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Optically mediated remote entanglement generation in magnon-cavity systems
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We study the remote entanglement generation between macroscopic microwave magnon modes in a coupled
cavity system. The cavities are connected via an optical fiber, which necessitates the use of a frequency conver-
sion inside the cavity. The converter may be implemented via a rare-earth doped crystal acting like an effective
three-level system. The entanglement dynamics of the system is analytically studied, and an active optimal
control method is also proposed where one may generate maximally entangled Bell states on demand with a
given evolution time. The system dynamics and its control have also been studied in a generic non-Markovian
open system framework, and the generated entanglement is found to be robust against environmental noises.
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I. INTRODUCTION

Quantum magnon systems are a rapidly developing re-
search field that has been studied in many contexts related
to quantum information applications in recent years. Exper-
iments with the magnon systems have been explored in the
cavity-magnon interaction, entanglement generation, and con-
trol [1–5]. It has been found that macroscopic entanglement
can be established in the magnon modes, which is typically
found in magnetic materials such as yttrium iron garnet (YIG)
spheres [6–8], and has also been suggested to reside in Bose-
Einstein condensates [9]. The magnon system has shown itself
to be a versatile quantum entity that can be coherently coupled
to superconducting qubits [3,10,11], optical cavities [7,12,13],
and the mechanical vibration mode of the YIG sphere [14].
Such versatility makes the system a useful quantum infor-
mation carrier that can be incorporated into various existing
information processing platforms in quantum optics and other
experimentally available setups. Various measurement strate-
gies for magnons have also been reported, such as the magnon
polarization [15] and nonlinear foldover effect [16] which can
be directly measured.

The magnon systems have also been used in quantum
metrology such as probes for measurements of magnetic fields
[17], dark matter [18], and the gravitational wave [19]. It
is therefore of great interest to study the generation of en-
tanglement between magnons [3,20], where it may then be
used for quantum metrology tasks to achieve high-precision
measurements and weak signal detections. To potentially form
an entangled detector array, it is necessary to study the re-
mote coupling and entanglement generation among a set of
magnon systems. One promising strategy is to link the cavity-
magnon system via optical fibers. However, it is known that
the magnon modes are typically in the microwave range and
are orders-of-magnitude smaller than the optic frequencies
supported by current optical fiber components. Hence, some
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frequency conversion is necessary in this setup. Various fre-
quency conversion protocols have been proposed, such as
using non-linear quantum optics effects [21,22] or rare-earth
doped materials with external pumps [23–25]. Such frequency
converters may be used to couple cavity-magnon systems
together with conventional optical fibers.

In this paper, we study the entanglement generation in a
remote cavity-magnon system, where the cavity has both a
microwave mode and an optical mode. The microwave mode
of the cavity is coupled to a magnon mode and the frequency
converter inside the cavity introduces an effective coupling
between the cavity’s microwave and optical mode. The optical
modes of the two remote cavities can then be coupled to each
other through an optical fiber. The entanglement dynamics
as well as its active control are studied, and the influence
of open system effects is also fully considered in a generic
non-Markovian framework.

This paper is organized as follows. We first introduce the
coupled magnon-cavity system under consideration, and solve
for its dynamics and study the behaviors of entanglement
generation in the system in Sec. II. An optimal control strategy
is introduced in Sec. III where the generation of the maximally
entangled Bell state is studied. In practical scenarios, the
quantum systems are inevitably coupled to their environments
and may be susceptible to the noises induced by the open
system effects. The open system effects on the dynamics as
well as the optimal control are investigated in Sec. IV with
a generic non-Markovian treatment. We conclude with some
discussions and remarks in Sec. V, and some details of the
calculation are shown in the Appendix.

II. MODEL AND SOLUTION

For the remote entanglement generation, we consider two
cavity-magnon systems that are coupled to each other through
an optical fiber. It is known that the magnon modes operate
under microwave frequencies; therefore, one needs a physical
setting that can convert the microwave frequencies to optical
frequencies. One possible realization is made by carrying out
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FIG. 1. Schematics of the model under consideration. The
cavities are dual mode, supporting both optical and microwave fre-
quencies. Inside the cavities there is a magnetic sphere (e.g., YIG)
that houses a magnon mode and a frequency converter composed of
rare-earth doped crystals. The frequency converter can transfer the
excitation in the microwave frequency to the optical frequency. The
optical modes of the cavities can be coupled with an optical fiber.

the frequency conversion outside of the cavity-magnon system
at both ends which introduces an effective coupling between
the microwave cavities [3]. Alternatively, one may convert the
frequencies within the cavity-magnon system using a dual-
mode cavity that supports a microwave mode (in tune with
the magnon mode) as well as an optical mode. Inside the
cavity, there is a magnetic sphere housing a magnon mode,
and a frequency conversion apparatus, which may be imple-
mented as a rare-earth doped crystal [23–25]. The optical
modes of the cavities may then be coupled with an optical
fiber. A schematic representation of the model is displayed
in Fig. 1. The rare-earth doped crystal [23–25] effectively
acts like a three-level system, where the microwave excitation
drives it from the ground state |g〉 to |1〉, and an external laser
subsequently pumps it to the |2〉 state. The emission of the
transition from |2〉 to the ground state |g〉 yields the required
optical frequency. The scheme for this conversion is shown in
Fig. 2(a).

The full Hamiltonian for the system is given by

H =
∑
i=1,2

[ω′
aa†

i ai + ω′
bb†

i bi + ωmm†
i mi + δ2σ22,i

+ δ1σ11,i + gmb(m†
i bi + mib

†
i ) + �(σ12,i + σ21,i )

+ gcb(σ1g,ibi + σg1,ib
†
i ) + gca(σ2g,iai + σg2,ia

†
i )]

+ ja(a†
1a2 + a1a†

2), (1)

where ai is the optical cavity mode of the ith magnon-cavity
system with frequency ω′

a, bi is the microwave cavity mode
with frequency ω′

b, mi is the magnon mode with frequency
ωm, σk j,i = |k〉〈 j| for the three-level conversion atom in the
ith cavity (i = 1, 2), � is the pump frequency, δ1(2) is the
energy of the first (second) excited level of the converter, gmb

denotes the interaction strength between the magnon and the
microwave mode, gcb(ca) denotes the coupling between the mi-
crowave (optical) cavity mode and the converter, and ja is the
fiber coupling strength. Note that the rotating wave approxi-
mation (RWA) has been applied in Eq. (1), which generally

FIG. 2. (a) Schematic for the energy levels of the frequency
converter, which takes in a microwave frequency and converts it into
the optical frequency with an external pump. (b) Effective coupling
of the model under consideration: the magnon m couples directly to
the microwave mode cm of the cavity, whereas the effective coupling
between the microwave and optical mode co of the cavity is mediated
by the frequency converter �. The optical modes are then coupled
with an optical fiber.

requires the coupling strength to be much smaller than the
cavity and atom frequency. However, our numerical analysis
shows that, with the state space and initial condition consid-
ered in this paper, the RWA is still a viable treatment and
gives accurate results for the magnon-magnon entanglement
dynamics even when the coupling strength is comparable to
the order of the cavity frequency. In addition, the RWA analy-
sis has the advantage of allowing for full analytical derivations
and long-time stable simulations. Therefore, we adopt this
RWA treatment throughout this paper.

The difference between the optical and microwave frequen-
cies results in a large-detuning situation, which consequently
allows one to adiabatically eliminate [26,27] the |2〉 and |1〉
levels of the three-level converter. As such, we have an effec-
tive Hamiltonian for the dual-mode cavity-magnon system as

Heff =
∑
i=1,2

[ωaa†
i ai + ωbb†

i bi + ωmm†
i mi + gm(m†

i bi + mib
†
i )

+ gc(aib
†
i + a†

i bi )] + ja(a†
1a2 + a1a†

2), (2)

where ωa is the optical mode frequency, ωb is the microwave
mode frequency, ωm is the frequency of the magnon mode,
gm is the coupling between the magnon and microwave mode,
ja is the coupling strength of the optical fiber between the
two optical modes of the cavity, and the effective coupling
between the optical and microwave mode of the cavity is given
by gc = gcagcb�

δ2δ3−�2 . An illustration for this effective Hamiltonian
is shown in Fig. 2(b), which has a chainlike structure.

Note that the effective Hamiltonian Eq. (2) conserves the
total number of excitations in the system. Let us consider
the dynamics of the system in the single-excitation sub-
space, where an initial excitation is in the magnon mode of
the first magnon-cavity system. This treatment allows us to
use the magnon as an effective two-level system, which is
useful in quantum information processing tasks. The initial
state of the system can therefore be written as |ψ (0)〉 =
|100 000〉 where the basis is |m1, m2, cm1, cm2, co1, co2〉 for
excitation in the first (second) magnon, microwave mode,
and optical mode, respectively. The entanglement dynam-
ics measured by the concurrence [28] is shown in Fig. 3,
taking ωb = ωm = 1, ωa ≈ 4578, gm = 0.1, gc = 0.23, and
ja = 0.4 (timescale on the order of GHz−1). For the
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FIG. 3. Entanglement of the two magnon modes as a function
of time. Left panel: The entanglement dynamics is fast oscillating
and exhibits a beat pattern due to the superposition of oscillations
of slightly different frequencies. An approximation of the beat’s
envelope can also be obtained analytically, given by ev3 and ev4 in
the Appendix. Right panel: A zoom-in of t ∈ [0, 100] + 1.5 × 109,
showing the fast oscillations of the entanglement dynamics.

composite system under consideration, the parameters are
chosen to ensure that its components are within experimen-
tally viable regions in terms of their orders of magnitude
[23–25,29–31]. Furthermore, we choose the parameter values
to both accommodate numerical stability and highlight the
properties of the system’s dynamics during long-term evo-
lutions. It can be observed that the concurrence dynamics is
fast oscillating and shows a periodic envelope. The analytical
expressions for the envelope may also be analytically derived
(see the Appendix).

Numerical and analytical solutions to our system may
be obtained by using a Feshbach P-Q partition technique
[32–34]. In the basis where there is one excitation in the com-
bined system including magnons, microwave cavities, and
optical cavities mi, cm,i, co,i, where i = 1, 2, the Hamiltonian
takes a more concrete matrix form:

H ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωm 0 gm 0 0 0

0 ωm 0 gm 0 0

gm 0 ωb 0 gc 0

0 gm 0 ωb 0 gc

0 0 gc 0 ωa ja
0 0 0 gc ja ωa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Since the optical frequency ωa is orders of magnitude
larger than other parameters, we consider ωm = ωb and first
rotate out the optical part:

diag

(
04,

[
ωa ja
ja ωa

])
, (4)

where 04 is a 4 × 4 matrix whose elements are zero, and we
have

HI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωm 0 gm 0 0 0

0 ωm 0 gm 0 0

gm 0 ωm 0 g∗
cc −ig∗

cs

0 gm 0 ωm −ig∗
cs g∗

cc

0 0 gcc igcs 0 0

0 0 igcs gcc 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where gcc = gceiωat cos( jat ) and gcs = gceiωat sin( jat ) are the
fast-oscillating elements.

Taking P = ∑
i=1,2 |mi〉〈mi| + |cmi〉〈cmi| = diag(14, 02)

and Q = ∑
i=1,2 |coi〉〈coi| = 1 − P = diag(04, 12), where 1n

is an identity matrix of size n × n, and letting P|ϕ〉 = p,
Q|ϕ〉 = q we have

∂tP|ϕ〉 = −iPHI (t )P|ϕ〉 − iPHI (t )Q|ϕ〉
= −ihP|ϕ〉 − iRQ|ϕ〉

which can be denoted as

i∂t p = hp + Rq. (6)

Similarly,

∂tQ|ϕ〉 = −iQHI (t )P|ϕ〉 − iQHI (t )Q|ϕ〉
= −iWP|ϕ〉 − iDQ|ϕ〉

which again can be denoted as

i∂t q = W p + Dq. (7)

Since q(0) = 0 and D = 0, we have, formally, q =
−i
∫

dsW (s)p(s). Inserting this into Eq. (6), we finally get an
integral-differential equation:

i∂t p = hp − iR
∫

dsW (s)p(s) (8)

where

W (s)p(s) =
[

gceiωas[p3(s) cos( jas) + ip4(s) sin( jas)]

gceiωas[p4(s) cos( jas) + ip3(s) sin( jas)]

]
,

(9)

where pi denotes the ith component of the wave function
in the P projected space. Equation (8) is difficult to solve
directly since it is an integral-differential equation. Taking
into consideration that ωa 	 ωm, gm, gc, ja, we may convert
Eq. (8) into an ordinary differential equation. This is possible
since the integrand Eq. (9) is of the form f (s) exp(iωas) where
f (s) is a generic function, and we may approximate the term∫

dsW (s)p(s) using integrals by parts to express it in powers
of 1/ωa: let I be

I =
∫ b

a
f (τ ) exp (iωaτ )dτ

= ε[−i f (τ ) exp (iωaτ )]|bτ=a

− ε

∫ b

a

d

dτ
[−i f (τ )] exp (iωaτ )dτ, (10)

where ε = 1/ωa and the second term is just I with f →
d

dτ
[−i f (τ )] and contributes to the higher order O(ε2). Re-

peatedly using this formula enables one to write I in powers
of ε. We may now apply Eq. (10) to (9) and keep up
to O(ε3) [since O(ε2) cancels out fiber coupling], and we
have

i∂t p = heff p + pd , (11)
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where heff is an effective non-Hermitian Hamiltonian with O(ε2) corrections (due to the optical frequency), given by

heff =

⎛
⎜⎜⎜⎜⎜⎝

ωm 0 gm 0

0 ωm 0 gm

gm − g2
cgm

ω2
a

0 −g2
c (ωm+ωa )

ω2
a

+ ωm
g2

c ja
ω2

a

0 gm − g2
cgm

ω2
a

g2
c ja
ω2

a

−g2
c (ωm+ωa )

ω2
a

+ ωm

⎞
⎟⎟⎟⎟⎟⎠, (12)

and the drift term pd is on the order of O(ε2) and is discarded.
The wave-function components for the two magnons, up to

O(ε), may then be given by

ψm1 = p1(t ) = (eiω1t + e−iω2t + eiω3t + e−iω4t )/4,

ψm2 = p2(t ) = (eiω1t + e−iω2t − eiω3t − e−iω4t )/4, (13)

where

ω1(2) = [±g2
c(ωm + ωa − ja) + s1 ∓ 2ωmω2

a

]/
2ω2

a,

ω3(4) = [±g2
c(ωm + ωa + ja) + s2 ∓ 2ωmω2

a

]/
2ω2

a, (14)

and

s1(2) = √
g4

c(∓ ja + ωm + ωa)2 − 4g2
cg2

mω2
a + 4g2

mω4
a.

We may now see that the wave-function components cor-
responding to the magnons can be approximated by a
superposition of oscillations with slightly different frequen-
cies on the order of O(1/ω2

a ). The difference in frequency
is induced by the large optical frequency which is orders of
magnitude larger than other parameters, giving rise to a beat
pattern with a periodic envelope. The analytical expression
for the envelope may also be derived (see the Appendix).
In the situation where a high-resolution measurement of the
entanglement or system dynamics is difficult but the envelope
of the system dynamics is more feasible to measure, one may
instead deduce the system parameters from the envelopes.
This feature may be useful in situations where metrology of
the system parameters is used in the detection of weak signals,
where the signal alters the system parameters.

III. CONTROLLED ENTANGLEMENT GENERATION

The entanglement dynamics discussed in the previous
section has shown a rapid oscillatory behavior due to the
difference between the microwave and optical frequencies. In
some situations, the remote entanglement may be needed at
the prescribed time T . In such a situation, it is desirable to
explore how to generate a maximally entangled state at a given
time through an external control mechanism.

For this purpose, we may choose to modulate the frequency
of the magnon modes separately. Let the now time-dependent
frequency ωm for the first (second) magnon be f1(2)(t ).
The system Hamiltonian is now given by Eq. (2) where
the

∑
i=1,2 ωmm†

i mi term is replaced by
∑

i=1,2 fi(t )m†
i mi.

The target state is set to the maximally entangled Bell state
for the magnons and |0〉 for all cavity modes:

|ϕT 〉 = 1√
2

[|10〉 + |01〉]m1m2 ⊗ |0000〉cm1cm2co1co2 . (15)

The optimal shape of this modulated frequency may be
obtained by a gradient-based search algorithm known as the
Krotov method [35–38], which can find an optimal set of
control functions fi(t ) such that the Hamiltonian H = H0 +∑

i fi(t )Hi can drive the system from some initial state |ψ (0)〉
into a given target state |ϕT 〉 for an evolution time of T . One
problem faced by the quantum feedback or closed loop control
is that the control function is determined by the quantum state,
while on the other hand, the quantum state is also dependent
on the control function through time propagation. The Krotov
method is formulated with a unique approach to how it sepa-
rates the interdependence between the state evolution and the
control fields. The Krotov method works as an iterative algo-
rithm where the control functions obtained from the previous
iteration are used as the guess for the next one, provided with
an initial guess of the controls. The goal of the Krotov method
is to minimize the functional J defined below:

J
[
s,
{

f (i)
l (t )

}] = JT (s) +
∑

l

∫ T

0
g
({

f (i)
l (t )

})
, (16)

where s = {|ψ (i)(t )} denotes the wave functions under the
ith iteration, and { f (i)

l (t )} are the control functions. In the
continuous time limit [35,37,38], the algorithm is guaranteed
to monotonically minimize the functional (16).

For the control problem of state engineering, JT can be set
to be the infidelity between the evolved state and the target
state,

JT (s) = 1 − |〈ϕT |ψ (i)(T )〉|2, (17)

for the ith iteration, where |ϕT 〉 is the target final state.
The function g tracks the running cost of the control fields’
changes, and is usually taken in the form of

g
({

f (i)
l (t )

}) = λa,l

Sl (t )

[
� f (i)

l (t )
]2

, (18)

where λa,l > 0 is an inverse step size; � f (i)
l (t ) = f (i)

l (t ) −
f ref
l (t ) is the difference of the control function between the

current control field and some reference control field f ref
l (t ),

generally taken as the control functions obtained from the last
iteration f ref

l (t ) ← f (i−1)
l (t ); and Sl (t ) ∈ [0, 1] is the weight

or update shape function. One then starts with a trial solution
to the control functions, and in the ith iteration, the lth control
field is updated according to

� f (i)
l (t ) = Sl (t )

λa,l
Im

[
〈χ (i−1)(t )| ∂H (i)

∂ f (i)
l (t )

|ψ (i)(t )〉
]
, (19)

where H (i) is the total Hamiltonian of the ith iteration and
|χ (i−1)(t )〉 is backwards propagated using the Hamiltonian
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FIG. 4. (a) The entanglement dynamics of magnon modes with-
out an active control. (b) The control functions f1(2)(τ ) as functions
of the scaled time τ = t/T , where T is the total runtime. The green
(orange) line shows an example of f1(2) for T = 45, and the gray lines
corresponds to the control functions f1(2) under T = 46, 47, . . . , 100.
It can be seen that they can be kept in a range of 1 ± 0.3. (c) The
entanglement of the magnons at t = T for integers T ∈ [45, 100]
(blue line marked with dots). It can be seen that they are close to the
maximally entangled Bell state, with concurrence CT > 0.9999. The
orange line marked with � shows the number of iterations needed to
reach the target state. (d) An example of the entanglement dynamics
for T = 45, as a function of the scaled time τ = t/T .

under the previous iteration’s control fields, with an appro-
priate boundary condition |χ (i−1)(T )〉 ∝ |ϕT 〉, i.e., the target
state.

Here, we apply the Krotov method to find the controls f1(2),
with a goal of reaching J = 1 × 10−4 or the controls functions
falling out of the range of 1 ± 0.3 so that the modulated
frequency does not fall out of some typical magnon mode
frequency. Taking ωb = 1, ωa = 12, ja = 3, gm = 1, and gc =
1.5, we first show the uncontrolled entanglement dynamics in
Fig. 4(a), where we can see the fast oscillation and the beat
pattern envelopes. In Fig. 4(b), the optimized control f1(2) for
T = 45 is shown as the green (orange) line as an example,
and the optimized controls f1(2) for T = 46, 47, . . . , 100 are
shown as gray lines, as a function of the scaled time τ =
t/T . It can be seen that the controls can be contained within
1 ± 0.3. The final concurrence and the number of iterations
needed to reach the control goal are also given in Fig. 4(c),
and an example of the entanglement dynamics for T = 45 is
shown in Fig. 4(d). The control employed here can drive the
final state very close to the maximally entangled target Bell
state, with concurrence above 0.9999, and this strategy may
be employed in situations where the entanglement needs to be
generated on demand, with a given runtime.

IV. NOISES AND ENTANGLEMENT GENERATION

We have shown how to generate magnon entanglement in
various interesting physical settings when the environmental
noises can be effectively ignored. In this section, we study
the robustness of generated entanglement when the magnon-
cavity systems are under the influence of external noise. Such
noise analysis can be realized by using a standard quantum

open system approach [39]. For the physical system under
consideration, the remote entanglement generation requires
that the two cavities are located in different places; it is of
interest to consider the situation where each cavity is coupled
to its own environment.

To be more specific, the noise effect may be described by
a bosonic heat bath with Lorentzian spectrum, and note that
the other types of noises such as classical noises or collective
noises can be treated in a similar way [40,41]. The Hamilto-
nian Htot for both the system and the heat bath may be written
as

Htot = Hs + Hb + Hint

= Heff +
∑

j=1,2;i

ω̃iB
†
j,iB j,i +

∑
j=1,2;i

(LjB
†
j,i + H.c.), (20)

where Hs = Heff is given in Eq. (2), ω̃i is the frequency of the
ith bath mode, Bj,i(B

†
j,i ) is the annihilation (creation) operator

for the ith mode of bath j, and Lj describes the system-bath
coupling between cavity j and bath j. Here, we consider
dissipative microwave and optical cavities:

Lj = λaa j + λbb j . (21)

The open system dynamics of the cavity-magnon sys-
tem coupled to a generic non-Markovian noise is our major
concern. The reduced density operator ρs = Trb[ρtot] can be
conveniently simulated by using the quantum state diffu-
sion (QSD) equations [42–44]. By projecting the bath modes
onto the Bargmann coherent states |z〉 j = exp[zkB†

j,k]|0〉, and
denoting the wave function of the cavity-magnon system
|ψt (z∗

1, z∗
2 )〉 = 〈z1|〈z2|�〉, one can show that the wave func-

tion |ψt (z∗
1, z∗

2 )〉 satisfies the following stochastic Schrödinger
equation:

∂t |ψt (z
∗
1, z∗

2 )〉 = [−iHs + L1z∗
1 + L2z∗

2 − L†
1Ō1 − L†

2Ō2]|
× ψt (z

∗
1, z∗

2 )〉, (22)

where Ōi = ∫
dsαi(t, s) δ

δz∗
i,s

denotes the functional derivative

of the state with respect to the noise zi,s and αi(t, s) =
M[zi,t z∗

i,s] is the correlation or memory function of the bath,
where M[·] denotes the ensemble average for the stochastic
process. The reduced density matrix is then recovered from
the ensemble average ρs = M[|ψt (z1, z2)〉〈ψt (z∗

1, z∗
2 )|]. One

nice feature of the QSD approach is that it is able to encap-
sulate the environment memory effect into the Ō operator and
thus give a time-convolutionless differential equation for the
system dynamics.

The solutions to the open system problems are dependent
on the choice of an approximate Ō operator [42–46]. When
the system-bath coupling is not in a strong-coupling regime, a
leading-order master equation may be derived in the form of
[47,48]

d

dt
ρs(t ) = −i[Hs, ρs]

+
∑
j=1,2

[
Lj, ρt Ō

(0)†
j (t )

]− [
L†

j , Ō(0)
j (t )ρt

]
, (23)
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FIG. 5. Entanglement dynamics of the magnons as a function
of time. The blue lines are under close system dynamics, the
yellow dashed lines are obtained from a generic non-Markovian
open system treatment, whereas the red dashed lines are obtained
from the Markov master equation. It can be seen that the generation
entanglement can be quite robust against the noises introduced by the
dissipative cavity modes, and the non-Markovian effects may make
the entanglement dynamics much less susceptible to dissipation.

where the Ō operator is approximated by a noise-free version
obtained from

∂t O
(0)
j (t, s) =

⎡
⎣−iHs −

∑
k=1,2

L†
k Ō(0)

k (t ), O(0)
j (t, s)

⎤
⎦,

Ō(0)
j (t ) =

∫ t

0
dsα j (t, s)O(0)

j (t, s). (24)

Here we consider two identical baths with the Ornstein-
Uhlenbeck noise [42–44] with α1,2(t, s) = γ exp(−γ |t −
s|)/2, where 1/γ describes the memory time of the bath. In
the limit of γ → ∞, we get the white-noise case and the dy-
namics are memoryless (Markov). In this case the correlation
function α(t, s) becomes a δ function and the Ō j operator is
replaced by Lj/2. For a finite γ , we have a non-Markovian
bath with memory effects. Taking λa = λb = 0.01, γ = 0.7,
ωm = ωb = 1, ωa = 1200, ja = wa/3, gm = 0.1, and gc =
0.7, we plot the concurrence as a function of time in Fig. 5,
where the blue lines are from closed system dynamics for
comparison, the concurrence obtained from non-Markovian
master equation Eq. (23) is plotted in yellow, while the Marko-
vian limit result is plotted in red. It can be seen that for
the parameters considered here, the memory effects of the
non-Markovian bath can make the generated entanglement
less susceptible to decoherence compared with a memoryless
bath.

It is also of interest to see how environmental noises affect
entanglement generation when the optimal control is in action.
For the convenience of comparison, we calculate the open sys-
tem entanglement dynamics for a runtime of T = 45, shown
in Fig. 6(a), and the fidelity of the evolved state in the open
system against the target Bell state is shown in Fig. 6(b). It
can be seen that the controlled entanglement scheme remains
robust in the presence of the environment noises, where the
final concurrence may reach to 0.89 under non-Markovian
noise and 0.85 under the Markov approximation. Expect-
edly, when the system-bath couplings become stronger, the

FIG. 6. Concurrence (a) and fidelity against the target state (b) of
the optimally controlled dynamics under an open system for T = 45,
with the same parameters as Fig. 4, with system-bath coupling λ =
0.1. The blue line corresponds to the closed system dynamics, the
yellow line is obtained under a non-Markovian dynamics, while the
red dashed line is obtained under the Markov approximation. It can
be seen that for the parameters considered here, the control is quite
robust against the environment noises, and the concurrence is still
able to reach 0.89 under non-Markovian dynamics while it is slightly
lower under Markov approximation at 0.85.

generated entanglement is to drop more rapidly. In this case,
to maintain robust entanglement one must employ an active
control to decouple the system from the detrimental effects
[49–51].

V. CONCLUSIONS

We considered the remote entanglement generation in a
coupled magnon-cavity system with an auxiliary frequency
conversion system. It is shown that the remote entanglement
between the magnon modes can be achieved in several phys-
ically interesting settings. System parameters within realistic
regimes are being considered which are chosen to accommo-
date the PQ partition to derive analytical expressions and to
support stable numerical simulations. In particular, the op-
tical mode is chosen to be ≈103 of the microwave modes
[23–25], and the coupling strength is on the order of 1/10 of
the microwave mode, within attainable ultrastrong-coupling
ranges [52].

Due to the differences in the microwave and optical fre-
quencies, the wave-function components corresponding to
the magnon system can be approximated by a superposi-
tion of oscillations of slightly different frequencies and thus
shows a beat pattern with a periodic envelope. As such, the

012611-6
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entanglement dynamics also display a beat pattern. It should
be noted that other frequency conversion strategies may also
be used in lieu of the rare-earth doped crystal. For exam-
ple, it has been proposed [53–55] that the same magnetic
material may be used in conjunction with a whisper galley
mode to induce an effective coupling between the microwave
and optical modes using electro-optic effects. We also show
how to use the Krotov optimal approach to generate a desir-
able entangled state in a prescribed time. For both controlled
and uncontrolled cases, we have studied the robustness of
the generated entanglement under the influence of an en-
vironmental noise modeled by a non-Markovian process in
the framework of quantum open systems. We found that the
magnon entanglement can be robust against dissipative mi-
crowave and optical cavities under the influences of open
system effects. Interestingly, we show that the non-Markovian
dynamics preserves the entanglement more effectively than
the memory-less Markov case. The robust entanglement be-
tween remote macroscopic magnon modes is of interest in
many quantum information processing tasks such as high-
precision measurement and detections [56–62]. It would also
be of interest to study the entanglement dynamics and its con-
trol for other states such as NOON states or other entangled
continuous-variable states.
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APPENDIX: APPROXIMATE ANALYTICAL
EXPRESSIONS FOR THE ENVELOPES

FOR THE ENTANGLEMENT DYNAMICS

In this Appendix, we show the approximate analytical ex-
pressions for the envelopes for the entanglement dynamics, as
displayed in Fig. 3. Let

φ1 = cos2

(
g2

c jat

ω2
a

)
sin4

(
g4

c jat

2gmω3
a

)
csc

(
g2

c jat
(
g2

c − 2gmωa
)

2gmω3
a

)

× csc

(
g2

c jat
(
g2

c + 2gmωa
)

2gmω3
a

)
(A1)

FIG. 7. Concurrence between the magnons as a function of time,
with the analytical envelopes ev1 . . . ev4. The light-blue lines are the
fast-oscillations entanglement, and different colors of the envelope
correspond to branches in the envelope. There also exists an overall
envelope to the envelopes ev1 . . . ev4, plotted as the orange dashed
line.

defined in the region where
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(
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)
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)
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∣∣∣∣∣
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is not satisfied. Further, define

φ2 = sin

(
g2

c jat

ω2
a

)
cos2

(
g4

c jat

4gmω3
a

)
, (A3)

φ3 = sin

(
g2

c jat

ω2
a

)
sin2

(
g4

c jat

4gmω3
a

)
, (A4)

� = max

[
cos2

(
g4

c jat

4gmω3
a

)
, sin2

(
g4

c jat

4gmω3
a

)]
. (A5)

The envelope ev1 can then be given by
√|φ1|/2 in the

region where φ1 is defined. The envelope ev2 is given by
min[|φ2|, |φ3|] in the region where φ1 is defined. In the region
where φ1 is not defined, the envelope ev3 is given by |φ2| and
the envelope ev4 is given by |φ3|.

For the parameters and time range considered in Fig. 3,
only ev3 and ev4 are defined. To see all the possible branches
of the envelope, we take ωb = ωm = 1, ωa = 1200, gm = 1,
gc = 12, and ja = 30, and plot the concurrence as a function
of time along with the envelopes in Fig. 7. There also exists
an overall envelope to the envelopes ev1 . . . ev4, given by �,
shown as the orange dashed line in Fig. 7.
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