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Universal blind quantum computation allows a client who has limited quantum abilities to delegate his or
her private computation to an untrusted quantum server. The first universal blind quantum computation protocol
was proposed by Broadbent, Fitzsimons, and Kashefi. In their work the computation resource is the so-called
brickwork state, which can be constructed by a number of specific single qubits. The number of single qubits is
in theory linearly related to the size of the quantum circuit. However, due to the fixed structure of the brickwork
states, the actual number of qubits is usually far more than the linear size. In this work we mainly construct three
improved brickwork states whose structures are no longer fixed, thus they can efficiently reduce the client’s qubit
consumption. Using those improved brickwork states we propose a class of efficient universal blind quantum
computation protocols. In our basic protocol, to implement a single-qubit basic gate the client needs to prepare
only two ancillary qubits, while in the original protocol it will consume four ancillary qubits. Making use of
our improved brickwork states the qubit consumption of implementing a nonadjacent two-qubit gate such as a
control-X gate can be sharply reduced.
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I. INTRODUCTION

Quantum computation has been extensively explored from
theory to practice for a few decades [1–3]. Nowadays, it is
widely believed that in the near future quantum computers
will be similar to today’s classical supercomputers; they will
be used as specialized computation devices to accelerate the
solution of certain difficult problems, which means quantum
computers might be possessed by only a few organizations
or companies and most people will have no access to them.
To make quantum computers available to the general public,
the idea of delegated quantum computation has been naturally
proposed. In 2016 IBM first launched its cloud quantum com-
puting service, then many companies followed closely, e.g.,
Google, Intel, and D-Wave. It is foreseeable that delegated
quantum computation will be one of the main application
forms of quantum computers during the noisy intermediate-
scale quantum era [4].

Current delegated quantum computation is similar to the
classical cloud computing. First, a classical client sends his or
her quantum computation task, encoded as classical informa-
tion, to a remote quantum server. Then, the server performs
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the complete quantum computation for the client including
preparation and measurement. Finally, the server sends the
measurement outcome, i.e., the computation output, back to
the client. Apparently the client’s computation is not private
since the server knows everything about the computation
including input, output, and algorithm. Fortunately an uncon-
ditionally secure delegated quantum computation in theory
can be achieved as long as we consider a half-classical client,
i.e., a classical client with some specific quantum capacities
[5]. Arrighi and Salvail first proposed the conception of blind
quantum computation [6]. In their work they assumed that
clients are able to generate arbitrary quantum states at least.
However, their protocol considered only a class of random
verifiable functions and thus was not universal. In fact, in 2005
Childs had proposed a universal secure delegated quantum
computation protocol, called secure assisted quantum com-
putation [7], which can guarantee that both input and output
are secure but requires that clients have ability to generate
specific qubits and perform Pauli X and Z gates and have
polynomial-size quantum memory. Besides that, the protocol
also requires a two-way classical and quantum communi-
cation during the computation. Clearly, Child’s protocol is
demanding for clients. In order to reduce the requirements,
scholars put forward some improved protocols [8–11]. For
example, in 2014 Broadbent proposed an improved protocol
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[8], in which the client needs only to generate some specific
qubits and perform Pauli X and Z gates and the phase gate S.
Moreover, all qubits used for computation can be sent to the
server before the computation, thus the protocol requires only
a two-way classical communication during the computation.

In 2009 Broadbent, Fitzsimons, and Kashefi proposed the
so-called universal blind quantum computation (UBQC) pro-
tocol [12]. Here the blindness means that the server can learn
nothing about the computation except the upper bound of the
computation size. It should be mentioned that Child’s and
related improved protocols can also satisfy the blindness, for
example, making use of the universal quantum circuit [13].
Nevertheless, the work of Broadbent et al. opened a new
direction toward the private quantum computation since it is
the first secure delegated quantum computation protocol that
considers working under the measurement-based quantum
computation (MBQC) model [14–16] instead of the circuit-
based quantum computation model [17]. The basic work flow
of their UBQC protocol is as follows. First, the client ran-
domly prepares a sequence of specific single qubits and then
sends all them to the server. Once the server receives all
qubits, it entangles them by the controlled-Z (CZ) gate into
a specific multiqubit entangled state, i.e., a cluster state. After
that, the client instructs the server to measure all nonoutput
qubits step by step in an interactive manner. That is, the client
tells the server how to measure each qubit orderly, and after
each measurement the server sends the measurement outcome
to the client. Finally, for a classical output, the server measures
all output qubits and sends the measurement outcomes to the
client, while for a quantum output, the server directly sends
the output qubits to the client. Whether a classical or quantum
output, only the client can acquire the correct computation
result. After their pioneering work, a great number of blind
quantum computation protocols and related work based on
the MBQC model were put forward [18–26]. For example,
Morimae considered the universal blind quantum computa-
tion under the continuous-variable MBQC model [18]. Later
Morimae and Fujii proposed a fault-tolerant blind quantum
computation protocol making use of the three-dimensional
(3D) Raussendorf-Harrington-Goyal state [19]. In 2015 Mori-
mae, Dunjko, and Kashefi proposed two blind quantum
computation protocols that utilize the Affleck-Kennedy-Lieb-
Tasaki state [22]. As well, Mantri, Delgado, and Fitzsimons
developed a general framework to bound the resources of
any possible blind quantum computation and showed that the
UBQC protocol of Broadbent et al. comes within a factor 8

3 of
optimal when the client is restricted to preparing single qubits
[27]. Dunjko and Kashefi examined the quantum capacity
of the client and showed that, for the client, the capacity to
prepare arbitrary two nonorthogonal qubits suffices for im-
plementing any blind quantum computation [28]. Considering
the measurement of a qubit is much easier than the generation
of a qubit, Morimae and Fujii also proposed a measurement-
only blind quantum computation protocol where the client
needs only to perform single-qubit measurement [29].

In this paper we improve the original work of Broadbent
et al. from the perspective of the client-side qubit consump-
tion. Specifically we construct three improved brickwork
states which can reduce the client’s qubit overhead in different
degrees. The main improved brickwork state, which we call

the square brickwork state, is able to reduce roughly half of
qubit consumption comparing to the original brickwork state.
While the other two improved brickwork states are variants of
the square brickwork state and their graph structures are more
complicated than the square brickwork state, the variant brick-
work states can further reduce the qubit overhead of the client.
Our main construction technique for the improved brickwork
states is inspired by the excellent work of Fitzsimons and
Kashefi for verifiable quantum computation [30], where they
use the same technique to introduce an unconditional verifica-
tion method in blind quantum computations.

The rest of this paper is organized as follows. In Sec. II we
briefly review the basics of the UBQC protocol. In Sec. III we
discuss the main deficiencies of the brickwork state proposed
by Broadbent et al. Then in Sec. IV we present our first
improved graph state in detail. In Sec. V using this improved
graph state we propose an efficient UBQC protocol. In Sec. VI
we construct two variants of the former improved graph states
which can further reduce the qubit consumption. In the last
section, we give a short conclusion on our work and point out
some possible remaining problems.

II. UNIVERSAL BLIND QUANTUM COMPUTATION

As mentioned, the UBQC protocol proposed in [12] is built
upon the MBQC model [14–16] where the computation is
driven by a sequence of single-qubit measurements on a given
cluster state, also known as a graph state. In this section we
will briefly review the MBQC model. A comprehensive re-
view of the MBQC model can be found in Ref. [31].

In the standard MBQC model, the graph state is usually
described by a undirected graph G = (V, E ) where V is the
vertex set while E is the edge set. For each vertex i ∈ V , it rep-
resents a qubit i prepared in state |+〉. For each edge ei, j ∈ E ,
it represents a CZ gate performed on qubits i, j. The set V
contains two nonoverlapping subsets I and O, which represent
the input qubits1 and the output qubits of the computation,
respectively. Given a graph state denoted by |G〉, a compu-
tation in the MBQC model can be formally characterized
by a measurement pattern M|G〉,comp = ({θi}i∈V \O, fG), where
{θi}i∈V \O specify all measurement angles on the nonoutput
qubits while fG : V \O → V \I is a bijective function (known
as flow) that captures the ordering of measurements on |G〉.
Hereafter, given the graph state |G〉 we will abbreviate the
measurement pattern to Mcomp = (θ, f ). Due to the nature
of the MBQC model, the measurement angles {θi}i∈V \O are
amended as

θ ′
i = (−1)s f −1 (i)θi +

∑

j: f ( j)∈NG(i)
j �=i

s jπ, (1)

where NG(i) denotes the neighbor vertex set of the vertex i
in the graph G and f −1 is the inverse of the flow f , while
s f −1(i), s j ∈ {0, 1} are the measurement outcomes of the qubits

1In fact, the input qubits are not necessary to be prepared in state
|+〉, they can be any desired state. Nevertheless, any state |ψ〉 can be
obtained by applying an appropriate unitary operator Uψ on a fixed
input state. Of course, the size of Uψ must be polynomial in n.

012606-2



UNIVERSAL BLIND QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 109, 012606 (2024)
L

L

L

L

L

L

L

L

m

n

FIG. 1. Structure of an (nm)-qubit brickwork state defined in
[12], where n, m satisfy that n ≡ 0 (mod 2) and m ≡ 5 (mod 8).

f −1(i) and j. In particular, we define s f −1(i) = 0 for all i ∈ I .
For simplicity, in the following content we will abbreviate f (i)
and f −1(i) as fi and f −1

i , respectively.
In the UBQC protocol, the graph state used for compu-

tations is called the brickwork state; see Fig. 1 for a detailed
construction. Each circle denotes a single qubit |+〉 while each
edge connecting two circles denotes a two-qubit CZ gate. The
white circles denote the input qubits while the black ones
denote the output qubits; the rest denote the non-input-and-
output qubits. The measurements are performed column by
column from the leftmost side. In this paper we index the
qubits of the brickwork state in the following way: for the
qubit in the kth row and lth column, we use the number
i = (l − 1)n + (k − 1) to denote it. In other words, we index
the first column of qubits (i.e., the input qubits) from top to
bottom as 0, 1, . . . , n − 1, and the second column of qubits
as n, n + 1, . . . , 2n − 1, and so on. By this definition, it can
be inferred that for any nonoutput qubit i, we always have
fi = i + n. The basic unit of the brickwork state can imple-
ment basic gates of the circuit-based quantum computation
(see Fig. 2), such as H, T , and CX. Thus, the brickwork state
is universal. We list in Fig. 3 the concrete measurement angles
for the basic gates H, T, CX, and the identity gate I .

Obviously, according to Eq. (1), given all amended mea-
surement angles and outcomes {θ ′

i , si}i∈V \O, it is easy to
determine the measurement angles {θi}i∈V \O. Thus, in order
to guarantee that the server learns nothing about the com-
putation, all qubits used to construct the brickwork state
are prepared in state |+δi〉 instead of |+〉, where δi ∈R

{0, π
4 , . . . , 7π

4 }. Note that up to an insignificant global phase
|+δi〉 ≡ Rz(δi )|+〉, and Rz(δi ) commutes with CZ, thus we can
always think that all qubits are first prepared in state |+〉 and
then performed by a sequence of CZ gates according to the
structure of the brickwork state, and finally each qubit i is
rotated by Rz(δi ). In the MBQC model, the single-qubit pro-
jective measurement M(θ ) can be described by the operator

M(θ ) ≡
∑

s∈{0,1}
(−1)s|+θ+sπ 〉〈+θ+sπ |, (2)

=

FIG. 2. Basic unit of the brickwork state, which implements a
basic quantum circuit as shown in the right side.

=

= =

=

FIG. 3. Measurement angles for the basic gates H, T, CX, and the
identity gate I .

where θ ∈ [0, 2π ) is the measurement angle and s ∈ {0, 1}
denotes the measurement outcome. Traditionally, M(θ ) is
treated as a destructive measurement’ that is, once a qubit is
measured we can simply think that it will be discarded. In this
case, it can be easily inferred that, for any multiqubit state
|φ〉, using M(θi ) to measure a qubit i of |φ〉 is equivalent to
using M(θi + δi ) to measure the qubit i of Rz(δi )|φ〉, where
Rz(δi) is acted on the qubit i. This equivalence refers to the
postmeasurement state (not including the qubit i) and its
occurring probability. Furthermore, according to Eq. (2),
given a random bit r ∈ {0, 1} we can obtain that

M(θ + rπ ) =
∑

s∈{0,1}
(−1)s⊕r |+θ+sπ 〉〈+θ+sπ |, (3)

where s ⊕ r ∈ {0, 1} denotes the measurement outcome.
Clearly, the measurement outcome of M(θ + rπ ) can be
viewed as a one-time pad of the measurement outcome of
M(θ ), where r is the secure key. As a result, to correct the
deviations caused by Z rotation and encrypt the measurement
outcomes, the actual measurement angles {φi}i∈V \O are
adjusted as

φi = (−1)
s

f −1
i θi +

∑

j: f j∈NG(i)
j �=i

s jπ + δi + riπ, (4)

where δi ∈R {0, π
4 , . . . , 7π

4 } and ri ∈R {0, 1}. Let bi ∈ {0, 1}
be the measurement outcome of M(φi ), then the measurement
outcome of M(θi ) will be si = bi ⊕ ri. Note that the term
δi + riπ can be treated as a secure key to encrypt θ ′

i . In
summary, given the measurement angles and outcomes
{φi, bi}i∈V \O the server can infer nothing about {θi, si}i∈V \O,
which means the computation is blind to the server.

III. DEFICIENCIES OF THE BRICKWORK STATE

Although the brickwork state provides a nice framework
for implementing the universal blind quantum computation, it
suffers some intrinsic drawbacks. In this section we discuss
those limits briefly.

In the following content, we consider an n-qubit circuit
U with a depth of O(nc), which consists of basic gates such
as H, T , and CX. We first estimate the number of qubits that
are used to construct the brickwork state that implements the
circuit U . On the face of it, the number of qubits is no more
than 4nO(nc) = O(nc+1) since each single-qubit basic gate
(including the identity gate I) consumes four qubits (not in-
cluding the output qubits). However, the real situation is more
complicated due to the structure of the brickwork state. For
example, consider a four-qubit circuit Uswaps which consists
of two swap gates as shown in Fig. 4(a); this circuit can be
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FIG. 4. (a) Example circuit Uswaps that implements two swap
gates on qubits 1, 2 and 3, 4; (b) equivalent Uswaps consisting of six
CX gates; (c) minimal brickwork state implementing Uswaps.

decomposed as six CX gates as shown in Fig. 4(b), where
we can see the depth of Uswaps is 3. In theory, achieving this
circuit demands 4 × 4 × 3 = 48 qubits in total (not including
the input qubits). But from Fig. 4(c) we can infer that the num-
ber of qubits is in fact 4 × 4 × 5 = 80. The ultimate reason
why it requires more ancillary qubits is that the structure of
the brickwork state is fixed. Due to the fixed structure, the
equivalent circuits implemented by the brickwork state also
have a fixed layout as shown in Fig. 5.

Even worse, since the structure of the brickwork state is
fixed, it can achieve a CX gate only on two adjacent qubits. Al-
though a CX gate on two nonadjacent qubits can be simulated
by a sequence of CX gates on adjacent qubits, it inevitably con-
sumes massive qubits. To be specific, consider a CX gate on
qubits 1 and n(� 3), denoted by CX1,n; it can be implemented
by (4n − 8) CX gates on adjacent qubits. The concrete circuit
is shown in Fig. 6, from which we can see that the depth of
the circuit is 4n − 8. Since there are at most n/2 concurrent
CX gates in each layer of circuits, thus it can be verified that
in the worst case the number of qubits is O(nc+3). Clearly, an
increase of two orders of magnitudes comparing to the ideal
estimation O(nc+1).

IV. SQUARE BRICKWORK STATE

In order to reduce the expenditure of ancillary qubits, we
first construct a universal graph state based on the original
brickwork state in [12], and we simply name it a square
brickwork state.

... ...

...

...

...

FIG. 5. Circuit layout implemented via the brickwork state,
where each block denotes a unitary operator implemented by a basic
unit of the brickwork state.

...... ...... ...... ......... ... ...... ... ...==

FIG. 6. CX1,n gate and its equivalent circuit consisting of CX

gates on adjacent qubits.

Our main construction method is inspired by the work in
[30], where the authors use the technique to introduce a veri-
fication mechanics in blind quantum computations. There are
two kinds of operations in the procedure of the construction:
break and bridge operations. Figuratively, the break operation
is used to erase a vertex together with two edges connected to
it, while the bridge operation is used to erase a vertex and
then reconnect its two neighbor vertices; see Fig. 7. Such
operations can be implemented by the following way: let |�〉
be the state consisting of qubits k, l , for a break operation,
first prepare the qubit i in state |xi〉 where xi ∈ {0, 1}, then
measure it with any basis, and the postmeasurement state of
qubits k, l will be Rz(xiπ ) ⊗ Rz(xiπ )|�〉; for a bridge opera-
tion, first prepare the qubit i in state |+xiπ 〉 where xi ∈ {0, 1},
then measure it with M(π/2), and the postmeasurement state
of qubits k, l will be Rz[(−1)xi⊕si π

2 ] ⊗ Rz[(−1)xi⊕si π
2 ]CZ|�〉,

where si ∈ {0, 1} is the measurement outcome of the qubit i.
Apparently, ignoring the Z-rotation operators, the above state
preparations and measurements exactly achieve the desired
break and bridge operations.

A. Implementing the single-qubit basic gates

We first show that the three-qubit cluster depicted in Fig. 8
os universal for any single-qubit unitary operator. Specifically,
it can be used to implement the basic gates H and T . From
Fig. 2, we can infer that the equivalent circuit implemented
by measuring the first two qubits of this three-qubit cluster
is R†

x (θ1)R†
z (θ0), where we ignore the redundant Pauli opera-

tors on the output qubit. Obviously, setting θ0 = −π/4 and
θ1 = 0, we can obtain that the π/8 gate T . Note that up to
a global phase H ≡ R†

z ( π
2 )R†

x ( π
2 )R†

z ( π
2 ), so setting θ0 = θ1 =

π/2, we can obtain the unitary operator such that Rz(π/2)H .
As mentioned in Sec. II, any Z-rotation operator Rz(θ ) can
be corrected by the adaptive measurement. Thus, this three-
qubit cluster is universal for any single-qubit unitary operator.
Clearly, comparing with the original brickwork state shown in
Fig. 3, the number of ancillary qubits for single-qubit gates
shrinks by half.

We should mention that this three-qubit cluster state
can be also used to implement more basic gates such as
I, X,Y, Z, S, HSH, HT H , even their inverses (including T †).

break operation on i
ik l

ik l bridge operation on i

k l

k l

FIG. 7. Break operation and the bridge operation on qubit i.
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FIG. 8. Simple three-qubit cluster state.

In the view of computational complexity, introducing more
basic gates can effectively reduce the depth of quantum cir-
cuits. For example, consider a unitary operator U = HT †H ;
if we use only H and T to implement it, then it will be
HT T T T T T T H , which contains nine gates! As a result, im-
plementing such U by the three-qubit cluster states requires
2 × 9 = 18 ancillary qubits. But, in fact, we can implement
this unitary operator using only one three-qubit cluster, where
we set θ0 = 0 and θ1 = π/4. Thus, introducing more basic
gates in the gate set is indispensable. Finally, having inverses
of the basic gates in the gate set is the basic requirement of the
Solovay-Kitaev theorem [32].

B. Implementing the two-qubit basic gate

We next consider the case of two-qubit basic gates. Instead
of the CX gate, we will use the CZ gate as the two-qubit basic
gate. This can be done since we know that a CX gate can
be decomposed into a CZ gate and two H gates. There are
two reasons for this choice. First, from the point of view of
the circuit design, the CZ gate is simpler than the CX gate
since it is symmetric; that is, given a CZ gate on two qubits
there is no need to specify the control and the target qubits.
Second, the CZ gate in itself is one of basic operations in
constructing a cluster state; thus using the CZ gate to describe
a circuit is more fundamental than the CX gate. And, more
importantly, unlike the single-qubit basic gates there is no
need for ancillary qubits (and measurements) to implement a
CZ gate, since it naturally exists in the structure of the cluster
state! For example, suppose we want to execute a CX gate on
two adjacent qubits; the circuit consists of four single-qubit
gates and one CZ gate (see Fig. 9). Except the CZ gate, each
single-qubit gate requires two ancillary qubits. As for the CZ

gate, we can think it is embedded in the cluster state as a basic
component before the measurements.

However, as we can see from the above example, the po-
sition of the CZ gate is exposed to both server and client.
Thus, it cannot be directly used for the universal blind quan-
tum computation. To plug this loophole, we make use of
the aforementioned break and bridge operations. First, we
construct a special seven-qubit cluster state, which consists of
two three-qubit cluster states connected by an extra ancillary
qubit between two output qubits (see Fig. 10). We have known
that measuring the first two qubits on the top and bottom

=

FIG. 9. CX gate decomposed as four single-qubit gates and one
CZ gate, where we use different colors to denote those single-qubit
gates. In the right-side cluster state the measurements implementing
different single-qubit gates are highlighted with corresponding color.

FIG. 10. Special seven-qubit cluster state, where the square de-
notes a non-input-and-output qubit whose state is taken from either
{|0〉, |1〉} or {|+〉, |−〉} randomly.

lines amounts to applying a single-qubit basic gate on the
top and bottom input qubits, respectively. In the case where
we want to perform a CZ gate on the two output qubits, we
perform a bridge operation on the ancillary qubit represented
by the gray square. That is, we first initiate this qubit as
|+xπ 〉, then measure it with M(π/2). Otherwise, we simply
perform a break operation on that ancillary qubit. Specifically,
we first initialize this qubit as |x〉 and then measure it also with
M(π/2). In the view of the server, the break and the bridge op-
erations are indistinguishable, since the measurement bases in
both operations are identical and more importantly {|0〉, |1〉}
and {|+〉, |−〉} are completely indistinguishable, which is the
security basis of most of quantum key distribution protocols
[33]. Thus, the server cannot obtain any information about
whether a CZ gate is performed on the output qubits. Note that
the break and the bridge operations can be finished before the
measurements on the three-qubit cluster states.

C. Construction of square brickwork states

We now use the previous seven-qubit cluster state as
the basic unit to construct a square brickwork state for the
universal blind quantum computation, whose structure is de-
picted in Fig. 11, where each circle denotes a qubit |+δ〉, δ ∈
{0, π

4 , 2π
4 , . . . , 7π

4 }, while each square denotes a qubit |x〉
or |+xπ 〉, x ∈ {0, 1}; the ancillary qubits represented by gray
squares are used to perform the break and the bridge opera-
tions at the beginning of the computation.

In the following discussion, we use the same fashion as
described in Sec. II to index each qubit represented by circles.
On the basis of that, we denote the ancillary qubit repre-
sented by a square between qubits i and i + 1 as (i, i + 1),
whose state is written as |xi

i+1〉 or |+xi
i+1π

〉. It is easy to check

L

L

L

m

L

L

L

L L L L L L L L

n

FIG. 11. Structure of the square brickwork state, where n is the
number of input qubits and m ≡ 1 (mod 2) and m � 5.
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Algorithm I. Constructing a square brickwork state.

Require: Mcomp = (θ, f ,B)
Ensure: A square brickwork state with n input qubits and m columns
1: for i ← 0, mn − 1 do
2: C generates |+δi 〉 as the qubit i, where δi ∈R {0, π

4 , . . . , 7π
4 }

3: end for
4: for k ← 1, n − 1 do
5: for l ← 1, m−3

2 do
6: Let i = 2ln + k − 1
7: if Bi

i+1 = Z then
8: C generates |xi

i+1〉 as the qubit (i, i + 1), where xi
i+1 ∈R {0, 1}

9: else
10: C generates |+xi

i+1π 〉 as the qubit (i, i + 1), where xi
i+1 ∈R {0, 1}

11: end if
12: end for
13: end for
14: C sends all qubits to S
15: for i ← 0, mn − n − 1 do
16: S performs a CZ gate on qubits i and i + n
17: end for
18: for k ← 1, n − 1 do
19: for l ← 1, m−3

2 do
20: Let i = 2ln + k − 1
21: S performs CZi,(i+1) and CZi+1,(i,i+1)

22: end for
23: end for

that the number i must satisfy i = 2ln + k − 1 where k ∈
{1, 2, . . . , n − 1} and l ∈ {1, 2, . . . , m−3

2 } [hereafter, when we
mention the qubit (i, i + 1), it must satisfy this condition].
Furthermore, we define an indicator Bi

i+1 ∈ {Z, X } for each
qubit (i, i + 1). If Bi

i+1 = Z , then the qubit (i, i + 1) is pre-
pared in state |xi

i+1〉, otherwise |+xi
i+1π

〉. In this work we
implicitly assume that there exists a polynomial algorithm
which given a computation outputs a corresponding measure-
ment pattern Mcomp = (θ, f ,B) on the brickwork state, where
the extra B contains all the indicators defined above. Once
the measurement pattern Mcomp is determined, one can easily
construct the square brickwork state for the computation; see
Algorithm I.

V. UNIVERSAL BLIND QUANTUM COMPUTATION USING
SQUARE BRICKWORK STATE

Given a measurement pattern and the corresponding square
brickwork state, the computation can be roughly divided into
three steps.

Step 1: The server performs a measurement M(π/2) on
each ancillary qubit (i, i + 1) and sends the result si

i+1 to the
client. We know that such an operation may result in a Z
rotation on the qubits i and i + 1. Thus, the client needs to
update the rotation angles δi and δi+1. The concrete updating
rule can be expressed as

δu := δu + δZ,Bi
i+1

xi
i+1π + δX,Bi

i+1
(−1)xi

i+1⊕si
i+1

π

2
, (5)

where u ∈ {i, i + 1} and δZ,Z = δX,X = 1, otherwise δZ,X =
δX,Z = 0.

Step 2: As with the original UBQC protocol, for each
nonoutput qubit i the client first generates a random bit ri ∈R

{0, 1}, then computes the corrected measurement angle φi as

φi = (−1)si−nθi +
∑

j: f j∈NG(i)
j �=i

s jπ + δi + riπ + �i, (6)

where the first two terms are used to correct the Pauli op-
erators, the third term is used to compensate the Z rotation
accumulated in Step 1, and the fourth term is used to encrypt
the measurement outcome si, while the last term is also a
compensation for the Z rotation caused by the Hadamard gate
and defined as

�i = odd(i)δ π
2 ,θi−2nδ π

2 ,θi−n (−1)si−n
π

2
, (7)

where odd(i) = 1 if the qubit i is located in an odd-numbered
column of the square brickwork state, otherwise odd(i) = 0.
This product odd(i)δ π

2 ,θi−2nδ π
2 ,θi−n captures a condition that

whether or not the basic gate implemented by measuring the
qubits i − 2n and i − n is a Hadamard gate, where i satisfies
that i = 2ln + k − 1, i.e., odd(i) = 1. If so, we need to correct
a Z rotation Rz[(−1)si−n π

2 ]. In particular, we specify that �i =
0 for i ∈ {0, 1, . . . , n − 1}. Note that the angle �i is related
to the measurement outcome si−n, this is because measuring
the qubit i − n will introduce a random Pauli X si−n on qubit i.
It is easy to check that for any θ ∈ [0, 2π ) and s ∈ {0, 1} we
have X sRz(θ )X s = Rz[(−1)sθ ]. Thus, the Z-rotation operator
caused by implementing a Hadamard gate is Rz[(−1)si−n π

2 ].
Once determining φi via Eq. (6), C sends it to S , then S
measures the qubit i with M(φi ), obtaining the measurement
outcome bi and sending it to C. Finally, C computes the mea-
surement outcome of M(θi ), i.e., si = bi ⊕ ri.

Step 3: For a quantum output, we can see that each output
qubit i is encrypted by the operator Rz(δi + �′

i )Z
si−2n X si−n ,

where i ∈ {(m − 1)n, . . . , mn − 1} and �′
i is defined as

�′
i = δ π

2 ,θi−2nδ π
2 ,θi−n (−1)si−n

π

2
. (8)

Note that the expression of �′
i is slightly different from the

one of �i, because all output qubits must be located in an odd-
numbered layer [recall that m ≡ 1 (mod 2)], which means the
value of odd(i) must be 1 for each output qubit i. According to
Eq. (8), the right output state can be obtained by performing
the inverse of Rz(δi + �′

i )Z
si−2n X si−n on each output qubit i.

Step 3: For a classical output, we assume that the all output
qubits are measured in the Z basis. In this case the Z-rotation
operator (including the Pauli Z gate) will not affect the distri-
bution of the computation output. Thus, the correct output bit
for the qubit i will be si−n ⊕ si.

In summary, the complete procedure of the universal blind
quantum computation protocol using a square brickwork state
is described in Algorithm II.

Example

For comparison with the original UBQC protocol, we re-
consider the example circuit Uswaps shown in Fig. 4(a). First,
we express Uswaps using I, H , and CZ, then translate it into
an equivalent measurement pattern, by which we can obtain
the square brickwork state implementing Uswaps (see Fig. 12,
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Algorithm II. Universal blind quantum computation via a square brickwork state.

Require: Mcomp = (θ, f ,B) // θ and B are blind to S
Ensure: y = y1y2 . . . yn ∈ {0, 1}n // for a classical output |out〉 = Ucomp|+〉⊗n //for a quantum output
1: Set up a square brickwork state for Mcomp = (θ, f ,B) by calling Algorithm I.
2: For each qubit (i, i + 1), S measures it with M( π

2 ), obtaining the measurement outcome si
i+1 and sending it to C. Then C updates the values

of δi and δi+1 according to Eq. (5).
3: For each nonoutput qubit i, C generates ri ∈R {0, 1} and computes the measurement angle φi according to Eq. (6), then sends φi to S. After

that, S measures the qubit i with M(φi ), obtaining the measurement outcome, denoted by bi, and sending to C. Finally, C computes
si = bi ⊕ ri.

4: For a quantum output, C retrieves the encrypted output state from S, then decrypts each qubit i by X si−n Zsi−2n R†
z (δi + �′

i ), where �′
i is

obtained according to Eq. (8).
5: For a classical output, S measures each output qubit i in Z basis and sends the measurement outcome si to C, where i = (m − 1)n + k − 1

and k ∈ {1, 2, . . . , n}. Then C computes yk = si−n ⊕ si.

where 0/1 denotes a random qubit taken from {|0〉, |1〉} and
+/− denotes a random qubit taken from {|+〉, |−〉}). From
the picture, we can see that the number of qubits in the square
brickwork state is 4 × 8 + 9 = 41 (not including the input
qubits), which is much smaller than the case in the original
UBQC protocol [see Fig. 4(c)]. It should be mentioned that
a swap gate can be more efficiently constructed via some
certain graph state. For example, according to the original
work of Raussendorf et al., a swap gate can be implemented
by the eight-qubit graph state as shown in Fig. 13, where all
nonoutput qubits are measured in the X basis. This procedure
can be viewed as a two-dimensional (2D) version of identity
gate in the MBQC model [14]. Although this graph state is
more efficient than the graph state shown in Fig. 12(b), it
cannot be used to implement a swap gate in square brickwork
states. The main reason is that this eight-qubit cluster state
cannot be constructed by the sequence of seven-qubit cluster
state shown in Fig. 10.

This simple example also reveals a good property of the
square brickwork state. That is, in the square brickwork state
the layout of basic gates is no longer fixed as shown in Fig. 5.
In general, this will make it easier to translate Ucomp into
Mcomp. For example, if the computation circuit Ucomp consists
only of single-qubit basic gates and CZ gates on adjacent

1

3

2

4

1

3

2

4

=

(a)

(b)

FIG. 12. (a) Two equivalent expressions of the circuit Uswaps;
(b) the square brickwork state implementing Uswaps and the corre-
sponding measurement angles.

qubits, then the measurement angles on each row can be
trivially determined.

However, it should be mentioned that the square brickwork
state cannot directly implement a CZ gate on nonadjacent
qubits. As with the case in the original brickwork state, a
CZ gate on two nonadjacent qubits must be converted into a
sequence of CZ gates on adjacent qubits, which will inevitably
consume plenty of ancillary qubits!

VI. MORE EFFICIENT BRICKWORK STATES

A. Hyper-brickwork state

In order to decrease the number of ancillary qubits fur-
ther, we further improve the square brickwork state so that it
can implement directly a CZ gate on two nonadjacent qubits.
This basic idea is very simple: at each odd-numbered column
(except the first column and the last column), we introduce
more break and bridge operations among the rows. We name
this improved graph state the hyper-brickwork state, whose
construction can be described as follows.

First, we prepare an n-row and m-column qubits. For
each row, we perform a CZ gate on two adjacent qubits.
Then, for each i = 2ln + k − 1, where l ∈ {1, 2, . . . , m−3

2 }
and k ∈ {1, 2, . . . , n − 1}, we define a generalized indicator
Bi

j ∈ {Z, X }, where i + 1 � j � i + n − k. For each Bi
j , we

prepare a qubit, labeled as (i, j), in state |xi
j〉 or |+xi

jπ
〉, where

xi
j ∈R {0, 1}. Specifically, if Bi

j = Z , then the state of the qubit
(i, j) is |xi

j〉, otherwise |+xi
jπ

〉. Finally, we perform a CZ gate
on qubits i and (i, j), and a CZ gate on qubits j and (i, j). The
complete procedure of constructing a hyper-brickwork state is
given in Algorithm III.

By the hyper-brickwork state, we can easily establish or
eliminate a CZ gate on any two qubits in the same column.
To make it more intuitive, we consider a simple example.
Suppose n = 4 and we want to perform a CZ gate on qubits 0

0 0 0

0 0 0

FIG. 13. Eight-qubit graph state that can be used to implement
the swap gate by measuring all nonoutput qubits in X basis.
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Algorithm III. Constructing a hyper-brickwork state.

Require: Mcomp = (θ, f ,Bhyper ) // Bhyper contains all indicators {Bi
j}

Ensure: A hyper-brickwork state with n input qubits and m columns
1: for i ← 0, mn − 1 do
2: C generates |+δi 〉 as the qubit i, where δi ∈R {0, π

4 , . . . , 7π
4 }

3: end for
4: for k ← 1, n − 1 do
5: for l ← 1, m−3

2 do
6: Let i = 2ln + k − 1
7: for j ← i + 1, i + n − k do
8: if Bi

j = Z then
9: C generates |xi

j〉 as the qubit (i, j), where xi
j ∈R {0, 1}

10: else
11: C generates |+xi

jπ
〉 as the qubit (i, j), where xi

j ∈R {0, 1}
12: end if
13: end for
14: end for
15: end for
16: C sends all qubits to S
17: for i ← 0, mn − n − 1 do
18: S performs a CZ gate on qubits i and i + n
19: end for
20: for k ← 1, n − 1 do
21: for l ← 1, m−3

2 do
22: Let i = 2ln + k − 1
23: for j ← i + 1, i + n − k do
24: S performs CZi,(i, j) and CZj,(i, j)

25: end for
26: end for
27: end for

and 3. Clearly, we need to prepare six ancillary qubits, where
the qubit (0,3) is taken from {|+〉, |−〉}, while the others are
taken from {|0〉, |1〉}. Then, measuring each ancillary qubit
with M(π/2), it will create a CZ gate only on qubits 0 and
3 (see Fig. 14).

From this example, we can infer that for an n-qubit state,
in order to make sure that a break operation or a bridge
operation can be implemented on any two qubits, we need
only n(n−1)

2 ancillary qubits in total. This makes a remarkable
decrease in the number of ancillary qubits, since we saw
in Sec. III that a CX gate on qubits 1 and n will consume
4n(4n − 8) = 16n2 − 32n ancillary qubits! More importantly,
the hyper-brickwork state can implement at most n(n − 1)/2
concurrent CZ gates in each column, which will also save
many ancillary qubits. To see that, we use the syndrome circuit

0

1

2

3

0

1

2

3

(0,1)

(0,2)

(0,3)

(1,2)

(1,3) (2,3)

FIG. 14. Implementing a CZ gate on qubits 0 and 3 by a sequence
of break and bridge operations on ancillary qubits.

1
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4
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7
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8

9

11

10

12

13

FIG. 15. Quantum circuit for measuring the generators of the
seven-qubit Steane code [34]. This circuit can be implemented by
an n = 13 and m = 7 hyper-brickwork state.

of the Steane code as a qualitative illustration (see Fig. 15). It
is not hard to check that to implement this circuit by the orig-
inal brickwork state requires around 28 496 ancillary qubits,
but the hyper-brickwork state needs only 234 ancillary qubits.
According to the circuit in Fig. 15, constructing the hyper-
brickwork state for a seven-qubit Steane code measurement
circuit is simple. However, expressing this hyper-brickwork
state in the 2D plane is somewhat difficult since the qubits
in each odd-numbered column (except the first and the last
column) form a local dotted-complete graph state. Given an
arbitrary graph G, the dotted-complete graph G̃ is defined by
replacing every edge in G with a new vertex connected to
the two vertices originally joined by that edge [30]. Inspired
by the work [30], we can illustrate the hyper-brickwork state
for the seven-qubit Steane code measurement circuit. The
illustration consists of two parts. The first part is the backbone
of the hyper-brickwork state (see Fig. 16), which is basically
the same with the square brickwork state, where the qubits
within red-dotted boxes consist of 13-qubit dotted-complete
graph states. The second part is the illustration of the 13-qubit
dotted-complete graph cluster (see Fig. 17). Determining the
information of the indicator Bhyper is easy but tedious, and for
the sake of brevity we will not explain it here. According
to Fig. 16 and Fig. 17, we can conclude that the number
of qubits except the output qubits is 234. In summary, we
conclude that for an n-qubit circuit with a depth of O(nc), the
number of qubits for the hyper-brickwork state is no more than
2nO(nc) + n(n−1)

2 O(nc) = O(nc+2).
The universal blind quantum computation using a hyper-

brickwork state is similar to II. We need to adjust only the first
two steps. In the first step, we construct the hyper-brickwork
state by calling Algorithm III. In the second step, the server
measures each qubit (i, j) and sends the measurement out-
come si

j to the client, then the client updates the rotation angle
δu where u ∈ {i, j} by the following rule:

δu := δu + δZ,Bi
j
xi

jπ + δX,Bi
j
(−1)xi

j⊕si
j
π

2
. (9)

The rest steps are identical with Algorithm II.
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FIG. 16. Backbone of the hyper-brickwork state for seven-qubit
Steane code measurement circuit, where the qubits within dotted-line
boxes denote 13-qubit dotted-complete graph states.
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FIG. 17. (a) Thirteen-qubit dotted-complete graph state express-
ing in the 2D plane. (b) Dotted line between two vertices i and j
denotes that they are connected via an extra vertex (i, j).

odd-numbered layer
(except the first and the last layer)

i+n-1
i

i+1

i+2

i+n-1
i

i+1

i+2

even-numbered layer
(including the first and the last layer)

FIG. 18. Structures of each layer in circular brickwork states.

B. Circular brickwork state

Although the hyper-brickwork state is a more efficient uni-
versal graph state, from Fig. 17 we can see that its structure
is somewhat complicated. We know that cluster states can be
created efficiently in any system with a quantum Ising-type
interaction (at very low temperatures) between two-state par-
ticles in a lattice configuration [35]. If we restrict the quantum
Ising-type interactions on two neighbor qubits, then it is im-
possible to construct a hyper-brickwork state in 2D lattices.

In the rest of this section, we consider a 3D brickwork state
named by circular brickwork state, which can avoid the diffi-
culty of implementing the quantum Ising-type interactions on
nonadjacent qubits. Meanwhile, it can also decrease the num-
ber of ancillary qubits into the level of O(nc+1). However, in
order to reach this goal, we need to assume that each layer of
a quantum circuit contains at most one CZ gate. Fortunately, in
most cases practical quantum circuits satisfy or approximately
satisfy this condition, for example, the quantum Fourier
transform.

The procedure of constructing a circular brickwork state is
as follows. First, we prepare nm single qubits, each of which
is in state |+δ〉 and δ ∈R {0, π/4, . . . , 7π/4}. Then we group
those qubits into m layers, where each layer contains n qubits
arranged in a circular manner. For each two qubits that are
located in neighboring layers and the same radial direction,
we perform a CZ gate on them. Next, for each odd-numbered
layer (except the input and the output layers), we prepare
additional n + 1 ancillary qubits, where one qubit is located
in the center of the circle while the other n qubits encircle it.
Those qubits are used for break and bridge operations, thus
they are prepared as |x〉 or |+xπ 〉. Finally, for each additional
ancillary qubit, in the radial direction we perform a CZ gate on
it and its each neighboring qubit. See Fig. 18 for the concrete
structure of each layer.

Finally, we give a concrete example to make the structure
more intuitive. Suppose we are given eight qubits labeled as
1, 2, . . . , 8 and we want to implement a CZ gate on qubits 2
and 6. According to the configuration of the odd-numbered
layers shown in Fig. 18, we need to prepare only nine ancillary
qubits and entangle all qubits by the quantum Ising-type inter-
actions on part of the adjacent qubits. The concrete structure
of this 17-qubit cluster state is shown in Fig. 19, where the
ancillary qubits connecting qubits 2 and 6 are prepared in
|+〉 or |−〉 randomly, while the others are prepared in |0〉
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FIG. 19. Implementing a CZ gate on qubits 2 and 6 using nine
ancillary qubits.

or |1〉 randomly. Clearly, it follows from the picture that
measuring all ancillary qubits with M(π/2) will result in
a CZ gate on qubits 2 and 6 only. Of course, it should be
mentioned that those measurements will introduce random Z
rotations on qubits 1, 2, . . . , 8. Nevertheless, those Z rotations
can be easily corrected by the adaptive measurements on those
qubits. Determining the specific rotation angle of Z rotation
on each qubit is tedious, but the basic computation procedure
is straightforward as we described above, and here we will not
deal with it any further. According to this example, we can see
that given an n-qubit state, we need to prepare n + 1 ancillary
qubits in total. More generally, for an n-qubit circuit with a
depth of O(nc), the number of ancillary qubits for constructing
the circular brickwork state is no more than 2nO(nc) + (n +
1)O(nc) = O(nc+1). Again, we emphasize that the quantum
circuit must satisfy the condition that each layer of the circuit
contains no more than one CZ gate. If not, we need to first
convert it into the expected form. The procedure is simple,
and it may cause the depth of the circuit increases to the level
of O(nc+1). Thus, in the worst case the total number of qubits
is no more than O(nc+2), which is exactly same with the upper
bound of the hyper-brickwork state.

VII. CONCLUSION

In this work we investigated the UBQC protocol proposed
by Broadbent et al. and constructed three improved brickwork
states. With those improved brickwork states, we propose
a class of efficient UBQC protocols which can reduce the
client-side qubit consumption in different degrees. For the
first improved brickwork state, the square brickwork state,
to implement a single-qubit gate requires only that the client
prepares two ancillary qubits. For the second improved brick-
work state, the hyper-brickwork state, which is a variant of the
square brickwork state, it can efficiently implement a nonadja-
cent two-qubit basic gate. The last improved brickwork state,
called the circular brickwork state, is a further variant of the
square brickwork state, which utilizes the property of the 3D
space and can efficiently reduce the difficulty of construction
of the brickwork states.

Our work considers only a universal blind quantum com-
putation protocol where the server is honest, which means
the server follows the protocol. However, in real situations
the untrusted server may not follow the protocol honestly. To
detect such a malicious server, we need to introduce a verifi-

FIG. 20. Square brickwork architecture, where blue lines repre-
sent the first layer of gates to act, orange lines represent the second
layer, green lines represent the third layer, and black lines represent
the final layer.

cation mechanics in our protocol. Indeed, verifiable quantum
computation is one research focus in quantum computation
theory [36], and there exist many related works [30,37–41].
A simple method is that we can prepare some extra ancillary
qubits, then perform a random quantum circuit on them, and
finally verify the quantum computation by checking the mea-
surement outcomes of those extra ancillary qubits. The extra
ancillary qubits should be randomly placed in the input qubits.
Due to the blindness, the server cannot learn the information
about the position of the extra ancillary qubits and the random
quantum circuit. The random quantum circuit needs to be eas-
ily verified by a classical computer, for example, permutation
circuits.

Finally, we note that a recent work proposed by Napp et al.
indicated that random shallow 2D quantum circuits can be
efficiently simulated on classical computers [42]. Obviously,
any cluster state in the 2D plane can be viewed as a 2D
quantum circuit with a certain depth. For example, a square
brickwork state with any scale can be viewed as a 2D quantum
circuit with a depth 4, as shown in Fig. 20, where white circles
represent the qubits that are used to implement the quantum
circuit while black circles represent the qubits that are used
to implement break and bridge operations. Napp et al. [42]
proposed a classical algorithm, the so-called space-evolving
block decimation (SEBD), which can be efficiently simulated
the extended brickwork states with a depth 3. We present
rigorous evidence that the cluster states with the extended
brickwork structure are classically simulable. Although the
square brickwork states are not compatible with the extended
brickwork structure defined in [42], they can be converted into
the extended brickwork structure efficiently, since we know
that the square brickwork states have a variable structure after
performing break and bridge operations. Thus, we believe our
improved brickwork states in this paper will bring insights for
the SEBD algorithm.
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