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Position error is treated as the leading obstacle that prevents Rydberg antiblockade gates from being experi-
mentally realizable, because of the inevitable fluctuations in the relative motion between two atoms, invalidating
the antiblockade condition. In this work we report progress towards a high-tolerance antiblockade-based Rydberg
SWAP gate enabled by the use of a modified antiblockade condition combined with carefully optimized laser
pulses. Depending on the optimization of diverse pulse shapes, our protocol shows that the amount of time
spent in the double Rydberg state can be shortened by more than 70% with respect to the case using the perfect
antiblockade condition, which significantly reduces this position error. Moreover, we benchmark the robustness
of the gate by taking into account the technical noises, such as the Doppler dephasing due to atomic thermal
motion, the fluctuations in laser intensity and laser phase, and the intensity inhomogeneity. Compared to other
existing antiblockade-gate schemes, we are able to maintain a predicted gate fidelity above 0.91 after a very
conservative estimation of various experimental imperfections, especially considered for a realistic interaction
deviation of δV/V ≈ 5.92% at T ∼ 20 µK. Our work creates an opportunity for the experimental demonstration
of Rydberg antiblockade gates in the near future.
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I. INTRODUCTION

Implementation of Rydberg antiblockade gates is one of
the current mainstream protocols towards fast and robust
neutral-atom quantum computation [1–6], as the traditional
Rydberg antiblockade regime with enhanced dissipative dy-
namics can lead to the preparation of high-fidelity steady
entanglement in versatile systems [7–17]. Beyond appli-
cations in quantum entanglement, constructing a quantum
logic gate via the antiblockade effect [18–20] is more
straightforward because the simultaneous multiatom excita-
tion establishes an effective model which exactly avoids the
occupancy of lossy singly-excited Rydberg states. Despite
these significant advances, however, owing to the leading
participation of multiatom excited states, such antiblockade
gates are found to be extremely sensitive to the relative po-
sition fluctuations between two atoms [21–24] as well as to
atomic decays [25], which so far has inherently precluded its
experimental validation.

Based on the antiblockade mechanism, some prior studies
of, e.g., control-phase gates [26] presented a gate infidelity
far larger than 0.15 for an interaction deviation of δV/V ≈
5.0%. More recently, Wu et al. [27] demonstrated two-atom
SWAP gates with an infidelity of approximately 0.03 when
the position deviation in the interatomic distance is only ap-
proximately 3.0 nm, resulting from using a deep cooling of
ground-state qubits [28–30] or sufficiently deep traps [31].
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Therefore, although the antiblockade mechanism can lead
to high-fidelity Rydberg gates in theory, their implementa-
tion in experiment thus far remains unachievable. A realistic
position-error-tolerant scheme is urgently needed.

In this paper we present a practical scheme to realize
the antiblockade SWAP gates with greatly improved tolerance,
especially to the significant fluctuations in interatomic interac-
tions. We optimize different laser pulse shapes for minimizing
the time spent in the double Rydberg state, so as to decrease
the sensitivity of the gate to the interatomic distance deviation.
It is observable that, accompanied by a modified antiblock-
ade condition V = �1 + �2 + q, which contains a nonzero
factor q to loosen the antiblockade constraint, the occu-
pancy of the double Rydberg state can be strongly suppressed
for an arbitrary pulse shape [32]. Recall that in a perfect
antiblockade-gate scheme where the interaction energy is per-
fectly compensated by the detunings between the driving field
and atomic transition, i.e., V = �1 + �2, it is challenging to
construct quantum gate operations since some unwanted ac
Stark shift terms would emerge in the effective Hamiltonian
[see Eq. (6)], although the excitation of a single atom has
been eliminated by off-resonant couplings. We find that the
ideal two-qubit SWAP gates, in the absence of any position
deviation, have an average fidelity of F ∼ 0.9997. In addi-
tion, even taking into account other technical imperfections,
a more conservative estimation of F � 0.9140 arises for a
typical 1.0-µs gate duration, which is mainly caused by the
position error approximately equal to 0.0752 considered for
an atomic temperature of T ∼ 20 µK (equivalently δV/V ≈
5.92%). We also verify that the characteristic timescale for
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FIG. 1. Level structure of two-qubit Rydberg SWAP gates based
on modified antiblockade. The central inset gives an effective swap-
ping model formed by an off-resonance Raman-like transition on
two targeted states |01〉 and |10〉 mediated by |rr〉. The atomic
qubits are defined as hyperfine clock qubits encoded in ground en-
ergy levels |01,2〉 = |5S1/2, F = 1, mF = 0〉 and |11,2〉 = |5S1/2, F =
2, mF = 0〉. Here |r1,2〉 = |70S1/2〉 is the Rydberg state considered
for a 87Rb experiment [40]. The vdW dispersion coefficient for the
doubly-excited state |70S1/2; 70S1/2〉 is C6/2π = 862.69 GHz µm6

[41], leading to the nonfluctuating Rydberg interaction strength
V/2π ≈ 70.49 MHz at a fixed distance r0 = 4.8 µm. The Rydberg
decay rate is γ = 2π/τ , with τ (≈400 µs) the lifetime of Rydberg
states. See the text for more details.

the gate is determined by the maximal Rabi frequency of the
driving lasers. When their maxima are restricted to be smaller
than 2π × 50 MHz cooperating with the optimization for the
gate duration, a faster (approximately 0.1177 µs) antiblockade
SWAP gate is achievable which contains a higher tolerance to
the position error due to the less time spent in the Rydberg
state (see Appendix B for an extended study).

Our implementation building on the earlier proposal of
antiblockade gates [27] additionally adopts optimal time-
dependent pulse drivings, which not only avoids the com-
bination of a series of elementary gates [33] and realizes
the nontrivial SWAP gate within one-step implementation, but
also greatly improves the antiblockade-gate robustness against
fundamental position fluctuations between two trapped atoms.
The SWAP gate is important with extensive applications in,
e.g., quantum entanglement swapping [34–36] and quantum
repeaters [37–39]. In contrast to other existing proposals, the
parameters we set to realize the gate are all extracted from
careful optimization which can provide an opportunity to de-
crease the leading obstacle i.e., the position error that mainly
restricts the antiblockade gate fidelity.

II. THEORETICAL STRATEGY

In this work we propose a two-qubit SWAP gate with
high position-error tolerance based on a modified antiblock-
ade condition. As illustrated in Fig. 1, two identical neutral
atoms, individually trapped in two optical tweezers, have
hyperfine ground states |0〉 and |1〉 and Rydberg state |r〉.
When atoms are simultaneously excited they interact via the
Rydberg-Rydberg interaction. Here the interaction strength
is quantified by V = C6/r6

0 , denoting a van der Waals
(vdW)–type interaction. During the laser-based operation the
excitation |0〉 → |r〉 in each atom is accomplished by a
two-photon process with effective Rabi frequency �1(t ) and

two-photon detuning �1. Similarly, the other transition |1〉 →
|r〉 is accomplished by �2(t ) and �2. Such two-photon pro-
cesses are usually mediated via different low-lying p states
(Fig. 1, insets), which have been adiabatically eliminated due
to the large intermediate detunings for p states [42]. In addi-
tion, we assume state |r〉 decays to |0〉 and |1〉 with rate γ and
equal branching ratios. To be more realistic we introduce a
leakage state |α〉 (not shown in Fig. 1) for each atom outside
the qubit basis {|0〉, |1〉}. Here we restrict the analysis to the
case of ηr→0 (1) = 1

2 and ηr→α = 0, which provides an ideal
estimation of the gate fidelity.

With the rotating-wave approximation, the total Hamilto-
nian for this system can be described by (h̄ = 1 hereafter)

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + V̂rr, (1)

where

Ĥ j = �1e−i�1t |0〉 j〈r| + �2e−i�2t |1〉 j〈r| + H.c. (2)

accounts for the jth atom coupling to the driving lasers and

V̂rr = V |rr〉〈rr| (3)

is the interaction between the Rydberg states. Here j ∈ (1, 2)
and Î j denotes the identity matrix.

While deriving the effective form of Ĥ through the second-
order perturbation calculation we apply two parameter condi-
tions. One is |�1| 	 �max

1 and |�2| 	 �max
2 , which aims at

canceling the population on singly-excited Rydberg states by
off-resonant couplings. The resulting single-excitation terms
are all decoupled to the initial states and can be discarded
[see Eq. (A11)]. The other is V = �1 + �2 + q, representing
a modified antiblockade condition in which the presence of
the factor q is crucial for suppressing unwanted population on
state |rr〉. Note that q = 0 reduces to the case of perfect an-
tiblockade in which the double Rydberg state |rr〉 can obtain
a facilitated excitation because of the perfect compensation
between V and �1 + �2 [43]. However, when q 
= 0, known
as the modified antiblockade, one can modify the antiblockade
regime by changing the Stark shift terms of |rr〉 and therefore
shorten the time spent on it [44].

After rotating with respect to the operator Û =
e−i(�1+�2 )t |rr〉〈rr|, the effective formula of Ĥ can be separately
written as

Ĥ00,eff = 2�2
1

�1
|00〉〈00|, (4)

Ĥ11,eff = 2�2
2

�2
|11〉〈11| (5)

for initial states |00〉 and |11〉, respectively, and

Ĥ01,eff = �e(|rr〉〈01| + |rr〉〈10|) + H.c.

+ �c(|01〉〈01| + |10〉〈10|) + δ|rr〉〈rr| (6)

for initial states |01〉, where

�e = �1�2

�1
+ �1�2

�2
, �c = �2

1

�1
+ �2

2

�2
,

δ = 2�2
2

�1
+ 2�2

1

�2
+ q (7)
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denote the effective couplings, the ac Stark shift with respect
to |01〉 and |10〉, and the effective detuning (including ac Stark
shifts) to |rr〉, respectively. From Eqs. (4)–(6) we see that
states |00〉 and |11〉 are dark to all gate pulses as expected,
whereas if the initially considered states are |01〉 or |10〉,
the system will reduce to an effective three-level swapping
model. Since states |10〉 and |01〉 exhibit equivalent dynamics
in this symmetric setup, Ĥ10,eff = Ĥ01,eff. More details about
the derivation of Eqs. (4)–(6) can be found in Appendix A.

From Ĥ01,eff we find an effective three-level system for
states |01〉 and |10〉 is off-resonantly coupled to |rr〉 (Fig. 1,
inset). Thus one can expect that the combined action of all
quantities including �e, �c, and δ will achieve a perfect state
swapping by obeying

|01〉 � |rr〉 � |10〉. (8)

However, the simultaneous participation of the Rydberg ex-
citation state |rr〉 in this process will no doubt suffer from
a serious position error, mainly caused by the significant
deviation of the interatomic interaction δV (with respect to
the nonfluctuating strength V ) between individually trapped
atoms that breaks the antiblockade condition [45]. Fortu-
nately, the effective detuning δ to state |rr〉 contains a factor
q which provides a more flexible adjustment to the original ac

Stark shift term 2�2
2

�1
+ 2�2

1
�2

on |rr〉. We show a positive q that
modifies the ac Stark shift which can make state |rr〉 far-off-
resonance so as to reduce the population on it [46]. Therefore,
our protocol can exhibit a higher tolerance against significant
interaction fluctuations arising from, e.g., the thermal motion
of atoms in the inhomogeneous coupling field [47] or laser
intensity noise [48].

III. GATE IMPLEMENTATION WITH OPTIMAL PULSES

Now we show that the two-qubit SWAP gates can be realized
for diverse pulse shapes �1(t ) and �2(t ). We perform global
numerical optimization for all pulse parameters and laser de-
tunings by using the genetic algorithm as in our prior work
[49], which aims at maximizing the ideal gate fidelity. Note
that all stochastic deviations arising from technical imperfec-
tions are excluded in the perfect optimization case, and the
gate robustness against main error sources will be analyzed
after the perfect optimization (Secs. IV and V). A different
choice of optimization algorithm combined with a careful
consideration of the gate robustness to some type of errors
[50] is left for future work.

To fully understand the population dynamics, we numeri-
cally solve the two-atom master equation in the Lindblad form
[51]

ρ̇ = −i[Ĥ, ρ̂] + 1

2

6∑
j=1

[2L̂ j ρ̂L†
j − (L̂†

jL̂ j ρ̂ + ρ̂L̂†
jL̂ j )], (9)

where the single-atom decay operator L̂ j expressed in the
basis {|0〉, |1〉, |r〉, |α〉} (|α〉 is a leakage state) is given by

L̂1 = √
ηr→0γ |0〉1〈r|, L̂2 = √

ηr→0γ |0〉2〈r|,
L̂3 = √

ηr→1γ |1〉1〈r|, L̂4 = √
ηr→1γ |1〉2〈r|, (10)

L̂5 = √
ηr→αγ |α〉1〈r|, L̂6 = √

ηr→αγ |α〉2〈r|,

representing all Rydberg-state scattering channels, with |r〉 →
|α〉 denoting the leakage out of the qubit manifold to other
mF states. In the calculation we have assumed that state |r〉
decays to the ground-state manifold |0〉 and |1〉 uniformly
with equal probability ηr→0 = ηr→1 = 1

2 , and ηr→α = 0. An
extended calculation based on a realistic eight-ground-state
manifold will be discussed in Appendix B. Numerical solu-
tions of Eq. (9) can be directly used to extract the average
gate fidelity in the perfect optimization case over four input
states {|00〉, |01〉, |10〉, |11〉} as

F = 1
4 Tr

√√
Uρ(t = Tg)

√
U , (11)

with 4 the number of input states, U the ideal transfer matrix
for the two-qubit SWAP operation, and ρ(t ) the practical
density matrix measured at t = Tg (gate duration). For any
input state one can obtain the full population dynamics of
an arbitrary intermediate state along with the above master
equation (9).

To obtain an antiblockade SWAP gate with high tolerance,
the leading step is to find optimal pulse shapes with an
appropriate q, where the time spent in the Rydberg level
can be minimized, especially in the double Rydberg state
|rr〉. For comparison, we demonstrate the gate using different
pulse shapes as done in [52]. The characteristic timescale Tg

for the gate is constrained by the maximal Rabi frequency
(�max

1 ,�max
2 ) of the driving lasers that should meet the swap-

ping circles. Since here we focus on comparing the gate
performance under different pulse shapes, Tg is fixed to 1.0 µs
for simplicity. This choice restricts the maximal strength of
Rabi frequencies to be approximately 2π × 10 MHz. A larger
two-photon Rabi frequency (approximately 2π × 50 MHz)
can further decrease the Tg value to the level of approximately
0.1 µs, which is promising for the realization of a faster gate
with improved robustness. The relationship between Tg and
�max

1,2 is numerically confirmed by an extended study involving
an optimal Tg (Appendix B). In order to show the significance
of q, we seek optimal pulse parameters individually for two
cases, q = 0 and q 
= 0, which are summarized in Table I.
The corresponding full population dynamics are comparably
displayed in Fig. 2.

First we demonstrate the gate with two optimal isosceles-
triangle-shaped pulses via assuming, for case i,

� j (t ) =
{
�max

j for t = Tg

2
0 for t = 0, Tg.

This triangular pulse shape only involves one parameter �max
j

to be optimized in addition to �1 and q. As can be seen from
Figs. 2(a 1)–2(e 1) and 2(a 4)–2(e 4), although the peak Rabi
frequencies �max

1 and �max
2 are comparable to each other, the

case in Figs. 2(a 4)–2(e 4) with q 
= 0 clearly causes a large
energy shift for the effective detuning δ(t ) [green dashed line
in Fig. 2(b 4)] which enables a big reduction in the time
spent in the double Rydberg state. We verify this by calcu-
lating the duration in state |rr〉 for input |01〉 and find that,
in Fig. 2(e 1) with q = 0, the time spent defined by a time
integration is Trr = ∫ Tg

0 ρrr (t )dt ≈ 0.0926 µs, while this value
can reduce to Trr ≈ 0.0248 µs in the case of Fig. 2(e 4) where
q/2π = 4.668 MHz (optimal), which shortens the time spent
in the double Rydberg state by 73.2%. Such a large reduction
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TABLE I. Optimal pulse parameters and optimal laser detunings with different pulse shapes for q = 0 and q 
= 0: case i, isosceles triangle;
case ii, Gaussian; and case iii, composite. Parameters such as �max

j , �0 j , �1 j , �2 j , �1, and q are all in units of 2π × MHz and ω j is in unit of μs.
In any case the antiblockade condition V = �1 + �2 + q is always satisfied and V = 2π × 70.49 MHz is treated as the ideal (nonfluctuating)
interaction strength between two atoms at a fixed distance r0. The gate duration Tg = 1.0 µs is unvaried. The ideal gate fidelity F calculated in
the absence of any technical imperfection is given in the last column. The Rydberg decay error intrinsically caused by the limited lifetime of
Rydberg levels can be roughly estimated as 1 − F .

Case i
q �max

1 �max
2 �1 F

0 3.769 10.441 26.642 0.9992
4.668 5.513 10.947 23.090 0.9996

Case ii
q (�max

1 , �max
2 ) (ω1, ω2) �1 F

0 (3.595,9.219) (0.279,0.189) 23.924 0.9993
5.037 (5.114,8.948) (0.257,0.351) 22.110 0.9997

Case iii
q (�01,�11, �21) (�02,�12, �22) �1 F
0 (1.033, −1.167, 1.334) (3.100, −2.662, 2.617) 25.194 0.9992
5.090 (1.774,−1.884, 2.036) (2.558, −2.624, 2.608) 22.532 0.9997

directly provides an improvement in the average gate fidelity
yielding F = 0.9996 (recall that F = 0.9992 for q = 0) due
to the decrease of the Rydberg decay loss in the perfect case.
In addition, we illustrate the validity of the effective Hamil-

tonian (6) by simulating the effective population dynamics
of states |01〉, |rr〉, and |10〉 in Figs. 2(e 1) and 2(e 4). The
coincidence between the full and effective models is explicit,
confirming the accuracy of our perturbation theory [53].

FIG. 2. Realization of two-qubit SWAP gates with different optimal pulse shapes. (a1) and (a4) Optimal isosceles-triangle shaped Rabi
frequencies �1(t ) and �2(t ) and (b 1) and (b 4) optimal effective coupling �e(t ) and effective detuning δ(t ) versus the evolutionary time t
where Tg = 1.0 µs. Here q = 0 and q 
= 0 stand for the perfect antiblockade and modified antiblockade cases, respectively. The corresponding
time-dependent population dynamics based on the original Hamiltonian Ĥ for different initial states {|00〉, |11〉, |01〉}, are displayed in (c 1)
and (c 4), (d 1) and (d 4), and (e 1) and (e 4), respectively. In (e 1) and (e 4) the population dynamics of |01〉 (black circles), |10〉 (blue pluses),
and |rr〉 (green stars) calculated by the effective Hamiltonian Ĥ01,eff are also comparably displayed. Similar results with optimal Gaussian and
composite pulse shapes are given in (a 2)–(e 2) and (a 5)–(e 5) and in (a 3)–(e 3) and (a 6)–(e 6), respectively.
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Furthermore, by taking into account the convenience of
experimental demonstration, we turn to realize the SWAP gate
with smooth-amplitude pulses which contain more variables
to be optimized [54]. On the experimental side, the smooth-
amplitude gate can help reduce off-resonant coupling to other
states which are not included in the idealized model de-
scription and provide a finite bandwidth of the laser pulses,
reducing the experimental complexity of their fast switching
[55]. Here two smooth pulse shapes are considered,

� j (t ) = �max
j

(
e−(t−Tg/2)2/2ω j

2 − e−(Tg/2)2/2ω j
2

1 − e−(Tg/2)2/2ω j
2

)
(case ii),

� j (t ) = �0 j + �1 j cos

(
2πt

Tg

)
+ �2 j sin

(
πt

Tg

)
(case iii),

while keeping �1 and q optimal values (Table I). Also, �2 =
V − �1 − q is always fulfilled. In particular, in case ii the
Gaussian function has been corrected by allowing an exact
zero intensity at the start and end of the pulse, which, from
an experimental point of view, has a better feasibility [56].
Finally, we present the optimal smooth-amplitude pulses and
the population dynamics separately in Figs. 2(a 2)–2(e 2) and
2(a 5)–2(e 5) and in Figs. 2(a 3)–2(e 3) and 2(a 6)–2(e 6), re-
spectively. It is explicit that when q 
= 0 the time spent in state
|rr〉 remains at a low level, i.e., Trr ≈ (0.0238, 0.0254) µs,
resulting in a slightly higher fidelity F ≈ 0.9997 than the
triangular pulse case. Therefore, although the effective state
swapping between |01〉 and |10〉 also requires the participation
of |rr〉, its influence has been largely suppressed by applying
pulse optimization under the modified antiblockade condition.

So far we have presented the realization of high-fidelity
SWAP gates with an arbitrary shape for laser pulses. The
key in pulse optimization lies in minimizing the time spent
in |rr〉 by letting δ(t ) be off-resonance in the presence of
q, which leads to a direct coupling between |01〉 and |10〉.
Based on the effective three-level model (Fig. 1), we evaluate
the coupling strength by adiabatically eliminating |rr〉 and
find that the effective pulse areas calculated by

∫ Tg

0
2�e(t )2

δ(t ) ≈
(3.2600, 3.2318, 3.1946) are all close to π for cases i–iii,
which strongly confirms the importance of optimizing the
pulse area (not pulse shape) in the realization of two-qubit
SWAP gates. The resulting gate infidelity mainly caused by
the Rydberg decay, denoted by 1 − F = (3–4) × 10−4, is no
doubt very robust to arbitrary pulse shapes.

The participation of the antiblockade condition can facil-
itate simultaneous excitation from the ground state to the
double Rydberg state, strongly suppressing the influence from
intermediate singly-excited states, which really gives rise to
an efficient one-step implementation of Rydberg gates. Nev-
ertheless, the leading obstacle that limits the robustness of
such antiblockade gates becomes its sensitivity in practice to
the interaction fluctuations between two Rydberg-state atoms.
Typically, they depend on “frozen” Rydberg atomic inter-
actions to fulfill the antiblockade condition [57,58]. In the
present work, by minimizing the time spent in |rr〉 (approx-
imately 0.02 µs) together with the merit of small Rydberg
decay errors (approximately 10−4), the gate tolerance to the
interaction fluctuations can be largely improved, which is
promising for a high-fidelity quantum gate with hotter atoms.

IV. POSITION ERROR TOLERANCE

It is well known that a Rydberg antiblockade gate depends
on the leading participation of double Rydberg states and
is therefore more sensitive to the fluctuation of interatomic
interaction than other gate schemes, such as Rydberg blockade
[59,60] or adiabatic passage [61–67]. In reality, this fluctu-
ation in the relative position between two atoms cannot be
avoided, especially for two trapped atoms under a finite tem-
perature [68]. That is why the Rydberg antiblockade gates
have not been reported by experiments yet. Although, e.g.,
placing two atoms a long distance apart [69,70] or lowering
the atomic temperature [71] can reduce the position error, the
robustness of antiblockade gates is still unsatisfactory.

In this section, in order to explore the influence of in-
teratomic position fluctuation, we first assume a relative
deviation ratio δV/V with respect to the nonfluctuating inter-
action strength V by making the replacement

V → V (1 + δV/V ), (12)

where δV/V stands for the maximal deviation degree of the
position fluctuation. For a determined δV/V we extract a uni-
formly distributed random number generated from the range
of [−δV/V,+δV/V ], which leads to a fluctuating interaction
strength. Figures 3(a)–3(c) plot the average fidelity F versus
the variation of δV/V ∈ [0, 0.05]. Such a deviation degree can
also be changed in the view of two-atom distance fluctuation
because σr = (δV/V )r0/6 due to V = C6/r6

0 for a vdW in-
teraction [72]. From Figs. 3(a)–3(c) it is apparent that, with
an increasing deviation, the SWAP gate fidelity significantly
decreases for the q = 0 case, e.g., when δV/V = 0.05 (equiv-
alent to a position deviation of σr ≈ 40 nm), F is decreased
to approximately 0.87 with arbitrary pulse shapes. However,
with the help of the modified antiblockade condition where
q is optimized to minimize the time spent in |rr〉, the gate
robustness against the deviation degree δV/V can be greatly
improved. The average gate fidelity F stays as high as ap-
proximately 0.97 for a large distance deviation.

Accounting for the fact that deviation in the Rydberg
interaction between two atoms usually comes from the im-
perfections of atomic cooling and trapping, we consider the
atoms with a finite temperature T and recalculate this po-
sition error. We assume that the relative position between
two atoms satisfies a one-dimensional Gaussian distribution
with its mean r0 = (C6/V )1/6 ≈ 4.8 µm and standard devi-
ation σr =

√
kBT/mω2 which varies with T . Here kB, m,

and ω mean the Boltzmann constant, the atomic mass, and
the trapping frequency, respectively. By assuming ω/2π =
147 kHz and T = 20 µK we can obtain σr ≈ 47.34 nm and
δV/V ≈ 5.92%. From the numerical results in Figs. 3(d)–
3(f) it is clear that the gate infidelity F (T = 0) − F (T )
(excluding the decay error) for the modified antiblockade
case is dramatically decreased. At the T = 20 µK ac-
cessible by a typical cold-atom experiment [73], we find
that the gate infidelity due to the position error can sus-
tain approximately 7.52 × 10−2, which is almost a 50%
reduction compared to that for the q = 0 case. A fur-
ther expectation for decreasing the position error down to
the level of approximately 10−3 may resort to lowering
the temperature T or increasing the trapping frequency ω,
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FIG. 3. (a)–(c) Average gate fidelity F as a function of the deviation degree of interaction strength δV/V ∈ [0, 0.05] (equivalent to
the position deviation σr ∈ [0, 40] nm), where the decay from the Rydberg state is considered. (d)–(f) Gate infidelity F (T = 0) − F (T )
for different atomic temperatures T , treated as one of the dominant error sources to produce an interaction deviation. Cases q = 0 and
q 
= 0 are presented by the blue line with circles and the red line with stars, respectively. Each point in (a)–(c) denotes an average of
300 uniformly distributed random samplings, while in (d)–(f) each point denotes an average of 300 Gaussian-distributed samplings for
the atomic position. Pulse parameters used in the calculation are all obtained in the perfect case without any technical noise (case ii
in Table I).

which allows for a smaller position deviation σr < 14.7
nm. Then the influence of position fluctuation on the in-
fidelity can be suppressed to an experimentally accessible
level approximately equal to 9.6 × 10−3. Among the ex-
isting schemes of Rydberg antiblockade gates [74,75], our
protocol reports the gate with the best position-error tol-
erance, thus moving one step closer to its experimental
demonstration.

V. ROBUSTNESS AGAINST TECHNICAL
IMPERFECTIONS

In this section we study the gate infidelity by taking into
account other technical imperfections, as considered in a
previous Rydberg experiment [76]. We restrict our analysis
to the experimentally accessible Gaussian pulse (case ii),
which possesses a smoother adjustment of the Rabi frequency
as well as the best nonfluctuating (ideal) gate fidelity in
the perfect case. Except for the position error explored in
Sec. IV, other technical obstacles to a higher gate fidelity
may involve the Doppler effect due to the atoms having a
certain speed, the intensity and phase noises in excitation
laser pulses, the relative position of atoms within a finite
laser spatial width, etc. [77]. In the following we analyze
in detail the influence of each contribution to the gate infi-
delity in order to give a conservative estimation for the gate
performance.

A. Doppler dephasing

In a practical environment the qubit atoms would have a
certain speed due to the residual thermal motion arising from
the Doppler effect. The resulting laser frequency detuning
experienced by the atoms will be slightly different from its
desired value ᾱ = 0, which gives rise to a modified one-atom
Hamiltonian

Ĥ j = �1e−i(�1+α1 )t |0 j〉〈r j | + �2e−i(�2+α2 )t |1 j〉〈r j | + H.c.,
(13)

where α1 (2) = �k1 (2),eff · �v stands for an extra phase factor to
the Rabi frequency and should fulfill a one-dimensional Gaus-
sian distribution

f (α1,2) = 1√
2πσα1,2

e−(α1,2−ᾱ)2/2σ 2
α1,2 (14)

with respect to the standard deviations σα1 = k1,effvrms and
σα2 = k2,effvrms. Here T = 20 µK corresponds to the one-
dimensional rms velocity vrms = √

kBT/m ≈ 44 mm/s. In
addition, we recall our setup shown in Fig. 1(insets) where
both transitions |0〉 → |r〉 and |1〉 → |r〉 are mediated by
two different low-lying p states. Therefore, the effective
wave vectors are k1,eff = 8.76 × 106 m−1 and k2,eff = 5 ×
106 m−1 when two excitation lasers have a counterpropagat-
ing configuration to minimize thermal Doppler shifts. That
means for each measurement the extra frequency detuning
α1,2 (except �1,2) of excitation lasers seen by the atoms is
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FIG. 4. Gate infidelity of the antiblockade SWAP gate with a pair
of optimal Gaussian-shaped pulses (case ii), caused by (a) Doppler
dephasing under different atomic temperatures T ∈ [0, 20] µK,
(b) laser intensity fluctuations δ� ∈ [0, 0.05], (c) laser phase fluctua-
tions (characterized by a dephasing rate γ0/2π ∈ [0, 100] kHz for the
ground-Rydberg transition), and (d) a laser beam waist ω ∈ [1, 5] µm
where the standard deviation of the atomic position is fixed at σr ≈
47.34 nm at T = 20 µK. Similar to Fig. 3, numerical results based
on the q = 0 case (blue line with circles) and the q 
= 0 case (red line
with stars) are presented. Each point is obtained by an average of 300
samplings. Note that all simulation results depend on the choice of
optimal pulse parameters in the perfect case (case ii in Table I).

a random value extracted from a centered Gaussian func-
tion f (α1,2) with maximal standard deviations (σα1 , σα2 ) =
(0.383, 0.219) MHz. Numerical simulation allows for a new
estimation of the gate infidelity F (T = 0) − F (T ), shown in
Fig. 4(a) versus the atomic temperature T . By averaging over
sufficient runs of measurement, the gate infidelity based on the
modified antiblockade mechanism explicitly shows a dramatic
reduction by one order of magnitude compared to that for the
perfect antiblockade case. The reason is that α1 (2) serves as
an extra and fluctuated detuning in addition to �1 (2), and the
presence of an optimal q no doubt adds to the tolerance against
the detuning deviation. We find that at T = 20 µK the infi-
delity caused by the Doppler dephasing has been suppressed
to a negligible level approximately equal to 3.80 × 10−5 for
the q 
= 0 case.

B. Laser intensity noise

In general, the laser intensity fluctuation coming from ex-
ternal technical weakness will lead to the deviation of desired
excitation probability. In particular, a gate scheme that de-
pends on pulse optimization requires an accurate knowledge
of pulse parameters [78]. Here we introduce the same relative
deviation δ� = δ�/�max

1,2 in the range of δ� ∈ [0, 0.05] with
respect to the maximal Rabi frequency �max

1,2 . During each run
of measurement the realistic laser Rabi frequency �1 (2)(t )
should fluctuate by a uniform random number obtained from
[−δ�,+δ�]�max

1 (2) while the pulse shape is kept unchanged.

Figure 4(b) shows the dependence of the gate infidelity on
the laser intensity fluctuation. By increasing the relative de-
viation δ� from 0% to 5.0%, the modified antiblockade case
apparently has a better robustness to the laser intensity noise,
although the gate infidelities remain at the level of approxi-
mately 10−3 in both cases.

C. Laser phase noise

The phases φ1,2(t ) of the laser Rabi frequency �1,2(t ) are
random processes which should be characterized by a phase
noise spectral density as a function of the Fourier frequency
[79]. Since the laser phase noise caused by different frequen-
cies involved in excitation lasers would lead to dephasing
of Rabi oscillations [80–82], we describe the average result
of the laser phase noise by introducing an extra Lindblad
superoperator L̂d [ρ] in the master equation (9)

L̂d [ρ] = 1
2

4∑
j=1

[2L̂d j ρ̂L†
d j − (L̂†

d jL̂d j ρ̂ + ρ̂L̂†
d jL̂d j )], (15)

with four dephasing channels expressed as

L̂d,1 (2) =
√

γ0

2
(|r〉1 (2)〈r| − |0〉1 (2)〈0|),

L̂d,3 (4) =
√

γ0

2
(|r〉1 (2)〈r| − |1〉1 (2)〈1|),

where γ0 denotes a common dephasing rate. We have ne-
glected the dephasing channel between |r〉 and |α〉 since no
laser pulse couples them. Figure 4(c) predicts the relationship
between gate infidelity and different dephasing rates where
γ0/2π ∈ [0, 0.1] MHz is considered. Here we set the maximal
γ0 to be 2π × 0.1 MHz at the same level as the experimental
value [83]. For each γ0 we adopt a uniform random value
in the range of [0, γ0] and calculate the average infidelity
F (γ0 = 0) − F (γ0) after running 300 samplings. We observe
that the effect of phase noise is more influential than that of
the intensity noise, and the modified antiblockade condition
can also slightly improve the gate tolerance. When γ0/2π =
0.1 MHz the gate infidelity can achieve 6.68 × 10−3, which
also plays a non-negligible role compared to the dominant
position error (approximately 10−2).

D. Inhomogeneity in Rabi frequencies

In the above discussion we treat the thermal fluctuations
of interatomic position in one dimension, which is also the
propagation direction for two excitation lasers (see, e.g.,
Fig. 1 along ẑ). In fact, since lasers also have finite beam
waists, such thermal fluctuations will simultaneously make
the atoms deviate from the laser center in the x̂-ŷ plane. As
a result, the actual laser intensity seen by the atoms would
deviate from its ideal value, resulting in a position-dependent
Rabi frequency only in the x̂-ŷ plane. As a consequence,
the original time-dependent Rabi frequencies �1(t ) and
�2(t ) should be modified by adding a space-dependent
factor

�1,2(t, x, y) = �1,2(t, 0)e−x2/w2
x −y2/w2

y , (16)

012608-7



LI, WU, SU, AND QIAN PHYSICAL REVIEW A 109, 012608 (2024)

where �1,2(t, 0) = �1,2(t ) is treated as the central Rabi fre-
quency and ωx = ωy = ω is assumed to be a common beam
waist. We have ignored the intensity inhomogeneity in the ẑ
direction because the position deviation σr of atoms is usu-
ally smaller than the Rayleigh length by orders of magnitude
[77]. Furthermore, the position (x, y) of two atomic qubits
in the x̂-ŷ plane is modeled by a two-dimensional Gaussian
function with standard deviation σ = σx = σy ≈ 47.34 nm at
T = 20 µK. In Fig. 4(d) we tune the beam waist ω in the range
of [1, 5] µm to see the effect of intensity inhomogeneity. Both
cases clearly lead to similar gate infidelity values due to their
comparable laser intensities. When ω > 2.0 µm the influence
can be lowered to less than 10−4. However, if ω is narrowed
to below 1.0 µm we find the infidelity has a dramatic increase
because of the large intensity variations experienced by the
atoms when the beam waist is too small. While accounting
for the fact that the excitation laser can be focused typically
to a wide waist of approximately 10 µm [84], this error can be
totally negligible in the scheme.

VI. DISCUSSION

Ever since the pioneering works Refs. [85,86] proposed
the idea of quantum computation with neutral atoms, many
groups have focused on the experimental demonstration of
various Rydberg quantum gates via the Rydberg blockade
mechanism [87–89]. This method serves as the leading main-
stream blueprint mainly because of its powerful insensitivity
to the variation of interatomic interactions that fundamentally
makes the position error negligible. In addition, another set
of universal quantum gates based on the Rydberg antiblock-
ade effect also emerges, since the first scheme by Carr and
Saffman proposed a new method for preparing Rydberg en-
tangled states via the combination of dissipative dynamics
and antiblockade [7]. Nevertheless, such antiblockade gates
require an exact knowledge of the interaction strength V and
thus are very sensitive to the interaction deviation δV in
practice. In this work we restricted our attention to the imple-
mentation of a two-qubit SWAP gate based on the antiblockade
mechanism and showed that it is possible to improve the
tolerance of gates to the position error caused by, e.g., residual
thermal motion of atoms in the trapping region.

Table II summarizes the gate error budgeting of our pro-
tocol under different practical imperfections. Among them,
although the dominant gate error remains the position fluc-
tuation, e.g., it stays at the level of 10−2 for the q 
= 0 case,
this value has been greatly decreased by at least one order
of magnitude compared to that in the reported antiblockade-
gate schemes [27,74,75,90]. In addition, our protocol suffers
a higher sensitivity (approximately 10−3) to the fluctuation
of excitation lasers because of the pulse optimization. Other
errors due to the finite radiative lifetime of Rydberg states, the
Doppler dephasing, and the inhomogeneous Rabi frequency
all make negligible contributions (10−5–10−4). After taking
into into account all error sources, we can obtain a more
conservative lower bound on the predicted gate fidelity F �
0.9143. The potential for a higher-fidelity antiblockade gate
can depend on a further improvement in the tolerance to the
position fluctuation, especially by using the cooling method.

TABLE II. Error budget for case ii with optimal Gaussian pulses.
As expected, among all obstacles (intrinsic and technical) the po-
sition error originating from fluctuations in the relative position
between two atoms is the dominant error source. The Doppler de-
phasing and the inhomogeneity in laser Rabi frequencies are less
important. Every error number is obtained via an average over 300
repeated measurements and the values in parentheses denote the
maximal deviation. By considering all error sources simultaneously,
we obtain very conservative estimates for the gate fidelity, which are
F � 0.8482 and F � 0.9143, corresponding to the cases of q = 0
and q 
= 0, respectively.

Error sources Error budget

q/2π 0 5.037 MHz
Rydberg decay 7.31 × 10−4 3.18 × 10−4

Position fluctuation (σr = 47.34
nm)

1.33 × 10−1 7.52 × 10−2

Doppler dephasing (T = 20 µK) 7.39 × 10−4 3.80 × 10−5

Inhomogeneous Rabi frequency
(ω = 2 µm)

6.13 × 10−5 5.02 × 10−5

Laser intensity (δ� = 5.0%) 8.06 × 10−3 3.37 × 10−3

Laser phase (γ0/2π = 0.1 MHz) 9.23 × 10−3 6.68 × 10−3

VII. CONCLUSION

We have shown that the modified antiblockade effect
cooperating with pulse optimization can lead to Rydberg an-
tiblockade SWAP gates with unprecedented tolerance, offering
great promise for their experimental demonstration. Through
optimization we found that the time spent in the double Ry-
dberg state can be reduced by more than 70% compared to
that in the perfect antiblockade case, which does not depend
on the realistic shape of the laser pulses. For this reason
the insensitivity of such gates to the position fluctuations
can be improved by one order of magnitude, resulting in a
quite competitive gate fidelity of F � 0.9143 in the presence
of significant position deviation for a practical temperature
T ∼ 20 µK. Larger gate tolerance may be achievable by us-
ing, e.g., a more adequate cooling technique [91], optimal
three-dimensional geometric configuration [92], fault-tolerant
nonadiabatic geometric quantum computation [93,94], and
other advanced optimization algorithms [50]. The prospect
for realizing fast and high-fidelity state swapping with gate-
duration-optimized pulses is presented in Appendix B. We
numerically confirm that an increase in the restriction of max-
imal Rabi frequency to be 2π × 50 MHz can increase the
conservative gate fidelity to 0.9550 within an optimal gate
time Tg = 0.1177 µs. Finally, the fast and high-fidelity SWAP

gate can be used as a tool for other important applications in
the frontier of quantum information science, for example, con-
structing scalable superconducting quantum processors [95].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN EQS. (4)–(6)

In this Appendix we illustrate the derivation of the effective
Hamiltonians in Eqs. (4)–(6). We recall the total Hamiltonian
of the system in (1), Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + V̂rr , with Î j

a 3 × 3 identity matrix and j = 1, 2. Here the single-atom
Hamiltonian in the Schrödinger picture reads

Ĥ j =
∑

i=0,1,r

ωi|i〉 j〈i| + �1|r〉 j〈0|e−iωl1t

+�2|r〉 j〈1|e−iωl2t + H.c., (A1)

where ωi (i = 0, 1, r) describes the frequency of the atomic
level |i〉 and ωl1 (l2) represents the frequency of the optical
driving fields. Turning to the interaction picture, with respect
to a rotating frame we have

Ĥ j = �1e−i�1t |r〉 j〈0| + �2e−i�2t |r〉 j〈1| + H.c., (A2)

where we introduce the detuning parameters �1 = ωl1 −
(ωr − ω0) and �2 = ωl2 − (ωr − ω1) for simplicity. In addi-
tion, the third term in (1),

V̂rr = V |rr〉〈rr|, (A3)

is the Rydberg-mediated interaction as two atoms simulta-
neously occupy the Rydberg state, with V = C6/r6

0 the vdW
interaction strength.

To simplify the calculation, we first turn to the frame of
two-atom basis states in which the above single-atom Hamil-
tonian Ĥ j could be reexpressed as

Ĥ1 = �1e−i�1t (|r1〉〈01| + |r0〉〈00| + |rr〉〈0r|)
+�2e−i�2t (|r1〉〈11| + |r0〉〈10| + |rr〉〈1r|) + H.c.,

(A4)

Ĥ2 = �1e−i�1t (|1r〉〈10| + |0r〉〈00| + |rr〉〈r0|)
+�2e−i�2t (|1r〉〈11| + |0r〉〈01| + |rr〉〈r1|) + H.c.,

(A5)

with which the total Hamiltonian (1) of the system reduces to

Ĥ = Ĥ1 + Ĥ2 + V̂rr . (A6)

To demonstrate the role of the Rydberg-mediated interaction,
we rotate Ĥ in (A6) with respect to a unitary operator Û =

exp[−i(�1 + �2)t |rr〉〈rr|], which leads to

Ĥ′ = Û †ĤÛ + ih̄
∂Û †

∂t
Û = Ĥ0 + ĤI , (A7)

where the products are given by

Ĥ0 = �1e−i�1t (|r1〉〈01| + |r0〉〈00|) + �1ei�2t |rr〉〈0r|
+�2e−i�2t (|r1〉〈11| + |r0〉〈10|) + �2ei�1t |rr〉〈1r|
+�2e−i�2t (|0r〉〈01| + |1r〉〈11|) + �2ei�1t |rr〉〈r1|
+�1e−i�1t (|0r〉〈00| + |1r〉〈10|) + �1ei�2t |rr〉〈r0|)
+ H.c.,

ĤI = (V − �1 − �2)|rr〉〈rr|.
We aim at using the laser detuning to compensate for the en-
ergy shift induced by the Rydberg-mediated interaction so that
it satisfies V = �1 + �2 + q, yielding ĤI = q|rr〉〈rr|, which
ensures a nearly resonant two-photon transition with respect
to |rr〉. Clearly, when q = 0 it means the perfect antiblockade
condition in which we can arrange both atoms to be excited
to the Rydberg state. If q is a nonzero value it represents the
modified antiblockade which can modify the performance of
some unwanted ac Stark shift and be effectively used for a
SWAP gate task.

Next we rewrite the Hamiltonian Ĥ0 in a more universal
form

Ĥ0 =
∑

n=1,2

ĥ†
nei�nt + ĥne−i�nt (A8)

in which ĥ1 and ĥ2 take exact forms

ĥ1 = �1(|r1〉〈01| + |r0〉〈00| + |0r〉〈00| + |1r〉〈10|)
+�2(|1r〉〈rr| + |r1〉〈rr|),

ĥ2 = �2(|0r〉〈01| + |1r〉〈11| + |r1〉〈11| + |r0〉〈10|)
+�1(|0r〉〈rr| + |r0〉〈rr|). (A9)

Furthermore, if the parameters satisfy |�1| 	 �max
1 and

|�2| 	 �max
2 (large-detuning assumption), it is convenient to

get a direct two-photon transition between |rr〉 and |01〉 (|10〉)
with other singly-excited Rydberg states strongly suppressed
for large detunings. Here we confine our interest to the dy-
namics which are time averaged over a longer period than
any oscillation periods [96]. So after neglecting all oscillation
terms proportional to ei(�n±�m )t (n 
= m), we finally arrive at a
simple effective form for Ĥ0 [97],

Ĥ0,eff = 1

�1
[ĥ†

1, ĥ1] + 1

�2
[ĥ†

2, ĥ2]. (A10)

By inserting Eq. (A9) into (A10) the effective Hamiltonian
can be changed to

Ĥ0,eff = −
(

�2
1

�1
+ �2

1

�2

)
|r0〉〈0r| −

(
�2

1

�1
+ �2

1 + �2
2

�2

)
(|r0〉〈r0| + |0r〉〈0r|) −

(
�2

2

�1
+ �2

2

�2

)
|r1〉〈1r|

−
(

�2
2

�2
+ �2

1 + �2
2

�1

)
(|r1〉〈r1| + |1r〉〈1r|) +

(
�1�2

�1
+ �1�2

�2

)
(|rr〉〈01| + |rr〉〈10|)

+
(

�2
1

�1
+ �2

2

�2

)
(|01〉〈01| + |10〉〈10|) + 2�2

1

�1
|00〉〈00| + 2�2

2

�2
|11〉〈11| +

(
2�2

2

�1
+ 2�2

1

�2

)
|rr〉〈rr| + H.c. (A11)
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Via following Eq. (A11), we observe that the singly-excited
states such as {|0r〉, |r0〉, |1r〉, |r1〉} are now in a closed sub-
space and decoupled to the initial states {|00〉, |01〉, |10〉, |11〉}
due to the assumption of large laser detunings. So it is safe to
drop these trivial terms and the total Hamiltonian Ĥ′ can be
effectively described by

Ĥ′
eff = Ĥ′

0,eff + ĤI

=
(

�1�2

�1
+ �1�2

�2

)
(|rr〉〈01| + |rr〉〈10|) + H.c.

+
(

�2
1

�1
+ �2

2

�2

)
(|01〉〈01| + |10〉〈10|) + 2�2

1

�1
|00〉〈00|

+ 2�2
2

�2
|11〉〈11| +

(
2�2

2

�1
+ 2�2

1

�2
+ q

)
|rr〉〈rr|.

(A12)

Based on Eq. (A12), one can see that the collective ground
state |00〉 or |11〉 stays decoupled, resulting in

Ĥ00,eff = 2�2
1

�1
|00〉〈00| or Ĥ11,eff = 2�2

2

�2
|11〉〈11| (A13)

for the initialization of states |00〉 and |11〉. However, when
the initial state is |01〉 (equivalent to |10〉) one has

Ĥ01,eff =
(

�1�2

�1
+ �1�2

�2

)
(|rr〉〈01| + |01〉〈rr|) + H.c.

+
(

2�2
2

�1
+ 2�2

1

�2
+ q

)
|rr〉〈rr|

+
(

�2
1

�1
+ �2

2

�2

)
(|01〉〈01| + |10〉〈10|). (A14)

It is worthwhile to stress that although the Ĥ01,eff involves the
required swapping dynamics between two target states |01〉
and |10〉, it is clearly mediated by the double Rydberg state
|rr〉 because of the antiblockade facilitation, increasing its
sensitivity to the position error. Luckily, the presence of the
factor q ( 
=0) can modify the Stark shift with respect to |rr〉,
suppressing the population on it by using an off-resonance
detuning. This makes the resulting gate insusceptible to the
interaction fluctuation. In addition, the ac Stark shift to the
ground states |01〉 and |10〉 [the last term in Eq. (A14)] would
no doubt influence the swapping dynamics. Applying aux-
iliary atom-field couplings to overcome it, as done in [44],
may increase the experimental complexity. We identify that
the type of pulse optimization in our protocol can minimize
this influence without auxiliary fields, promising for a high-
fidelity SWAP gate with improved robustness. Finally, note
that our protocol, which benefits from the combination of the
modified antiblockade effect and the pulse optimization, is
promising for other two-qubit quantum gates with a differ-
ent pulse design. For example, a controlled-NOT (CNOT) gate
requires an asymmetric pulse driving in which atom 1 is only
driven by �2(t ) for the |1〉 → |r〉 transition, leaving |0〉 idle.
In this case the antiblockade facilitation could allow for an
effective coupling between |10〉 and |11〉, achieving a robust
two-qubit CNOT gate.

APPENDIX B: ACHIEVING FAST STATE SWAPPING
WITH PULSE OPTIMIZATION

In this Appendix we provide extended calculations for a
fast swapping operation in practice. Inspired by the methods
used in [98], we find that when the gate duration Tg is also
varied, serving as another ancillary optimal parameter, the
SWAP gate performance can be further improved with a higher
tolerance. To show the role of Tg optimization we focus on two
cases: one with a restriction of (�max

1 ,�max
2 )/2π � 10 MHz

and a second with (�max
1 ,�max

2 )/2π � 50 MHz. Such choices
will lead to approximate timescale levels for the gate duration,
which are 1.0 and 0.1 µs for maintaining complete circles
of rotation. Note that when we vary the pulse parameters,
a simultaneous optimization for the gate duration can also
minimize the time spent in the Rydberg state.

In this extended calculation all parameters including Tg are
tunable so as to maximize the perfect gate fidelity in the ab-
sence of any technical noise. To be specific, we also extend the
simplified model in Fig. 1 by using different branching ratios
with the leakage state |α〉, which are ηr→1 = 1

8 , ηr→2 = 1
8 , and

ηr→α = 3
4 . State |α〉 represents all ground magnetic sublevels

|5S1/2, F = 1, mF = ±1〉 and |5S1/2, F = 2, mF = ±1,±2〉
except |0〉 and |1〉. In this practical situation we find that the
success of the optimization is not affected by the increase of
parameters to be optimized. Finally, we obtain two sets of new
parameters for the gate,

(q,�1,�2)/2π = (6.051, 22.951, 41.488) MHz,(
�max

1 ,�max
2

)
/2π = (4.969, 9.728) MHz,

(ω1, ω2) = (0.4948, 0.5318) µs,

Tg = 0.8894 µs; (B1)

(q,�1,�2)/2π = (33.429,−94.133, 131.194) MHz,(
�max

1 ,�max
2

)
/2π = (37.413, 48.404) MHz,

(ω1, ω2) = (0.0586, 1.6082) µs,

Tg = 0.1177 µs, (B2)

corresponding to the restrictions �max
1 (2)/2π � 10 and 50 MHz,

respectively, set for the numerical optimization.
In Figs. 5(a) and 5(b) we show the optimal pulse shapes

�1(t ) and �2(t ) as well as the corresponding population
dynamics. As compared to the case in Figs. 2(a 5)–2(e 5),
we find that, together with the optimization for Tg, the time
spent on |rr〉 could be slightly shortened to Trr ≈ 0.0216 µs
owing to the use of a small and optimal Tg = 0.8894 µs (less
than 1.0 µs). The perfect gate fidelity stays at a high level of
F ≈ 0.999 484, although this value is slightly smaller than
the observed one F ≈ 0.999 682 in case ii (q 
= 0, Table I)
because the population loss caused by the leakage state |α〉 is
irreversible. In addition, note that if the restriction for �max

1 (2)
is increased to 2π × 50 MHz, the Tg required can be lowered
to 0.1177 µs, in excellent agreement with the relationship
between �max

1 (2) and Tg. From the error budget in Table III, it
is apparent that the Rydberg decay representing the dominant
source of error for the perfect gate fidelity cannot be easily
affected by shortening the gate duration. Therefore, the state
swapping fidelity in the perfect case is almost the same. How-
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FIG. 5. Optimal Gaussian pulse shapes and the full population dynamics based on (a) and (b) the SWAP gate protocol and (c) and (d) an

arbitrary initialization |�(0) = 1√
10

|00〉 +
√

7
10 |01〉 +

√
7

40 |10〉 + 1√
40

|11〉. By constraining the maximal Rabi frequencies (�max
1 , �max

2 ) to be

(a) and (c) 2π × 10 MHz and (b) and (d) 2π × 50 MHz, the optimal gate durations are Tg = 0.8894 µs and 0.1177 µs, correspondingly. All
line types are labeled in (a) and (c).

ever, for a shorten gate duration at the expense of higher Rabi
frequency, the time Trr is able to decrease by one order of
magnitude (Trr ≈ 0.0085 µs), which can no doubt make the
gate more susceptible to other technical imperfections. As
shown in Table III, the gate tolerance to the position fluc-
tuation is explicitly improved (6.98 × 10−2 → 1.15 × 10−2)
owing to the suppression of the Rydberg-state duration. The
only worse effect comes from the laser intensity fluctuation

because it increases with the values of �max
1 and �max

2 . For a
fast state swapping operation the laser intensity noise will play
an equivalently important role as the position fluctuation. By
taking into account different technical imperfections limiting
the gate fidelity, we finally demonstrate that a conservative
fidelity for the fast SWAP protocol above 0.9550 is achievable.

In order to show the SWAP gate that can be used for an
arbitrary state swapping we introduce a normalized two-qubit

TABLE III. Error budget for the two-qubit SWAP gate and for an arbitrary initialization |�(0)〉. From left to right the numerical simulations
are performed at different branching ratios or different Tg values, corresponding to the cases graphically plotted in Figs. 2(a 5)–2(e 5), 5(a),
5(b), 5(c), and 5(d), respectively. The perfect fidelity is only contributed by the Rydberg decay error. A more conservative estimation for the
state swapping fidelity is given, accounting for the sum of all intrinsic and technical error sources.

Error sources Error budget (SWAP) Error budget |�(0)〉
Branching ratios (ηr→1, ηr→2, ηr→α ) ( 1

2 , 1
2 , 0) ( 1

8 , 1
8 , 3

4 ) ( 1
8 , 1

8 , 3
4 ) ( 1

8 , 1
8 , 3

4 ) ( 1
8 , 1

8 , 3
4 )

q/2π (MHz) 5.037 6.051 33.429 6.051 33.429
Tg (µs) 1.0 0.8894 0.1177 0.8894 0.1177
Rydberg decay 3.18 × 10−4 5.16 × 10−4 4.58 × 10−4 4.97 × 10−4 5.83 × 10−4

Position fluctuation (σr = 47.34 nm) 7.52 × 10−2 6.98 × 10−2 1.15 × 10−2 2.78 × 10−2 1.01 × 10−3

Doppler dephasing (T = 20 µK) 3.80 × 10−5 1.58 × 10−5 1.22 × 10−5 8.00 × 10−6 2.76 × 10−5

Inhomogeneous Rabi frequency (ω = 2 µm) 5.02 × 10−5 1.24 × 10−5 2.76 × 10−5 3.00 × 10−6 2.74 × 10−6

Laser intensity (δ� = 5.0%) 3.37 × 10−3 3.11 × 10−3 3.11 × 10−2 2.47 × 10−4 1.73 × 10−2

Laser phase (γ0/2π = 100 kHz) 6.68 × 10−3 6.82 × 10−3 1.94 × 10−3 5.23 × 10−3 2.07 × 10−3

State swapping fidelity (perfect) 0.9997 0.9995 0.9995 0.9995 0.9994
State swapping fidelity (conservative) 0.9140 0.9200 0.9550 0.9662 0.9790
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state serving as the initial state

|�(0)〉 = A00|00〉 + A01|01〉 + A10|10〉 + A11|11〉, (B3)

with
∑

i, j |Ai, j |2 = 1 and i, j ∈ {0, 1}. Such arbitrariness of
the initialization can be used to study the fast state swapping
of the scheme. Ideally, for an arbitrary initialization |�(0)〉
the output state should be |�(Tg)〉 = A00|00〉 + A10|01〉 +
A01|10〉 + A11|11〉. Here we modify the definition of average
fidelity in Eq. (11) as

F = Tr
√√

Uρ(t = Tg)
√

U (B4)

because the initial state |�(0)〉 is individually normalized.
Here ρ is the practical density matrix at measured time
t = Tg and U = |�(0)〉〈�(0)| is the ideal swapping matrix.
In Figs. 5(c) and 5(d) we comparable the time-dependent
evolution of different populations |Ai, j (t )|2 for state |i j〉 by
adopting the optimization parameters in (B1) and (B2). A
complete error budget is presented in the last two columns of

Table III. In general, a fast and high-fidelity state swapping
is achievable for an arbitrary initialization. The swapping
fidelity considered for a nonfluctuating environment (perfect
case) can remain at a high value 0.9995(4) owing to the
success of pulse optimization. In contrast, taking into ac-
count various technical limitations from a typical Rydberg
experimental setup, we find that the position fluctuation and
the laser intensity noise are still two dominant contributions,
the same as in the SWAP gate protocol. However, the great-
est influence from a fluctuating position has been lowered
to 1.01 × 10−3 because of the relatively small population in
two swapping states |01〉 and |10〉. Nevertheless, the laser
intensity noise plays the most important role because the
maximal Rabi frequency to be optimized has reached 2π ×
48.404 MHz for �max

2 . After considering the technical noises,
a conservative estimation for the predicted fidelity of state
swapping can achieve 0.9662 and 0.9790. It is worthwhile
to note that achieving fast quantum state operations within a
submicrosecond duration has promising advantages deserving
more theoretical and experimental efforts in the future.
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