
PHYSICAL REVIEW A 109, 012610 (2024)
Editors’ Suggestion

Experimental implementation of an efficient test of quantumness

Laura Lewis ,1,2,* Daiwei Zhu,3,4,5,6 Alexandru Gheorghiu,7 Crystal Noel ,3,8,9 Or Katz,8,9

Bahaa Harraz,3 Qingfeng Wang ,3,4,10 Andrew Risinger,3,4 Lei Feng,3,4 Debopriyo Biswas,3,4

Laird Egan,3,4 Thomas Vidick,1 Marko Cetina,3,8 and Christopher Monroe3,4,5,8,9

1Institute for Quantum Information and Matter and Department of Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, California 91125, USA

2Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
3Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering,

University of Maryland, College Park, Maryland 20742, USA
4Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA

5IonQ, Inc., College Park, Maryland 20740, USA
6Departments of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

7Institute for Theoretical Studies, ETH Zürich, Zürich CH 8001, Switzerland
8Duke Quantum Center and Department of Physics, Duke University, Durham, North Carolina 27708, USA

9Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
10Chemical Physics Program and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

(Received 16 October 2022; revised 25 October 2023; accepted 2 November 2023; published 9 January 2024)

A test of quantumness is a protocol where a classical user issues challenges to a quantum device to determine
if it exhibits nonclassical behavior, under certain cryptographic assumptions. Recent attempts to implement
such tests on current quantum computers rely on either interactive challenges with efficient verification or
noninteractive challenges with inefficient (exponential time) verification. In this paper, we execute an efficient
noninteractive test of quantumness on an ion-trap quantum computer. Our results significantly exceed the bound
for a classical device’s success.

DOI: 10.1103/PhysRevA.109.012610

I. INTRODUCTION

As research in quantum theory continues to advance, ex-
perimentally testing the validity of the theory becomes of
greater importance. In particular, a key question is whether
quantum mechanics is falsifiable in the regime of high
complexity arising from large entangled states [1]. This
is exceptionally difficult to answer due to the exponential
complexity in representing general quantum systems. Tradi-
tionally, one can test a physical theory by first predicting
an outcome according to the theory and comparing with
the experimental result. In quantum mechanics, such pre-
dictions can require exponential resources to obtain and
therefore do not provide a feasible approach for validating the
theory.

The work of [1] proposed one way to overcome this
exponential overhead: using interactive protocols known as
interactive proof systems [2–6]. Such protocols allow a com-
putationally weak verifier to test the behavior of a powerful
prover (or even multiple provers [7–10]). The protocols work
by having the verifier issue a challenge to the prover, the
prover responds, the verifier issues another challenge, and the
process repeats. After a certain number of rounds, the verifier
either accepts or rejects based on the prover’s responses in all
rounds. Interactive proofs have been key to several develop-
ments in complexity theory and cryptography [4,11–13].

*llewis@caltech.edu

For the specific case in which the prover is a quantum
computer, a number of protocols have been proposed to verify
the results of general quantum computations [14]. Prior to
2018, all such protocols required quantum communication be-
tween the verifier and the prover. This changed following the
breakthrough result of Mahadev, who gave the first protocol
for quantum verification using only a classical verifier [15].
At the same time, Brakerski et al. introduced the concept of
a test (or proof) of quantumness [16]. This is a protocol in
which the verifier simply wishes to determine if the prover
is nonclassical. In other words, a test of quantumness is an
interactive protocol in which an efficient quantum prover can
make the verifier accept (with high probability) and no effi-
cient classical prover can make the verifier accept (with high
probability). “Efficient” in this context means that the prover
runs in polynomial time. The challenges issued by the verifier
in this protocol are constructed so that a classical prover
would be unable to answer them, unless it is able to efficiently
solve hard cryptographic problems [such as factoring, or the
learning with errors (LWE) problem [17]]. On the other hand,
the quantum prover is able to answer these challenges, without
necessarily violating the intractability of the cryptographic
tasks. Crucially, the verifier can efficiently check whether the
challenges were answered correctly or not. This then serves
as a test of quantum behavior under certain cryptographic
assumptions.

Several recent works have addressed the problem of con-
structing cryptographic proofs of quantumness [16,18–23]. As
these are interactive protocols, the main challenge towards

2469-9926/2024/109(1)/012610(8) 012610-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7793-8345
https://orcid.org/0000-0002-2977-2747
https://orcid.org/0000-0002-6199-1560
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.012610&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1103/PhysRevA.109.012610

LAURA LEWIS et al. PHYSICAL REVIEW A 109, 012610 (2024)

an experimental implementation is that the quantum prover
must perform mid-circuit measurements in order to correctly
answer the verifier’s challenges. While extensive research
has been conducted on how to effectively implement mid-
circuit measurements [24–26], the process introduces more
errors compared to performing terminal measurements, which
occur only at the end of the algorithm. The feasibility of
implementing interactive cryptographic proofs of quantum-
ness via mid-circuit measurements with near-term devices
was recently demonstrated in [22]. There, it was observed
that when implementing both mid-circuit measurements and
terminal measurements for the same protocol, the protocols
with intermediate measurements resulted in a significantly
lower success probability. Moreover, other currently known
interactive protocols rely on heavy cryptographic assumptions
that have a large impact on the qubit count and depth of the
required circuits. It would therefore be desirable to have a test
of quantumness that is noninteractive.

Such a protocol was proposed in [27]. This replaces the
need for interaction with the use of a one-bit hash function.
The high-level idea is that because the hash function acts as a
random function (or, more formally, as a random oracle), in
order to succeed in the verifier’s new challenge involving the
hash function, the prover must effectively have been able to
answer both branches of the interactive version of the proto-
col. In a sense, the hash function accounts for both branches of
the interactive protocol, eliminating the need for interaction.
The idea of using hash functions to eliminate interaction orig-
inates in cryptography, where it is known as the Fiat-Shamir
heuristic [28].

This technique opens up more possibilities for efficient
tests of quantum mechanics on near-term devices and con-
trasts the approaches used previously to certify quantum
advantage [29,30]. Those approaches are based on delegat-
ing a sampling task to the quantum device (such as random
circuit sampling or boson sampling) and then checking the
validity of the obtained samples using the linear cross-entropy
benchmark (LXEB) [31]. The major downside of this approach
is that computing the LXEB takes exponential time, mean-
ing that certifying quantum advantage in this way quickly
becomes intractable [29,31,32]. In addition, there are situa-
tions in which the LXEB can be “classically spoofed” (i.e.,
there is an efficient classical algorithm which can produce
samples that are valid according to the LXEB) [33,34]. The
proof of quantumness of [27], on the other hand, requires
only polynomial runtime to perform the certification and is
thus efficient. In addition, classically spoofing the results of
a proof of quantumness is (provably) as hard as breaking
the underlying cryptography (this follows from the sound-
ness of these protocols against classical provers as shown in
[16,27]). We note that a new noninteractive test of quantum-
ness was recently introduced in [35], which only relies on
one of the two cryptographic assumptions required in [27]
(the hash functions, see below). However, the protocol from
[35] seems more computationally intensive1 for the quantum

1Without going into details about how the protocol from [35]
works, the reason it appears more computationally intensive is

prover compared to the approach in [27]. For this reason, we
only consider an experimental implementation of [27].

In this paper, we advance past the experimental work for
the simpler learning with errors protocol in [22] to elimi-
nate interaction and implement the protocol of [27] using
11 qubits on an ion-trap quantum computer. Our results are
also complementary to the recent experimental work [23],
which implements a simpler version [21] of Mahadev’s in-
teractive protocol for the classical verification of quantum
computations [15] (but does not experimentally implement the
required interaction). In each of our experiments, the quantum
device’s success rate in answering the verifier’s challenges
significantly exceeds that of the best possible classical strat-
egy. This therefore verifies our device’s nonclassical behavior
and serves as a noninteractive proof of quantumness. We also
comment on the possibility of scaling up this experiment to
larger devices as a test of quantum mechanics, where we
present this noninteractive protocol as a valuable alternative,
which potentially has a much improved asymptotic scaling.

II. BACKGROUND ON CRYPTOGRAPHY

The noninteractive protocol of [27] relies on two crypto-
graphic primitives: trapdoor claw-free functions (TCFs) and
hash functions [38].

A TCF, denoted f , is a 2-to-1 function. In other words,
there exist exactly two preimages x0, x1 that map to the same
image w = f (x0) = f (x1). The pair (x0, x1) is referred to as
a claw. The “claw-free” property of a TCF is that, given the
description of f (for instance, a circuit which evaluates f),
it should be intractable to find a claw. In other words, no
polynomial time classical (or quantum) algorithm can find
a tuple (x0, x1,w) such that f (x0) = f (x1) = w. Finally, the
trapdoor is a secret information that allows one to efficiently
invert the function, recovering x0 and x1 from w.

The TCF we consider in this paper is based on the LWE
problem [17,39]. In short, this problem is that of solving
an approximate system of linear equations over the integers
modulo q, denoted Zq. Explicitly, given an m × n matrix
A ∈ Zm×n

q with entries modulo q and an m-dimensional vector
y = As + e ∈ Zm

q with entries modulo q, where e is a vector
with small entries, known as the error vector, the problem is
to solve for s ∈ {0, 1}n. The entries in the error vector, e, are
sampled from a discrete Gaussian distribution of small width
(centered around zero). The LWE problem is conjectured to
be intractable for both classical and quantum computers (i.e.,
it cannot be solved in polynomial time). This is known as
the LWE assumption [39]. The assumed intractability forms
the basis for defining a TCF. The specific TCF we consider

because the quantum prover in that protocol is required to perform
a quantum Fourier transform (QFT) as well as coherently decode
noisy codewords for a Reed-Solomon code. The circuits for these
operations are comparable to the circuits for performing Shor’s algo-
rithm [36,37] and so would not be suitable for near-term devices. In
contrast, as we explain later, the protocol from [27] does not require
the use of the QFT and only requires the coherent evaluation of a
class of functions that can be implemented with short depth circuits
[20].

012610-2

EXPERIMENTAL IMPLEMENTATION OF AN EFFICIENT … PHYSICAL REVIEW A 109, 012610 (2024)

FIG. 1. Circuit diagrams for the prover’s operations (a) and the hash function used (b) in the protocol. The prover first evaluates the TCF
f and the hash function H on a superposition of all possible inputs. In (a), U (A, b, x, s, e) denotes the operations used to evaluate the TCF in
Eq. (1) and Uh denotes the operations used to evaluate the cryptographic hash function in Eq. (2), which is illustrated explicitly in (b). Details
about the implementation of U (A, b, x, s, e) can be found in the supplementary information of [22]. The prover then measures the registers of
qubits storing b and x in the Hadamard basis and the register storing the result of evaluating the TCF in the standard basis.

here was also used in [20,22]. Starting from an LWE sample
consisting of a matrix A and vector y = As + e, the function
is defined as

f (b, x) = �Ax + by�. (1)

Here, b ∈ {0, 1} is a single bit while x ∈ Zn
q is a vector of

dimension n with entries modulo q. Additionally, �·� denotes
a rounding operation, which can be understood as taking the
most significant bits (MSBs) of the entry being rounded (for
more details, see the related learning with rounding prob-
lem [40,41]). In this case, �Ax + by� corresponds to simply
taking the most significant bit of each component of the
vector Ax + by. Notice that here the claw is determined by
f (0, x0) = f (1, x1) where x1 = x0 − s.

The second type of cryptographic function we consider is
the hash function. Hash functions are a fundamental tool in
cryptographic protocols and are usually modeled as random
oracles. An oracle function, h : {0, 1}∗ → {0, 1}, is a func-
tion for which one is not given an explicit description and
instead queries it in a black box manner. Here {0, 1}∗ denotes
bitstrings of arbitrary length. A random oracle refers to the
fact that the oracle function is chosen uniformly at random
from the set of all functions (or rather, for each input length n,
one chooses a random function from {0, 1}n to {0, 1}). As it is
often difficult to prove the security of a protocol with respect
to a concrete instantiation of a hash function, one instead
proves security in the random oracle model [42]. This simply
means that the hash function is modeled as a random function,
which all parties in the protocol can evaluate. Classically, this
means querying with some input x and obtaining the output
h(x). In the quantum case, however, it is possible to query
the random oracle in superposition [43]. In other words, when
performing a quantum query, the state

∑
x αx|x〉|y〉 is mapped

to
∑

x αx|x〉|y ⊕ h(x)〉. Here, we restricted the output of the
oracle to 1 bit, as this is the type of function used in the
protocol of [27].

In the random oracle model and together with the LWE
assumption, the protocol in [27] is a noninteractive test of
quantum mechanics. When instantiating this protocol, we

considered the TCF from Eq. (1) and a simple hash function
represented as a low-degree polynomial. Ideally, one would
use a hash function standardized by NIST, such as SHA-256
or SHA-3 [44,45]. However, those hash functions would re-
quire large numbers of qubits and gates in order to implement.
For this reason, we propose using a small circuit, represent-
ing either a low-degree polynomial or a random (classical)
circuit of short depth. This takes inspiration from the low-
complexity hash functions introduced in [46] as well as the
low-complexity one-way function of Goldreich [47]. Specifi-
cally, for our implementation we utilized the hash function

H (b, x) = b + x1 + bx1 + x1x4 + bx3x4, (2)

where xi denotes the ith bit of the binary representation of x.
It should be noted that in our implementation, x = x1x2x3x4

is 4 bits long. A circuit diagram for this hash function, where
the computation of the hash is performed in phase, is depicted
in Fig. 1(b).

III. TEST OF QUANTUMNESS

A. Detailed protocol

With this background, we can now describe the protocol
from [27] in more detail. A high-level circuit diagram de-
picting the prover’s operations is displayed in Fig. 1. Recall
that the protocol is noninteractive, in the sense that it only
consists of one challenge message from the verifier to the
prover, followed by the prover’s response. Additionally, one
assumes that the hash function is chosen before the start of
the protocol and is known to both the verifier and the prover.

The protocol starts with the verifier generating an LWE
instance (A, y) (together with a trapdoor [48,49]), that defines
the TCF from Eq. (1) and sending the instance to the prover
(while keeping the trapdoor secret). The prover is then re-
quired to evaluate the TCF f and the hash function H on a
superposition of all possible inputs (consisting of the bit b and
the string x). The TCF is evaluated in the computational basis,
while the hash function is evaluated in phase. In other words,

012610-3

LAURA LEWIS et al. PHYSICAL REVIEW A 109, 012610 (2024)

the prover prepares the state∑
b,x

(−1)H (b,x)|b, x〉| f (b, x)〉, (3)

suitably normalized. The prover then measures the register of
qubits storing the result of evaluating the TCF, denoting the
classical output as w, resulting in the state

1√
2

(|0, x0〉 + (−1)H (0,x0)+H (1,x1)|1, x1〉)|w〉, (4)

where (0, x0) and (1, x1) are the two preimages of w =
f (0, x0) = f (1, x1). Finally, the prover measures the qubits in
the input registers storing b and x in the Hadamard basis. The
prover’s operations are depicted in Fig. 1(a). Denoting the first
bit in the measurement outcome as z and the remaining bits as
the string d , it can be shown that the following equation will
be satisfied:

d · (x0 ⊕ x1) = z ⊕ H (0, x0) ⊕ H (1, x1). (5)

When the verifier sent the LWE instance to the prover, the
challenge for the prover was to produce a tuple (w, z, d), such
that Eq. (5) is satisfied. The quantum strategy of the prover,
outlined here, does indeed produce such a tuple and this will
be the prover’s response to the verifier. The verifier uses the
trapdoor to invert f on w, obtaining (0, x0) and (1, x1). With
this, and the prover’s response, the verifier checks Eq. (5),
accepting if it is satisfied and rejecting otherwise. Note that
while we presented the prover as performing its two measure-
ments in sequence, the measurements can in fact be performed
at the same time, as depicted in Fig. 1(a).

Let us provide some intuition for why a classical prover
cannot succeed in the above protocol. The reason has to do
with the intractability of finding a claw for the TCF and the
fact that, classically, the random oracle (representing the hash
function) can only be queried on a single input at a time (in
contrast to the quantum case, where it is possible to query it
on a superposition). We know that no efficient classical prover
can produce a tuple (w, x0, x1), with f (0, x0) = f (1, x1) = w.
Of course, in the protocol, the prover is merely required to
produce a valid equation in the preimages of w, which can
in principle be easier than finding a claw. However, in this
case the use of the hash function precludes this possibility. A
classical prover cannot compute both H (0, x0) and H (1, x1),
as this would require querying the oracle on both points,
meaning that the prover had obtained a claw. This then means
that at least one of H (0, x0), H (1, x1) will be random and so a
classical prover’s probability of finding a valid equation will
be 1/2. By simply repeating the protocol multiple times, the
classical prover’s probability of succeeding in all challenges
becomes negligible. The reason this argument fails for quan-
tum provers is because quantum provers can query both the
TCF and the random oracle in superposition. Indeed, this is
precisely what is leveraged in the protocol in order to produce
a valid equation. For the full proof of classical hardness, we
refer the reader to [27].

B. Implementation of protocol

To concretely describe how the quantum prover executes
the protocol, we now describe the quantum operations per-

formed, which are illustrated at a high level in Fig. 1. Details
about the implementation of U (A, b, x, s, e) can be found in
the supplementary information of [22]. We summarize this
information here for completeness. The crucial portions of
the algorithm are the evaluation of the TCF, represented by
U (A, b, x, s, e), and the evaluation of the hash function, repre-
sented by Uh. The latter is explicitly defined in Fig. 1(b), so we
focus on the former. To compute the TCF, the prover utilizes
four total registers of qubits: one for each of the b and x inputs,
one for the output, and an ancilla register to assist in the com-
putation, requiring a total of N = 1 + n log2(q) + log2(q) +
m qubits. Here, the bit b is stored in a single qubit while
the n-dimensional vector x with entries modulo q requires
n log2(q) qubits. As we shortly describe, the ancilla register
only stores one entry of an m-dimensional vector with entries
modulo q at a time so that it uses log2(q) qubits. Finally, the
output register is an m-dimensional vector with binary entries;
hence it requires m qubits. For our choices of parameters
n = 2, m = 4, q = 4, this results in N = 11 qubits.

Recall that the prover wishes to compute f (b, x) = �Ax +
by
 coherently, where this is an m-dimensional vector when A
is an m × n matrix. The prover computes this vector one entry
at a time, allowing it to reuse the ancilla qubits for each entry.
More precisely, the ith component of this vector is the most
significant bit of 〈ai, x〉 + byi, where ai denotes the ith row
of the matrix A and 〈·, ·〉 denotes the inner product modulo
q. The prover can compute this in the ancilla register in the
Fourier basis via several controlled rotation gates (controlled
on the input qubits). Following this, the prover converts the
ancilla register to the computational basis by applying the
inverse quantum Fourier transform, “copies” the most signif-
icant bit from the ancilla register to the output register via
another controlled rotation, and converts the ancilla register
back into the Fourier basis. Now, the output register stores
the ith component of the desired vector. To compute the re-
maining entries, the prover reverses this computation on the
ancilla register and proceeds for the other rows of the matrix.
This resetting of the ancilla allows the prover to reuse the
qubits, significantly reducing the qubit usage required for the
protocol. Precisely, without the ancilla, the number of qubits
would scale as 1 + n log2(q) + m log2(q) + m, where m > n.

This also exhibits a tradeoff between the number of qubits
and the depth of the quantum circuit. Namely, one can use
more ancilla qubits to simultaneously compute multiple en-
tries of the vector f (b, x), thus decreasing the depth. This
flexibility makes the protocol amenable to implementation on
different devices, for which one of qubit count or depth may
be more costly. Another potential tradeoff could be in the cost
of reversing the computation on the ancilla register versus
executing a mid-circuit reset of the ancilla qubits (similarly
to the protocol in [18]). This could be useful for devices in
which a mid-circuit reset is less costly than performing the
gates required for reversing the computation coherently. We
remark that this mid-circuit reset differs from the mid-circuit
measurement approach for these protocols [22] because we
are not required to perform gates on the postmeasurement
ancilla qubits, potentially allowing for lower error rates [26].

We implement the quantum prover’s circuits (Fig. 1) using
an ion-trap quantum computer [22,50,51] to test our protocol.
The quantum computer consists of 13 qubits made from a

012610-4

EXPERIMENTAL IMPLEMENTATION OF AN EFFICIENT … PHYSICAL REVIEW A 109, 012610 (2024)

FIG. 2. Results of the protocol on four different LWE instances
from Table I. The experiment is run nine times (experimental
repetitions) for each instance with each repetition covering 2000
executions of the experiment. The data were collected 2000 exe-
cutions at a time, which can indicate random fluctuations between
each experimental repetition. The best possible success probability
for a classical prover is 0.5 while it is 1.0 for an honest quantum
prover. The error bars are computed using a binomial proportion 95%
confidence interval via the Clopper-Pearson method as implemented
in SCIPY.STATS.

linear chain of 15 171Yb+ ions that are laser cooled to near the
motional ground state. In our protocol, we utilize 11 of these
13 available qubits. The system is capable of applying a uni-
versal gate set consisting of arbitrary single-qubit rotations on
any target qubit as well as two-qubit Mølmer-Sørensen gates
[52] on any arbitrary pair of qubits. The quantum circuits are
implemented via the consecutive application of native single
and two-qubit gates using individual optical addressing, where
the fidelities of native single- and two-qubit gates are given
by 99.98 and 98.5–99.3%, respectively [51]. Individual-qubit
readout is performed with high fidelity at the end of circuit
operations via state-dependent fluorescence detection [53].

IV. RESULTS

The results for implementing the protocols are displayed
in Fig. 2. Here, we ran the experiment for several different

TABLE I. Details of the LWE instances. Note that the entries are
transposed and for all instances we use sᵀ = (0 1).

Instance Aᵀ eᵀ (As + e)ᵀ

0

(
0 2 0 1
2 0 1 2

)
(0 1 0 0) (0 3 0 1)

1

(
0 2 3 2
2 3 0 0

)
(0 0 0 1) (0 2 3 3)

2

(
2 0 0 1
0 3 2 1

)
(1 0 1 0) (3 0 1 1)

3

(
0 1 3 0
3 0 0 2

)
(0 0 0 1) (0 1 3 1)

TABLE II. Gate counts for different LWE instances. The gate
counts are given for the unoptimized (original) algorithm and the
optimized algorithm with the optimizations detailed in the Appendix.
We also note the number of multi-qubit operations in each of these
cases.

Instance

0 1 2 3

Unoptimized 73 75 81 79
Optimized 42 56 47 56
Multi-qubit unoptimized 45 47 53 51
Multi-qubit optimized 24 34 29 34

choices of the matrix A and error vector e in the LWE instance,
detailed in Table I using 11 qubits.

Furthermore, we repeat the experiment nine times, with
each repetition covering 2000 executions of all four LWE
instances in Table I. Hence, we obtain the success probabil-
ities seen in Fig. 2. We note that instances 0 and 2 perform
better due to optimizations reducing the gate count for the
implementation of the TCF based on those instances. In par-
ticular, we achieved an approximately 42% decrease in gate
count due to optimization for instances 0 and 2. In contrast,
the same optimization reduced the gate count of instances 1
and 3 by only approximately 25 and 29%, respectively. The
gate counts before and after optimization can be found in
Table II. In general, the gate count scales as O(mn log2 q).
These optimizations were achieved by finding simpler ways
to implement modular arithmetic operations for special cases
for the form of the matrix A and vector As + e. This results
in simplifying a number of controlled rotation gates into only
one or two CNOT gates. The special cases we optimized for
were determined after sampling A and As + e and examining
recurring patterns in their structure. It is expected that other
choices of LWE instances could be optimized in a similar
manner, although a separate analysis would likely be required.
The optimizations are detailed in the Appendix.

V. DISCUSSION

We know from [27] that a classical adversary can succeed
in the verifier’s challenge with probability at most 0.5. Thus,
we see that the results exceed this classical success prob-
ability for each LWE instance used. In particular, for each
instance, we exceed this bound by between 15σ and 25σ ,
where σ denotes the standard deviation of the distribution of
observed success probabilities under the null hypothesis that
the prover is classical with success probability 0.5. Here, σ

can be computed using the normal approximation to the bi-
nomial distribution as σ = 1/(2

√
N), where N is the number

of executions of the experiment. The corresponding statistical
significance with which the null hypothesis of a classical
prover is rejected exceeds p < 10−50, providing strong ev-
idence of a quantum prover. Thus, our results significantly
surpass the threshold for classical behavior, emphasizing our
success in implementing a test of quantum mechanics experi-
mentally, albeit on a small number of qubits. In particular, this
confirms the quantum behavior of the device it was executed

012610-5

LAURA LEWIS et al. PHYSICAL REVIEW A 109, 012610 (2024)

on given the cryptographic security of our TCF and hash
function.

Moreover, these results match reasonably well with esti-
mates of the success probability based on known gate fidelities
of the device. Namely, assuming a single-qubit gate fidelity of
99.98% and a two-qubit gate fidelity of 98.9% (the midpoint
of the range 98.5–99.3%) [51], then a rough estimate based on
the optimized gate count results in the following success prob-
abilities: 76, 68, 72, and 68% for instances 0, 1, 2, and 3,
respectively. Thus, these estimates agree roughly with the
measured success probabilities.

We can also compare these results directly to those of [22].
Recall that for the “interference measurement” case consid-
ered in [22], a similar algorithm to the one in this paper is
implemented. Namely, the circuit is almost the same as in
Fig. 1(a) but with the hash function Uh removed. Moreover,
the verifier checks the equation

d · (x0 ⊕ x1) = z,

as opposed to Eq. (5) in this paper. When implementing
this “interference measurement” as a part of the interactive
protocol with mid-circuit measurements, the success prob-
ability is approximately 71% on average [22]. In contrast,
our noninteractive implementation has success probability of
approximately 74% on average, with some instances reaching
up to 77–78%. Repeating the experiment multiple times, this
is a significant advantage. Thus, this indicates the benefit of
using this noninteractive protocol over the interactive protocol
via mid-circuit measurements.

VI. OUTLOOK

We implemented an efficient noninteractive test of quan-
tumness with an ion-trap quantum computer and obtained
results which exceed the threshold required for demonstrating
nonclassical behavior under certain cryptographic assump-
tions. Since our implementation used 11 qubits, this does not
constitute a certification of quantum advantage and is instead
certifying quantum-mechanical behavior within the device.
For a demonstration of quantum advantage, one would have to
use a large enough instance of a claw-free function, for which
classically “breaking” the underlying cryptographic task takes
longer than the time it takes to run the experiment with
a quantum device. The circuit complexity of implementing
this function would be the dominating cost for the quantum
prover’s strategy, where the best achievable circuit sizes scale
as O(n log n) [18]. Meanwhile, as we have shown with our
implementation, the hash function can be implemented as
some low-degree polynomial, or as a small random (classical)
circuit. In particular, a quantum circuit with linear circuit
complexity O(n) will suffice in practice. Thus, the circuit
complexity for both the interactive and noninteractive ver-
sions of the protocol is on the same order of magnitude. As
such, the estimated numbers of qubits and circuit sizes for
demonstrating quantum advantage with such a protocol are
similar to those described in [18,22], namely ≈103 qubits
and ≈105 layers of depth. As discussed previously, there is
also a tradeoff between depth and qubit count, which one
can leverage depending on which is more costly for the
quantum computer used. The main advantage of our protocol

and implementation compared to those protocols is the fact
that interaction is not required for performing the test of
quantumness, which reduces an additional potential barrier
towards scaling these protocols up. Thus, this noninteractive
protocol provides a promising alternative for implementing
cryptographic proofs of quantumness in the future. Given this,
as well as recent results aiming to reduce the costs of the
quantum prover’s implementation of the claw-free function
[19,20], there are reasons to expect that these protocols could
be used to certify quantum advantage on future generations of
NISQ devices.

Finally, we note that the techniques used here have numer-
ous further applications, not only in verifying quantum advan-
tage once at scale, but also certifiable random number genera-
tion [16] and the classical verification of arbitrary quantum
computation [15], for which noninteractive protocols have
been achieved [27,54,55]. Although interactive protocols can
also be utilized to accomplish these tasks and have been exper-
imentally demonstrated [22,23], we emphasize that the nonin-
teractive approach used here is simpler and thus more likely to
be scalable. Thus by removing the additional barrier that inter-
action creates, these noninteractive protocols yield a promis-
ing path towards realizing tests of quantumness, randomness,
and delegated computation on future quantum devices.

ACKNOWLEDGMENTS

The authors thank Gregory Kahanamoku-Meyer for valu-
able input. This work is supported by Air Force Office of
Scientific Research Young Investigator Program (AFOSR
YIP) Grant No. FA9550-16-1-0495, the Simons Foundation
(TV Grant No. 828076), the National Science Foundation
(NSF) Quantum Leap Challenge Institute (QLCI) program
(Grant No. OMA-2016245), the Institute for Quantum Infor-
mation and Matter (IQIM), an NSF Physics Frontiers Center
(Grant No. PHY-1125565) with support of the Gordon and
Betty Moore Foundation (Grant No. GBMF-12500028), Dr.
Max Rössler, the Walter Haefner Foundation, the ETH Zürich
Foundation, a Caltech Summer Undegraduate Research Fel-
lowship, the Army Research Office (ARO) through the Intel-
ligence Advanced Research Projects Activity (IARPA) LogiQ
program, the National Science Foundation Software-Tailored
Architecture for Quantum Co-design program, the U.S. De-
partment of Energy Quantum Systems Accelerator program,
the AFOSR MURI on Scalable Certification of Quantum
Computing Devices and Networks (Grant No. FA9550-18-
1-0161), the AFOSR MURI on Dissipation Engineering in
Open Quantum Systems (Grant No. FA9550-19-1-0399),
and the ARO MURI on Modular Quantum Circuits (Grant
No. W911NF1610349).

APPENDIX: OPTIMIZATIONS

In this section, we detail the optimizations performed to
decrease the gate count. After sampling the learning with er-
rors instance, consisting of the matrix A and the vector As + e,
these optimizations were made to simplify implementations of
modular arithmetic operations for special cases for the form of
A and As + e.

012610-6

EXPERIMENTAL IMPLEMENTATION OF AN EFFICIENT … PHYSICAL REVIEW A 109, 012610 (2024)

Specifically, one case we considered is when the ith row
of A, denoted by ai, is of the form ai = (0 a) and the ith
entry of y = As + e is yi = 0. As seen in Table I, this structure
occurs several times for our sampled instances. We want to
optimize the computation of the MSB of 〈ai, x〉 + byi for any
input vector x ∈ Z2

4, where all operations are done modulo
4. Writing x = (x1 x2)ᵀ, notice that, for our special case,
this is simply the MSB of ax2. It then remains to analyze all
cases of a, x2 ∈ Z4 to find a simpler way of implementing this
operation. It is important to note that in our implementation,
the vector x is stored in a quantum state in order to evaluate
the trapdoor claw-free function in superposition while A (and
thus the entry a) is stored classically. Thus, we can classically
condition on each case of a ∈ Z4.

If a = 0, then the MSB of ax2 is clearly zero. This requires
no quantum operations to be performed. If a = 1, then ax2 =
x2. The MSB of this is simply the MSB of x2, which we can
copy to the result register via a CNOT gate controlled on the
qubit storing the MSB of x2. The analysis becomes slightly
more complicated for a = 2, 3. If a = 2, we notice that for x2

equal to 0 or 2, then 2x2 mod 4 = 0 while for x2 equal to 1
or 3, then 2x2 mod 4 = 2. Thus, the MSB of 2x2 is nonzero
only for the cases of x2 = 1, 3. However, notice that the least
significant bit (LSB) of 1 and 3 is 1 while the LSB of 0 and 2
is zero. Thus, we can obtain the MSB of 2x2 by using a CNOT

gate controlled on the qubit storing the LSB of x2. Finally, if
a = 3, we notice that

ax2 mod 4 = 3 × 0 mod 4 = 0, (A1)

ax2 mod 4 = 3 × 1 mod 4 = 3, (A2)

ax2 mod 4 = 3 × 2 mod 4 = 2, (A3)

ax2 mod 4 = 3 × 3 mod 4 = 1. (A4)

Notice that the MSB of 3x2 is nonzero only for the cases of
x2 equal to 1 or 2. Thus, we can obtain the MSB of 3x2 by
using two CNOT gates: one controlled on the qubit storing the
MSB of x2 and another controlled on the qubit storing the LSB
of x2.

Here, we have simplified the evaluation of the TCF for this
special case to only one or two CNOT gates. A similar analysis

holds for the case when ai is of the form ai = (a 0) and
yi = 0, in which case we consider x1 in the above analysis
instead of x2.

Another special case we considered was when ai is of the
form ai = (2 0) and yi = 3. Again, we see in Table I that
this case occurs several times. Similarly to before, write x =
(x1 x2)ᵀ. This time, the MSB of 〈ai, x〉 + byi is the MSB of
2x1 + 3b. It is important to note that b is stored in a quantum
state in order to evaluate the TCF in superposition. We first an-
alyze the cases of b = 0 and 1 separately. If b = 0, notice that
the analysis is exactly the same as the base of a = 2 above.
Namely, the MSB of 2x1 can be obtained by using a CNOT

gate controlled on the qubit storing the LSB of x1. On the other
hand, if b = 1, then for x1 equal to 0 or 2, 2x1 + 3 mod 4 = 3
while for x1 equal to 1 or 3, 2x1 + 3 mod 4 = 1. Thus, the
MSB of 2x2 + 3 is nonzero only for the cases of x1 = 0, 2,
which each have an LSB of zero. Since b is stored in a
quantum state, we must distinguish the two cases of b = 0, 1
by a quantum operation. Thus, we must still include the CNOT

gate controlled on the qubit storing the LSB of x1 in this case.
Then, in order to compute the correct MSB for the case of
b = 1, we can also add a CNOT gate controlled on the qubit
storing b. In this way, if b = 0, only the CNOT for the LSB
of x1 is executed. Meanwhile, if b = 1, the MSB of 2x2 + 3
is nonzero only for cases when x1 has an LSB of zero. Thus,
combining these CNOTs will give the desired result. Hence, we
have again reduced the evaluation of the TCF to use only two
CNOT gates.

The final special case we considered is similar to the above
but for the case when ai is of the form ai = (2 0) and yi = 1.
The analysis for b = 0 is exactly the same as above. If b =
1, then we want to compute 〈ai, x〉 + byi = 2x1 + 1. For x1

equal to 1 or 3, then 2x1 + 1 mod 4 = 3, and for x1 equal to
0 or 2, then 2x1 + 1 mod 4 = 1. Thus, the MSB of 2x1 + 1 is
nonzero only for the cases of x1 = 1, 3. This perfectly aligns
with the case of b = 0, so we only require one CNOT controlled
on the qubit storing the LSB of x1.

Overall, these optimizations led to an approximately 42%
decrease in gate count due to optimization for instances 0 and
2 and a decrease of approximately 25 and 29% for instances 1
and 3, respectively.

[1] D. Aharonov and U. Vazirani, arXiv:1206.3686.
[2] S. Goldwasser, S. Micali, and C. Rackoff, in Providing Sound

Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali (Association for Computing Machinery, New
York, NY, US, 2019), pp. 203–225.

[3] S. Goldwasser and M. Sipser, in Proceedings of the 18th Annual
ACM Symposium on Theory of Computing (Association for
Computing Machinery, New York, NY, US, 1986), pp. 59–68.

[4] A. Shamir, J. ACM 39, 869 (1992).
[5] J. Watrous, Theor. Comput. Sci. 292, 575 (2003).
[6] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous, Commun. ACM 53,

102 (2010).
[7] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, in

Providing Sound Foundations for Cryptography: On the Work of

Shafi Goldwasser and Silvio Micali (Association for Computing
Machinery, New York, NY, US, 2019), pp. 373–410.

[8] L. Babai, L. Fortnow, and C. Lund, Comput. Complex. 1, 3
(1991).

[9] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Proceedings.
19th IEEE Annual Conference on Computational Complexity,
2004 (IEEE, New York, 2004), pp. 236–249.

[10] Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen, Commun.
ACM 64, 131 (2021).

[11] L. Babai, in Proceedings of the 17th Annual ACM Symposium on
Theory of Computing (Association for Computing Machinery,
New York, NY, US, 1985), pp. 421–429.

[12] L. Fortnow, J. Rompel, and M. Sipser, Theor. Comput. Sci. 134,
545 (1994).

012610-7

https://arxiv.org/abs/1206.3686
https://doi.org/10.1145/146585.146609
https://doi.org/10.1016/S0304-3975(01)00375-9
https://doi.org/10.1145/1859204.1859231
https://doi.org/10.1007/BF01200056
https://doi.org/10.1145/3485628
https://doi.org/10.1016/0304-3975(94)90251-8

LAURA LEWIS et al. PHYSICAL REVIEW A 109, 012610 (2024)

[13] O. Goldreich, S. Micali, and A. Wigderson, J. ACM 38, 690
(1991).

[14] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, Theory Comput.
Syst. 63, 715 (2019).

[15] U. Mahadev, in Proceedings of the 2018 IEEE 59th Annual Sym-
posium on Foundations of Computer Science (FOCS) (IEEE,
New York, 2018), pp. 259–267.

[16] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T.
Vidick, in Proceedings of the 2018 IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS) (IEEE, New
York, 2018), pp. 320–331.

[17] O. Regev, J. ACM 56, 1 (2009).
[18] G. D. Kahanamoku-Meyer, S. Choi, U. V. Vazirani, and N. Y.

Yao, Nat. Phys. 18, 918 (2022).
[19] S. Hirahara and F. L. Gall, 46th International Symposium

on Mathematical Foundations of Computer Science (MFCS
2021), F. Bonchi and S. J. Puglisi (Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021), Vol. 202, pp. 59:1–59:15.

[20] Z. Liu and A. Gheorghiu, Quantum 6, 807 (2022).
[21] J. Carrasco, A. Elben, C. Kokail, B. Kraus, and P. Zoller, PRX

Quantum 2, 010102 (2021).
[22] D. Zhu, G. D. Kahanamoku-Meyer, L. Lewis, C. Noel, O. Katz,

B. Harraz, Q. Wang, A. Risinger, L. Feng, D. Biswas et al.,
arXiv:2112.05156.

[23] R. Stricker, J. Carrasco, M. Ringbauer, L. Postler, M. Meth,
C. Edmunds, P. Schindler, R. Blatt, P. Zoller, B. Kraus et al.,
arXiv:2203.07395.

[24] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio et al.,
arXiv:2211.09116.

[25] M. Riebe, H. Häffner, C. Roos, W. Hänsel, J. Benhelm, G.
Lancaster, T. Körber, C. Becher, F. Schmidt-Kaler, D. James
et al., Nature (London) 429, 734 (2004).

[26] S. Moses, C. Baldwin, M. Allman, R. Ancona, L. Ascarrunz,
C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard, M. Bohn et al.,
Phys. Rev. X 13, 041052 (2023).

[27] Z. Brakerski, V. Koppula, U. Vazirani, and T. Vidick,
arXiv:2005.04826.

[28] A. Fiat and A. Shamir, in Proceedings of the Conference on the
Theory and Application of Cryptographic Techniques (Springer,
New York, 1986), pp. 186–194.

[29] F. Arute et al., Nature (London) 574, 505 (2019).
[30] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng,

Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu et al., Science 370,
1460 (2020).

[31] S. Aaronson and L. Chen, arXiv:1612.05903.
[32] S. Aaronson and S. Gunn, arXiv:1910.12085.
[33] B. Barak, C.-N. Chou, and X. Gao, arXiv:2005.02421.
[34] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin, B. Barak,

and S. Choi, arXiv:2112.01657.
[35] T. Yamakawa and M. Zhandry, arXiv:2204.02063.
[36] P. W. Shor, in Proceedings 35th Annual Symposium on

Foundations of Computer Science (IEEE, New York, 1994),
pp. 124–134.

[37] P. W. Shor, SIAM Rev. 41, 303 (1999).
[38] S. Goldwasser, S. Micali, and R. L. Rivest, in Advances in

Cryptology: Proceedings of CRYPTO ’84 (IEEE, Singer Island,
FL, US, 1984), p. 467.

[39] O. Regev, 2010 IEEE 25th Annual Conference on Com-
putational Complexity, Boston, Massachusetts (IEEE, 2010),
pp. 191–204.

[40] A. Banerjee, C. Peikert, and A. Rosen, in Proceedings of the
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (Springer, New York, 2012),
pp. 719–737.

[41] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, in Proceedings
of the Annual Cryptology Conference (Springer, New York,
2013), pp. 57–74.

[42] M. Bellare and P. Rogaway, in Proceedings of the First ACM
Conference on Computer and Communications Security (Asso-
ciation for Computing Machinery, New York, NY, US, 1993),
pp. 62–73.

[43] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner,
and M. Zhandry, in International Conference on the Theory and
Application of Cryptology and Information Security (Springer,
New York, 2011), pp. 41–69.

[44] National Institute of Standards and Technology, Fed. Inf.
Process. Stand. Publ. 180, 36 (2015).

[45] M. J. Dworkin et al., Federal Information Processing Standard
(NIST FIPS) National Institute of Standards and Technology,
Gaithersburg, MD (2015).

[46] B. Applebaum, N. Haramaty-Krasne, Y. Ishai, E. Kushilevitz,
and V. Vaikuntananthan, in Proceedings of the 8th Innova-
tions in Theoretical Computer Science Conference (ITCS 2017),
edited by C. H. Papadimitriou, Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 67 (Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017),
pp. 71–731.

[47] O. Goldreich, in Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Com-
putation (Springer, New York, 2011), pp. 76–87.

[48] D. Micciancio and C. Peikert, in Proceedings of the An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques (Springer, New York, 2012),
pp. 700–718.

[49] C. Gentry, C. Peikert, and V. Vaikuntanathan, in Proceedings
of the 40th Annual ACM Symposium on Theory of Computing
(Association for Computing Machinery, New York, NY, US,
2008), pp. 197–206.

[50] M. Cetina, L. N. Egan, C. A. Noel, M. L. Goldman,
A. R. Risinger, D. Zhu, D. Biswas, and C. Monroe,
arXiv:2007.06768.

[51] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D.
Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina et al.,
Nature (London) 598, 281 (2021).

[52] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[53] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N.
Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76,
052314 (2007).

[54] N.-H. Chia, K.-M. Chung, and T. Yamakawa, in Proceedings of
the Theory of Cryptography Conference (Springer, New York,
2020), pp. 181–206.

[55] G. Alagic, A. M. Childs, A. B. Grilo, and S.-H. Hung, in The-
ory of Cryptography Conference (Springer, New York, 2020),
pp. 153–180.

012610-8

https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1038/s41567-022-01643-7
https://doi.org/10.22331/q-2022-09-19-807
https://doi.org/10.1103/PRXQuantum.2.010102
https://arxiv.org/abs/2112.05156
https://arxiv.org/abs/2203.07395
https://arxiv.org/abs/2211.09116
https://doi.org/10.1038/nature02570
https://doi.org/10.1103/PhysRevX.13.041052
https://arxiv.org/abs/2005.04826
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://arxiv.org/abs/1612.05903
https://arxiv.org/abs/1910.12085
https://arxiv.org/abs/2005.02421
https://arxiv.org/abs/2112.01657
https://arxiv.org/abs/2204.02063
https://doi.org/10.1137/S0036144598347011
https://arxiv.org/abs/2007.06768
https://doi.org/10.1038/s41586-021-03928-y
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevA.76.052314

