8, we realize that now, contrary to the behavior of F (see
Figs. 2 and 3), 〈F〉 has only three instead of four derivative
discontinuities at T = 0. Two of them are related to the two
QCPs for this model while the remaining one is associated
with the particular functional form of 〈F〉 [see Eq. (38)]. This
third cusp of 〈F〉 is located at one of the values of � at
which |xx| = |zz| (left boundary of the yellow-shaded region
in Fig. 9).

In order to understand the absence of the fourth cusp for
〈F〉 at T = 0, we study the individual behaviors of 〈F (S�± )〉
and 〈F (S	± )〉 [Eqs. (36) and (37)] as a function of �. Since
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FIG. 8. Same as Fig. 7 but now h = 12.0. The dotted lines mark
the QCPs and for the solid curves the temperature increases from top
to bottom.

〈F〉 is obtained by picking the greatest value among these four
quantities, by tracing back which quantity gives 〈F〉, we can
understand the origin of the cusplike behavior of 〈F〉.

In Fig. 9 we show 〈F (Sk )〉 for k = �±,	± and fixing
h = 6.0 (a similar plot applies to h = 12.0). Figure 9 tells us
that before the first QCP �1 and up to where |xx| = |zz| for
the first time, the maximum average fidelity 〈F〉 is given by
〈F (S	± )〉. Inside the yellow-shaded region, where |xx| > |zz|,
and way up to and beyond the second QCP �2, the value
of 〈F〉 is dictated by 〈F (S�− )〉. There is no change of the
function that maximizes 〈F〉 at the right boundary of the
yellow-shaded region, contrary to what we see for F (Fig. 5).
That is the reason we do not have a cusp where the two-point
correlation functions become equal again (|xx| = |zz|), at the
right boundary of the yellow-shaded region. Furthermore, the

FIG. 9. Plot of 〈F (Sk )〉 [Eqs. (36) and (37)] as a function of �

when T = 0 and h = 6.0.

two cusps related to the QCPs have their origin in the intrinsic
functional form of 〈F〉 that is not associated with 〈F (S�± )〉
and 〈F (S	± )〉 changing their roles in maximizing 〈F〉. Indeed,
the cusps of 〈F〉 at the two QCPs are a consequence of the
cusps observed for the two-point correlation functions at those
points. Since 〈F〉 is a linear function of those correlation
functions, any discontinuities in their derivatives with respect
to � will manifest in discontinuities of the derivatives of 〈F〉
(see Appendix A).

For T > 0 and similarly to the case of F , the cusps at the
two QCPs that we see for 〈F〉 at T = 0 are smoothed out and
displaced away. The other remaining cusp is not smoothed out
although it is displaced too. The procedure to estimate the
QCPs using finite-T data in the present case is exactly the
same one reported for F a few paragraphs ago and the results
of this analysis are given in Fig. 6.

IV. THE XY AND THE ISING MODEL

Using the notation of Sec. III, the anisotropic one-
dimensional XY model subjected to a transverse magnetic
field is described by the Hamiltonian [42–44]

H = −λ

4

L∑
j=1

[
(1 + γ )σ x

j σ
x
j+1 + (1 − γ )σ y

j σ
y
j+1

] − 1

2

L∑
j=1

σ z
j ,

(42)

with λ related to the inverse of the external-magnetic-field
strength and γ the anisotropy parameter. If we set γ = ±1
we have the transverse Ising model and for γ = 0 we obtain
the XX model in a transverse field.

As we change λ (essentially the external field), the ground
state for the XY model goes through a QPT when we reach the
QCP λc = 1.0. This is the Ising transition, where for λ < 1 we
have a ferromagnetic ordered phase and for λ > 1 we have a
quantum paramagnetic phase [45]. Whenever λ > 1, we also
observe another QPT as we change the anisotropy parameter
γ . It is called the anisotropy transition and it occurs at γc =
0 [42–44,46]. This QPT separates a ferromagnet ordered in
the x direction from a ferromagnet ordered in the y direction.
Although the λ and γ QPTs above are of the same order, they
belong to different universality classes [42–44,46].

The canonical ensemble density matrix describing the
whole spin chain in equilibrium with a heat bath of temper-
ature T is � = e−H/kT /Z and the density matrix describing
a pair of nearest neighbors, obtained after tracing out all but
those two spins, is [11,47]

ρ23 =

⎛
⎜⎜⎝

a 0 0 e
0 b c 0
0 c b 0
e 0 0 d

⎞
⎟⎟⎠, (43)

where

a = 1 + 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

, (44)

b = 1 − 〈
σ z

2σ z
3

〉
4

, (45)

c =
〈
σ x

2 σ x
3

〉 + 〈
σ

y
2 σ

y
3

〉
4

, (46)
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d = 1 − 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

, (47)

e =
〈
σ x

2 σ x
3

〉 − 〈
σ

y
2 σ

y
3

〉
4

. (48)

Similarly to the XXZ model of Sec. III, the translational
symmetry of the XY model implies that 〈σα

j 〉 = 〈σα
k 〉 and

〈σα
j σ

β

j+1〉 = 〈σα
k σ

β

k+1〉 for any value of j and k.
The computation in the thermodynamic limit and for ar-

bitrary values of T , λ, and γ of the one-point correlation
function z = 〈σ z

j 〉 = Tr(σ z
j �) and of the two-point correlation

functions αα = 〈σα
j σα

j+1〉 = Tr(σα
j σα

j+1 �), where α = x, y, z,
is given in Refs. [42–44]. In Ref. [11] this solution is written in
the present notation and in Appendix B we show the behavior
of 〈σ z

j 〉 and 〈σα
j σα

j+1〉 for T = 0 and several values of λ and γ .
We also give a brief qualitative discussion of how they differ
from the T = 0 case.

Proceeding along the same lines as in Sec. III, inserting
Eqs. (1), (2), and (43) into Eq. (8) leads to the same set of
probabilities Qj (|ψ〉) for Alice measuring a given Bell state
[cf. Eqs. (24) and (25)]. Using Eqs. (13), (24), and (25), the
mean fidelities (14) for each one of Bob’s four sets of unitary
operations become

F (|ψ〉, S�− ) = h(r, χ,−xx,−yy, zz), (49)

F (|ψ〉, S�+ ) = h(r, χ, xx, yy, zz), (50)

F (|ψ〉, S	− ) = h(r, χ,−xx, yy,−zz), (51)

F (|ψ〉, S	+ ) = h(r, χ, xx,−yy,−zz), (52)

where

h(r, χ, xx, yy, zz) = [1 + 2r2(1 − r2)(xx + yy + 2zz) − zz

+ 2r2(1 − r2)(xx − yy) cos(2χ )]/2.

(53)

Note that if we assume xx = yy in Eqs. (49)–(52), we obtain
the corresponding expressions for the XXZ model, namely,
Eqs. (27)–(30). That this should indeed occur can be seen by
setting xx = yy in the two-qubit density matrix (43). In this
case we recover the two-qubit density matrix for the XXZ
model (19) and consequently Eqs. (27)–(30) must follow from
Eqs. (49)–(52) if we assume xx = yy.

Repeating the calculations of Ref. [20] that led to the op-
timum mean fidelity over all input states, it is not difficult to
see that the extrema of Eq. (14) occur for the states |ψ〉 = |0〉,
|1〉, and (|0〉 + eiχ |1〉)/

√
2. This gives

F (S�± ) = max

[
1 ± xx

2
,

1 ± yy

2
,

1 − zz

2

]
, (54)

F (S	± ) = max

[
1 ± xx

2
,

1 ∓ yy

2
,

1 + zz

2

]
, (55)

where F (Sk ) is given by Eq. (39). If we now maximize over
the four possible sets of unitary operations available to Bob,
we get the maximum of the mean fidelity (14) for the present

model,

F = max
{|ψ〉,Sk}

F (|ψ〉, Sk )

= max

[
1 + |xx|

2
,

1 + |yy|
2

,
1 + |zz|

2

]
. (56)

Averaging over all input states lying on the Bloch sphere [20],
we get from Eqs. (15) and (49)–(52),

〈F (S�± )〉 = (3 ± xx ± yy − zz)/6, (57)

〈F (S	± )〉 = (3 ± xx ∓ yy + zz)/6. (58)

Using Eqs. (57) and (58), the maximum average fidelity is

〈F〉 = max
{Sk}

〈F (Sk )〉

= max

[
3 + |xx + yy| − zz

6
,

3 + |xx − yy| + zz

6

]
.

(59)

Equations (56) and (59) are the analogs of Eqs. (35) and
(38) for the present model. Note that if xx = yy, we recover
Eqs. (35) and (38) from (56) and (59).

We now focus on studying the efficiency of Eqs. (56) and
(59) in detecting the QCPs for the XY model in a transverse
field at zero and nonzero temperatures. Following Ref. [11],
we expect that the best way to pinpoint the QCP λc for the XY
model is by studying the first- and second-order derivatives
of Eqs. (56) and (59) with respect to λ. It turns out that the
extremum values of the derivatives are located at this QCP for
T = 0 and move away as we increase T . For a sufficiently
low range of temperatures, these extremum values lie on a
straight line and by extrapolating to T = 0 we can predict the
correct QCP. Also, our numerical analysis showed that F is
a better QCP detector than 〈F〉 when it comes to spotlighting
the Ising transition λc, with the former having a greater and
sharper maximum (or minimum) about this QCP. Therefore,
here we only show the behavior of F about this QCP.

In Figs. 10–12 we show, for several values of T and γ , the
behavior of F as a function of λ. For γ = 0.0 we have the
isotropic XX model in a transverse field. Looking at Fig. 10,
we realize that at T = 0 the QCP is determined by a discon-
tinuity in the first derivative of F . For high values of T this
discontinuity in the derivative is smoothed out and displaced
from the exact location of the QCP, namely, λc = 1.0. How-
ever, as we will show in a moment, we still can determine the
correct QCP using finite-T data.

For the other values of γ , i.e., γ = 0.5 (anisotropic XY
model in a transverse field) and γ = 1.0 (Ising model in a
transverse field), the QCP is determined by an inflection point
that occurs exactly at λc = 1.0 when T = 0. As we increase
T , this inflection point moves away from λc and by determin-
ing the maximum (minimum) of the first- and second-order
derivatives of F with respect to λ, we can infer the correct
QCP extrapolating from finite-T data.

Two remarks are in order now. First, the behavior of F
for all T and γ around λc is similar to the behavior of the
two-point correlation functions about that point. This is true
because F is essentially a linear function of the two-point
correlation functions in the neighborhood of the QCP [cf.
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FIG. 10. Plot of F [Eq. (56)] as a function of λ with γ = 0.0
(XX model in a transverse field) [see Eq. (42)]. At T = 0 (see
the inset), the QCP λc = 1.0 is detected by a discontinuity in the
derivatives of F with respect to λ. For T > 0, these discontinuities
in the derivatives are smoothed out. The maximum (or minimum) of
the derivatives moves away from the QCP. However, for kT � 0.1
these extremum values lie in a straight line and by extrapolating to
kT → 0 we can discover the right value for the QCP. The dotted lines
mark the QCP λc and for the solid curves the temperature increases
from top to bottom when λ < λc.

Eq. (56)]. Being more specific, the derivatives of F at and
about the QCP are proportional to the derivatives of the two-
point correlation function furnishing the greatest magnitude at
and in the neighborhood of the QCP. Therefore, the functional
behavior of F and its derivatives about the QCP is essentially

FIG. 11. Same as Fig. 10 but now γ = 0.5. The dotted lines mark
the QCP λc and for the solid curves the temperature increases from
top to bottom when λ < λc.

FIG. 12. Same as Fig. 10 but now γ = 1.0 (Ising model in a
transverse field). The dotted lines mark the QCP λc and for the solid
curves the temperature increases from top to bottom before the kinks
(minima).

the same as this correlation function about the QCP. Second,
the cusplike behavior seen in Figs. 10–12 slightly away from
the QCP is related to the point where |xx| = |zz| (see Figs. 20–
22 in Appendix B). Before the cusp |zz| > |xx| and after it
|zz| < |xx|. It is this fact and the particular functional form of
F that lead to those cusps. This is similar to what we have
found when dealing with the XXZ model in Sec. III.

Returning to the analysis of how to obtain the correct QCP
using finite-T data, we follow Ref. [11] and the procedure
already explained in Sec. III, i.e., we numerically compute
the first- and second-order derivatives of F around the QCP
and search for their extremum values as indicators of a QPT.
In Fig. 13 we plot, as a function of T , the value of λ (y
axis) furnishing the extrema of the first- and second-order
derivatives of F with respect to λ in the neighborhood of the
QCP λc.

For the 11 values of kT shown in Fig. 13, namely, kT =
0.00, 0.01, 0.02, . . . , 0.10, we computed F as a function of λ

in increments of 0.01. Subsequently, we numerically obtained
its first- and second-order derivatives with respect to λ. The
points shown in Fig. 13 are the location of the extrema of those
derivatives. Similarly to what we had for the XXZ model, the
locations of those extrema are obtained within an accuracy
of ±0.01 for the first derivatives and ±0.02 for the second
derivatives.

Dropping the data for kT = 0.00, we implemented a
simple linear regression with the remaining data (kT =
0.01, 0.02, . . . , 0.10) to verify if a straight line could correctly
predict the exact location of the QCP at kT = 0. For the six
curves shown Fig. 13, the obtained linear coefficients (y-axis
intercepts) predicted with an accuracy of 0.01 the correct
location of λc.

Finally, in Figs. 14 and 15 we show F and 〈F〉, respec-
tively, as functions of γ , fixing λ = 1.5. It is clear from
the plots in both figures that the anisotropy QPT is clearly
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FIG. 13. Estimated value for the QCP λc using the location of the
maximum (or minimum) of the first- and second-order derivatives of
F with respect to λ for several values of T . See the text for details.
The dashed line gives the exact value of the QCP.

detected by both the maximum mean and maximum average
fidelities.

The QCP γc = 0.0 is detected by a cusplike behavior of
F for all values of T shown in Fig. 14. On the other hand,
the cusplike behavior of 〈F〉 occurs only at T = 0, being
smoothed out as we increase T . For higher values of T , the
QCP is detected in this case by a local maximum of 〈F〉 that
occurs exactly at the correct location of the QCP. For high
enough T though, this maximum is flattened to the point of
becoming useless in spotlighting the QCP.

FIG. 14. Plot of F [Eq. (56)] as a function of γ with λ = 1.5 [see
Eq. (42)]. Both at T = 0 (see the inset) and T > 0, the QCP γc = 0.0
is detected by a cusp that occurs exactly at the location of the QPT.
The dotted lines represent the QCP γc and for the solid curves the
temperature increases from top to bottom.

FIG. 15. Same as Fig. 14 but now we have 〈F〉 [Eq. (59)] as a
function of γ . In this case the QCP is detected by a cusp at T = 0,
with the latter being smoothed out as we increase kT . The dotted
lines represent the QCP γc and for the solid curves the temperature
increases from top to bottom.

The robustness of F to detect the anisotropy QPT can be
traced back to its functional form and to the fact that it is
exactly at γc = 0.0 that xx = yy, with |xx| < |yy| right before
γc and |xx| > |yy| right after it (see Fig. 23 in Appendix B).
This feature is not changed as we increase T and it is the
reason why the cusps of F at λc are not smoothed out or
displaced as we increase T . We should also remark that the
two cusps that we see in Fig. 15 are not associated with QPTs.
They are a consequence of the functional form of 〈F〉 and
to the following features (see Fig. 23 in Appendix B). At the
first cusp of 〈F〉, which occurs for γ < γc, |zz| = |xx|. Before
this cusp we have |zz| > |xx| and after it |zz| < |xx|. At the
second cusp, which occurs for γ > γc, |zz| = |yy|. Before this
second cusp we have |zz| < |yy| and after it |zz| > |yy|. It
is this exchange of the roles of which two-point correlation
function gives the greatest magnitude that causes those two
peaks. Note that those peaks do not show up in F because of
its specific functional form, which implies that around those
two locations it is only a function of either yy or xx. Contrary
to 〈F〉, there is no role for zz in the functional form of F about
the locations of the two peaks seen for 〈F〉. Thus, the above
discussion that explains those peaks for 〈F〉 does not apply to
F and hence there is no reason for those peaks to appear in
the functional behavior of F .

V. DISCUSSION

The present proposal to detect quantum critical points with
finite-temperature data should be analyzed considering two
aspects. First, looking at its theoretical side, the most impor-
tant piece of information we must have access to in order to
calculate the fidelities F and 〈F〉 is the density matrix de-
scribing a pair of qubits from the spin chain [Eq. (19) or (43),
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for instance]. The two-qubit density matrix is obtained after
tracing out all but two qubits from the canonical ensemble
density matrix describing the whole chain in equilibrium with
a thermal bath at temperature T . This two-qubit density matrix
is a function of one- and two-point correlation functions and
as such we must rely on analytical or numerical techniques
to obtain those correlation functions to have access to the
two-qubit density matrix.

The traditional way of characterizing quantum phase tran-
sitions, in particular at T = 0, is based on the knowledge of
those correlation functions too. By studying their behavior
as we change the system’s Hamiltonian, or the behavior of
quantities that are functions of them such as the magneti-
zation or the magnetic susceptibility, we can detect QCPs
by discontinuities in the nth-order derivative of those quan-
tities that occur exactly at the QCPs. We can also employ
quantum-information-theory-based tools to detect QCPs, such
as entanglement or quantum discord [5–8,10,11]. To apply
these quantum-information QCP detectors, we also need the
correlation functions used in the traditional approach to char-
acterize QPTs. The method we proposed in Ref. [20] and
explored further here needs those correlation functions too.

However, some of these tools, such as the magnetization or
magnetic susceptibility, may not properly identify the correct
spot of the QCP with finite-T data [11]. Other tools, such
as the entanglement of formation [9], become zero at and
around the QCP as we increase T , showing that they are
useless in helping us in the identification of the QCP after a
certain temperature threshold [11]. The tremendous success
of quantum discord to spotlight QCPs at finite T came to
the forefront in Ref. [11], where it was shown that for the
XXZ model with no external field both QCPs are detected
by discontinuities in the derivatives of quantum discord that
occur at the exact location of the QCPs, even as we increase
T . The present teleportation based tools to detect QCPs have
the same remarkable attributes of quantum discord when de-
tecting the QCPs for the XXZ model with no field [20].
However, a new theoretical feature sets them apart from any
known finite-temperature QCP detector that is as robust as
the quantum discord: scalability as we increase the system’s
Hilbert space dimension.

Indeed, the evaluation of quantum discord is an NP-
complete problem [14]. Thus, the calculation of quantum
discord is an intractable problem for high-spin systems [15].
On the other hand, the computational resources that are
needed to calculate the maximum mean and maximum aver-
age fidelities are not so demanding. The maximum average
fidelity 〈F〉 is computed by repeating for each one of the four
sets of unitary operations Sk the calculation of the average
fidelity as given by Eq. (15). The computation of the latter
is straightforward and can be scaled in an efficient way to an
N-dimensional input state |ψ〉 [20,33]. The maximum mean
fidelity F is computed by repeating four times the maximiza-
tion of Eq. (14) over all input states |ψ〉 (for each one of
the four sets Sk of unitary operations available to Bob). This
optimization problem is much less demanding than solving
the optimization problem to determine the quantum discord
or the entanglement of formation [20]. All things being equal,
the tools created in Ref. [20] and further developed in this
work to detect QCPs with finite-T data should rank among

the most efficient, scalable, and robust tools that are available
in a theoretician’s tool box.

The second aspect that should be considered in the analysis
of the present proposal is its experimental interpretation and
feasibility. Contrary to quantum discord, the teleportation-
based tools to detect QCPs developed here have a clear
operational interpretation. The experimental steps needed to
teleport a qubit, namely, Bell state measurements and local
unitary operations on single qubits, are clear and are not
far from being implemented in spin-chain-like systems using
state-of-the-art techniques [48–54]. To experimentally deter-
mine Eqs. (14) and (15), all we need to know is Bob’s states
at the end of several runs of the teleportation protocol using a
representative sample of input states lying on the Bloch sphere
as the states to be teleported from Alice to Bob. Moreover, in
order to experimentally obtain Bob’s state once the teleporta-
tion protocol is implemented, we need to be able to measure
the single spin density matrix describing Bob’s qubit. In other
words, we only have to experimentally obtain one-point cor-
relation functions. There is no need to measure two-point
correlation functions anymore. Putting it differently, we can
see the present proposal as a way to locally determine a QCP
even when T > 0. There is no need to globally study the
system in order to characterize its QPT with finite-T data.
Another approach where only local measurements are enough
to study QPTs at T = 0 can be built using the quantum energy
teleportation protocol [27–30] and its possible extension in the
theoretical framework of quantum networks [55–57].

It is also worth mentioning that from an experimental
point of view, the time needed to implement all the steps
of the teleportation protocol should be shorter than the time
the system takes to return to equilibrium with the heat bath.
The rate at which we execute the teleportation protocol must
be greater than the relaxation rate of the system. We must
also determine the state received by Bob at the end of the
teleportation protocol before it equilibrates once again with
the heat bath.

The theoretical computation of the relaxation time for an
infinite spin chain is not trivial and lies beyond the scope of
the present work. The relaxation time depends not only on
the spin chain internal dynamics (its Hamiltonian) but also
on how it interacts with the heat bath after a disturbance
(the implementation of the teleportation protocol in our case).
Experimentally, this relaxation time can be measured, for
instance, by monitoring the magnetization of the system. In
thermal equilibrium, the system’s magnetization has a definite
value. When we perturb it, the magnetization changes. By
monitoring the magnetization after the disturbance we can
determine the time for the magnetization to get back to its
equilibrium value. This time is the relaxation time, which is
much easier to measure than to compute.

Furthermore, spin chains can be experimentally imple-
mented on several different platforms. A few examples
include quantum dots, quantum wells, and superconducting
qubits. In GaAs quantum wells, for instance, we have at room
temperature a relaxation time of a few nanoseconds [58]. In
GaAs quantum dots the relaxation time of a spin 1

2 is measured
to be around 50 µs at T ≈ 20 mK [59] and in Ge/Si quantum
dot arrays at T ≈ 5 K we get a relaxation time around 10 µs
[60]. On the other hand, in silicon quantum dots at T ≈ 1 K
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one can execute single- and two-qubit gates in a time span
shorter than 100 ns [61]. This means that currently for silicon
quantum dots and at low temperatures (approximately equal to
1 K) we can in principle implement about 100 gates before the
system thermalizes. This is more than enough to implement
the present proposal, which needs just a few gates at a given
run of the teleportation protocol. We should also note that
for superconducting qubits, we already have tens of qubits
prepared simultaneously with coherence times of the order of
100 µs. The time needed to implement single- and two-qubit
gates in this setup ranges between 10 and 100 ns. This means
that per coherence time we can implement between 103 and
104 gates [62].

VI. CONCLUSION

We applied to several other models the teleportation-based
tools to detect quantum critical points that were first presented
in Ref. [20]. We studied several spin- 1

2 chains in the ther-
modynamic limit (infinite number of spins). First we studied
the XXZ model in an external longitudinal magnetic field
and then the Ising model, the isotropic XX model, and the
anisotropic XY model, all of them in external transverse
magnetic fields. For all these models we investigated the per-
formance of those tools to correctly detect the QCP at zero
and finite temperature.1

The key idea leading to the teleportation-based tools to
detect QCPs is the use of a pair of spins from the spin chain
as the entangled resource to implement the teleportation pro-
tocol. An external spin from the chain (the input state) is
then teleported to one spin of that pair. We showed that the
efficiency of the teleportation protocol depends crucially on
which quantum phase we prepare the spin chain. At the QCP,
we observed an abrupt change in the efficiency of the tele-
portation protocol. The efficiency is quantified via the fidelity
between the input state (Alice’s qubit) and the output state at
the end of the protocol (Bob’s qubit).

For T = 0 we verified that the maximum mean fidelity
F and the maximum average fidelity 〈F〉 have a cusp or an
inflection point exactly at the QCPs. For T > 0 many of these
cusps are smoothed out and both these cusps and the inflection
points move away from the correct location of the QCPs. For
finite T these cusps and inflection points can be determined
by studying the magnitudes of the first- and second-order
derivatives of F and 〈F〉. The magnitudes of these derivatives
become very large around the location of the QCPs. Below
a certain temperature threshold, the locations of the extrema
for those derivatives lie in a straight line and by extrapolating
to zero temperature we can predict the correct values of the
QCPs.

1In the present work, as well as in Ref. [20], we have dealt with lo-
cal models only. However, the present quantum-teleportation-based
tools to detect QCPs should work equally well for nonlocal ones.
This is true since what matters most to the usefulness of the present
tools is the fact that a QPT induces a drastic change in the system’s
ground state. As such, the efficiency of the teleportation protocol
should be affected as we cross the QCP irrespective of whether or
not the interaction is local.

FIG. 16. One- and two-point correlation functions as a function
of the tuning parameter � with external magnetic field h = 6.0. All
data were computed in the thermodynamic limit and at T = 0. The
dotted lines mark the two QCPs for this model.

The results of Ref. [20] and the ones shown here imply
that the teleportation-based tools to detect QCPs have the
same important characteristics of quantum discord [11], one
of the most reliable QCP detectors for finite T . Both quantum
discord and the teleportation-based tools studied here can be
applied without knowledge of the order parameter related to
the QPT and are very robust to temperature increases. In
addition to that, the present tools have two important char-
acteristics not shared with quantum discord [20]. First, they
have a direct experimental meaning while quantum discord
does not. Also, the computational resources that we need to
theoretically calculate them is much less demanding than what
is required to compute quantum discord. This fact allows us to
scale the present tools to high-spin systems.

Finally, looking at Figs. 2,3,10–12, and 14, we observe that
for each model and for each phase transition the behavior of

FIG. 17. Same as Fig. 16 but with h = 12.0.
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FIG. 18. One- and two-point correlation functions as a function
of the tuning parameter � with external magnetic field h = 6.0. All
data were computed in the thermodynamic limit for several values of
T > 0. The dotted lines mark the two QCPs for this model.

F is unique (a similar analysis applies to 〈F〉). In other words,
the fingerprint of a phase transition and its underlying model is
unique. The functional behavior of F as we change the tuning
parameter of the Hamiltonian and drive the system across the
QCP is specific for each model. In this sense, by studying F
we can not only detect a QCP but also pinpoint the underlying
model that led to that phase transition.

ACKNOWLEDGMENTS

G.R. is grateful to the Brazilian agency CNPq (National
Council for Scientific and Technological Development) for
funding and CNPq/FAPERJ (State of Rio de Janeiro Research
Foundation) for financial support through the National Insti-
tute of Science and Technology for Quantum Information.
G.A.P.R. is grateful to the São Paulo Research Founda-
tion (FAPESP) for financial support through the Grant No.
2023/03947-0.

FIG. 19. Same as Fig. 18 but with h = 12.0.

FIG. 20. One- and two-point correlation functions as a function
of λ, the inverse strength of the field. Here γ = 0.0. All data were
computed in the thermodynamic limit and at T = 0. The dotted
vertical line marks the QCP for this model.

APPENDIX A: CORRELATION FUNCTIONS FOR THE
XXZ MODEL IN AN EXTERNAL FIELD

The Hamiltonian describing the XXZ model in a longitudi-
nal external magnetic field is given by Eq. (16). The solution
to this model for arbitrary T is given by Refs. [36–39] and this
solution was adapted to the present purposes in Ref. [11]. At
the absolute zero temperature, the functional behavior of the
non-null correlation functions is given by Figs. 16 and 17. For
finite T , the correlation functions as a function of � are given
by Figs. 18 and 19.

APPENDIX B: CORRELATION FUNCTIONS FOR THE XY
MODEL SUBJECTED TO AN EXTERNAL FIELD

The Hamiltonian describing the XY model subjected to a
transverse external magnetic field is given by Eq. (42). This
model was solved for arbitrary T in Refs. [42–44]. Using the

FIG. 21. Same as Fig. 20 but with γ = 0.5.
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FIG. 22. Same as Fig. 20 but with γ = 1.0.

present notation, a step-by-step description of this solution
can be found in Ref. [11]. Note that two typos should be taken
into account when consulting Ref. [11]. The Hamiltonian for
the XY model presented there lacks an overall factor of 1

2 and
the expression for 〈σ z

j 〉 should be multiplied by −1.
In Figs. 20–22 we plot for T = 0 the nonzero correlation

functions for this model as a function of λ for the three values
of γ employed in the main text. Note that the case where γ =
1.0 is the transverse Ising model. For T = 0 and fixing λ =
1.5, we show in Fig. 23 the relevant correlation functions as
we change the anisotropy parameter γ .

FIG. 23. One- and two-point correlation functions as a function
of γ , the anisotropy parameter. Here λ = 1.5. All data were com-
puted in the thermodynamic limit and at T = 0. The dotted vertical
line marks the QCP for this model.

The respective curves for T > 0 have the general trends of
the T = 0 curves and we will not show them here. Similarly
to what we see for the finite-T curves of the XXZ model (see
Appendix A), as we increase the temperature the kinks are
smoothed out and displaced from their locations at T = 0.
Also, the magnitudes of the first- and second-order derivatives
of the correlation functions at the QCPs decrease and are
displaced from their T = 0 locations.
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