
PHYSICAL REVIEW A 109, 012605 (2024)
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Raman qubits, represented by two ground or metastable quantum states coupled via an intermediate state,
hold some advantages over directly coupled qubits, most notably much longer radiative lifetimes, shorter gate
duration, and lower radiation intensity due to using electric-dipole allowed optical transitions. They are also
relatively simple to implement and control, making them an attractive option for building quantum gates for
quantum computers. In this work, we present a simple and fast tomographic method to measure the errors of
Raman qubit gates possessing the Morris-Shore dynamic symmetry. The latter occurs when the qubit states
are on two-photon resonance and the driving fields have the same time dependence. The method is based on
repeating the same gate multiple times, which amplifies the small coherent errors to sufficiently large values,
which can be measured with high accuracy and precision. Then the (small) gate errors can be determined from
the amplified errors by using the analytical connections between them.
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I. INTRODUCTION

Raman qubits (qubits formed of the long-lived end states
|0〉 and |1〉 of a three-state quantum system in a chainwise-
coupled Raman configuration |0〉 ↔ |a〉 ↔ |1〉) are a popular
implementation of qubits for quantum technologies [1–4].
They are particularly suitable for trapped ions and ultracold
atoms, wherein Raman linkage patterns are ubiquitous [5–9].
Such Raman-coupled qubits are often referred to as hyperfine
qubits when the qubit states are hyperfine sublevels of the
ground-level manifold [10]. Compared to directly coupled
qubits they have the advantage of using the electric-dipole-
allowed transitions |0〉 ↔ |a〉 and |1〉 ↔ |a〉 instead of the
electric-dipole-forbidden transition |0〉 ↔ |1〉. This allows
one to use convenient optical transitions with much less laser
power resulting in faster gates with negligible light shifts
and unwanted couplings [11–13]. Moreover, the availabil-
ity of two fields brings more control parameters and the
possibility to use more sophisticated methods for quantum
control, such as composite [14], optimal-control, and short-
cut approaches [15–19]. However, Raman qubits are more
demanding in regard to their control, as now three, rather than
two, states are involved, with the necessity to avoid population
leakage to the auxiliary intermediate state |a〉. Moreover, the
characterization of the fidelity also requires dealing with three
states and hence SU(3) dynamics instead of SU(2).

In certain cases, the three-state dynamics can be reduced
to the two-state one. Such is the case when the intermediate
state |a〉 is far off resonance with the driving fields; then it
can be eliminated adiabatically [20–22], which generates an
approximate SU(2) dynamics involving the qubit states only,
with an effective coupling between the qubit states and ac
Stark (light) shifts. Another case of SU(3) → SU(2) reduction,
this time exact, occurs when the Raman system pos-
sesses the Wigner-Majorana angular-momentum symmetry
[23–25].

A third case, which is the focus of this paper, takes place
when the Raman-coupled system possesses the Morris-Shore
symmetry [23,26–30]; then the three-state system can be ex-
actly decomposed into a two-state system and an uncoupled
(dark) state. This symmetry requires the two-photon reso-
nance between the end states |0〉 and |1〉, while the middle
state |a〉 can be off single-photon resonances. Moreover, the
two Raman couplings must have the same time dependence
but their magnitudes and phases can be different; indeed the
leeway in the choice of the coupling magnitudes and phases
has allowed the design of accurate quantum control schemes.
The Morris-Shore transformation can be generalized to drop
the two-photon resonance and timing conditions, although
then the SU(3) → SU(2) reduction is only approximate
[31,32].

The objective of the present paper is to develop a to-
mographic method for the determination of coherent gate
errors in Raman-coupled qubits, obeying the Morris-Shore
(MS) symmetry. The method builds upon the one presented
in Refs. [33–35] for two-level systems, where a certain
high-fidelity gate is repeated multiple times with subsequent
measurements of the population in the end of the sequence.
The method takes advantage of the constructive interference
created through the repetitions leading to the amplification of
the errors to large-enough values. These values can be mea-
sured reliably, from which one can determine the single-gate
errors due to the availability of analytic relations between the
single-pass and multipass probabilities.

This paper is organized in the following manner. First, in
Sec. II we consider in detail the case when the Raman-coupled
qubit is driven by two pulses of rectangular temporal shape to
benefit from the simplicity of the solution. After deriving the
basic tomographic principle, based on error amplification (the
NR approximation, see below Secs. III and IV), we proceed
in Sec. V to smooth pulse shapes and show that the simple
solutions based on the rectangular shapes are applicable for
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FIG. 1. Reduction of a three-state Raman � system (left) to
an effective two-state system (right) by the Morris-Shore transfor-
mation. The original system consists of two main states |ψ0〉 and
|ψ1〉 and an auxiliary exited state |ψa〉. The Rabi frequencies of the
original system share the same time dependence f (t ) and the two
fields have same detunings �(t ). The reduced system consists of an
upper state |ψa〉 (the same as the original upper state), a bright state
|ϕ0〉, and a dark state |ϕ1〉.

smooth shapes as well. Finally, Sec. VI presents some discus-
sion and conclusions.

II. SINGLE-PASS AND MULTI-PASS TRANSITIONS

A. Single-pass transition

Consider a three-state Raman � system under the condi-
tions of the MS transformation [26], shown in Fig. 1, with the
original system on the left and MS-transformed system on the
right. The Hamiltonian of the system has the form

H(t ) = 1

2

⎡⎢⎢⎣
0 0 �0 f (t )

0 0 �1 f (t )

�∗
0 f (t ) �∗

1 f (t ) 2�(t )

⎤⎥⎥⎦, (1)

where �1 f (t ) and �2 f (t ) are the Rabi frequencies, which
have the same time dependence f (t ), and �1 and �2 are
complex constants. �(t ) is the detuning, which is the same
for both fields. The MS transformation reduces the original
Hamiltonian (1) to an effective two-state Hamiltonian [20,27]

H̃(t ) = SH(t )S† =

⎡⎢⎢⎣
0 0 0

0 0 1
2� f (t )

0 1
2� f (t ) �(t )

⎤⎥⎥⎦, (2)

where S is the transforming complex-valued time-independent
matrix

S =

⎡⎢⎢⎣
�∗

1
�

�0
�

0

−�∗
0

�
�1
�

0

0 0 1

⎤⎥⎥⎦, (3)

and � is the root-mean-square (RMS) Rabi frequency, which
is a real constant

� =
√

|�0|2 + |�1|2. (4)

Note that the MS Hamiltonian H̃(t ) is real and the complexity
of the original Hamiltonian H(t ) is mapped onto the trans-
formation matrix S. In the MS basis, the upper state |ψa〉 is

the same as in the original system, whereas the two MS lower
states are superpositions of the original lower states

|ϕ1〉 = �∗
1|ψ0〉 − �∗

0|ψ1〉
�

, (5a)

|ϕ0〉 = �0|ψ0〉 + �1|ψ1〉
�

. (5b)

One of these (the bright state |ϕ0〉) is coupled to the upper
state |ψa〉 with the RMS coupling � f (t ). The other (the dark
state |ϕ1〉) is uncoupled and hence, the original three-state
system reduces to a two-state one |ϕ0〉 ↔ |ψa〉. This reduction
casts the original U(3) dynamics to an effective U(2) dynam-
ics, which greatly facilitates the analysis.

Without loss of generality, consider the initial time to be
ti = 0 and the final time is denoted by T . The propagator in
the MS basis can be written as

Ũ(T ) =

⎡⎢⎢⎣
1 0 0

0 a b

0 −b∗e−iδ a∗e−iδ

⎤⎥⎥⎦, (6)

where a and b are complex-valued Cayley-Klein (CK) param-
eters, restricted by the relation

|a|2 + |b|2 = 1, (7)

and δ is a phase defined by

δ =
∫ T

0
�(t ) dt . (8)

By using the inverse of the transformation (6), the original
propagator takes the form

U = S†ŨS

=

⎡⎢⎢⎢⎣
1 + (a − 1) |�0|2

�2 (a − 1)�0�
∗
1

�2 b�0
�

(a − 1)�∗
0�1

�2 1 + (a − 1) |�1|2
�2 b�1

�

−b∗ �∗
0

�
e−iδ −b∗ �∗

1
�

e−iδ a∗e−iδ

⎤⎥⎥⎥⎦. (9)

If the system starts in state |ψ0〉, Eq. (9) dictates the fol-
lowing populations in the end:

P0 =
∣∣∣∣1 + (a − 1)

|�0|2
�2

∣∣∣∣2

, (10a)

P1 =
∣∣∣∣(a − 1)

�0�1

�2

∣∣∣∣2

, (10b)

Pa =
∣∣∣∣b �0

�

∣∣∣∣2

. (10c)

Hereafter we shall refer to the propagator (9) and the
probabilities (10) as single-pass propagator and single-pass
probabilities.

Let us assume that the system in Fig. 1 is a qubit with
qubit states |ψ0〉 = |0〉 and |ψ1〉 = |1〉. Then we must have all
populations in the qubit subspace, which means that the CK
parameter b must be zero, b = 0. Then, due to the probability
conservation condition (7), the other CK parameter a will be
a phase factor, i.e., a = eiϕ . In fact, its phase ϕ is an important
control parameter. The other control parameter is the ratio
�0/�1, which determines which quantum gate is created.
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The condition b = 0, viewed in the MS basis, implies no
transition between the MS state |ϕ0〉 and the upper state |ψa〉.
Obviously, we are not interested in the trivial case of no inter-
action because then a = 1 and the propagator is the identity
matrix. The condition b = 0 in the presence of interaction
can be achieved in two scenarios. The simplest one is by a
resonant pulse of temporal area 2π . Then a = −1, b = 0, and
the propagator (9) reduces to

U(T ) =

⎡⎢⎢⎣
1 − 2 |�0|2

�2 −2 �0�
∗
1

�2 0

−2 �∗
0�1

�2 1 − 2 |�1|2
�2 0

0 0 −e−iδ

⎤⎥⎥⎦. (11)

The second possibility is far off resonance when |�| � � and
the three-state problem can be reduced to a two-state one. In
this case, the phase ϕ can be expressed approximately as

ϕ ≈ �2

�

∫ T

0
f 2(t ) dt . (12)

Equation (12) shows that the far of-resonance case is suitable
for constricting phase gates.

In this paper, we consider only the resonance case. The rea-
son is that in the far of-resonance case, due to the significant
increase in detuning and Rabi frequencies, the gates require
much larger pulse area and hence are much slower. Moreover,
probabilities for transitions to higher-energy levels outside
the three-state Raman system become prominent. This might
compromise the quantum gates due to detrimental leakage
errors.

B. Target gate parameters and errors

In the resonance case, we have ϕ = π , hence a = −1. The
target gates have the following general form:

Utar =

⎡⎢⎢⎣
cos ζ e−iφ sin ζ 0

eiφ sin ζ − cos ζ 0

0 0 −1

⎤⎥⎥⎦, (13)

where the phase factor eiφ is coming from the complexity of
�0 and �1, while ζ is the mixing angle defined as

|�0|/� = sin(ζ/2), |�1|/� = cos(ζ/2). (14)

To construct the X gate, we must have ζ = π/2, i.e.,
|�0|/� = |�1|/� = 1/

√
2. For the Hadamard gate, we need

ζ = π/4, i.e., |�0|/� = sin(π/8) and |�1|/� = cos(π/8).
To quantify the gate errors, stemming from imprecise reso-

nance (nonzero �) and inaccurate pulse area, it is convenient
to express the complex-valued Cayley-Klein parameters a and
b, restricted by Eq. (7), by three real parameters as

a = −e−iα cos γ , (15a)

b = −ie−iβ sin γ , (15b)

where α, β, and γ have all target values of 0 to retrieve values
of a and b in the ideal case. Therefore, they are measures of
coherent gate errors. From the resonance requirement � → 0
and Eq. (8), it follows that the target value of the phase δ is
also zero, δ → 0, i.e., it is also an error measure. For high-
fidelity quantum gates these errors are very small and their

determination is challenging. The concept of this paper is to
amplify these errors by gate repetitions to sufficiently large
values which can be measured reliably with high accuracy and
precision.

The parameter ζ is considered as known. Indeed, it can be
determined from a single-pass measurement of the probabili-
ties. For example, it follows from Eq. (13) that P1 ≈ sin2(ζ ),
hence the parameter ζ can be found from here. Then by
substituting of ζ in Eq. (14) both |�0|/� and |�1|/� can be
found as well.

C. Multi-pass transition

In our previous work [23], we found the N-pass propagator
of a three-state Raman system. In Schrödinger’s representa-
tion, the N-pass propagator is the N th power of the single
propagator U in Eq. (9); it reads

UN =

⎡⎢⎢⎢⎣
1 + (aN − 1) |�0|2

�2 (aN − 1)�0�
∗
1

�2 bN
�0
�

(aN − 1)�∗
0�1

�2 1 + (aN − 1) |�1|2
�2 bN

�1
�

−b∗
N

�∗
0

�
e−iNδ −b∗

N
�∗

1
�

e−iNδ a∗
N e−iNδ

⎤⎥⎥⎥⎦,

(16)

where the N-pass Cayley-Klein parameters aN and bN are
connected to the single-pass ones a and b by the relations

aN =
[

cos(Nϑ ) + iIm(aδ )
sin(Nϑ )

sin(ϑ )

]
e−iNδ/2, (17a)

bN = bδ

sin(Nϑ )

sin(ϑ )
e−iNδ/2, (17b)

with

aδ = a eiδ/2, (18a)

bδ = b eiδ/2, (18b)

ϑ = arccos(Re aδ ). (18c)

The multipass probabilities are

P(N )
0 =

∣∣∣∣1 + (aN − 1)
|�0|2
�2

∣∣∣∣2

, (19a)

P(N )
1 =

∣∣∣∣(aN − 1)
�0�1

�2

∣∣∣∣2

, (19b)

P(N )
a =

∣∣∣∣bN
�0

�

∣∣∣∣2

. (19c)

In Eqs. (17), the parameters ϑ and δ are multiplied by the
factor N in some terms, therefore, we are able to amplify them
after the repetitions. We note that the parameters |�0|/� and
|�1|/� in Eqs. (19) remain the same as in the single-pass
propagator (9).

For the high gate fidelity, we must have the following
conditions.

(1) P(N )
a to be very small after every pass, i.e.,

P(N )
a 	 1 (N = 1, 2, . . .), (20)

(2) P(N )
1 to be very small after every even pass, i.e.,

P(2M )
1 	 1 (M = 1, 2, . . .). (21)
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FIG. 2. First three pulses of the periodical time dependence
fR(t ), related to Rabi model and given in Eq. (23).

We use these probabilities as indicators by which to deter-
mine the errors α, β, and γ for the X and H gates.

III. NEAR-RESONANCE APPROXIMATION

In this section, our objective is to find out the connection
between errors in the Hamiltonian and those in the propagator.
To achieve this, we use the Rabi model and apply a near-
resonance (NR) approximation derived from it. We find that
this approximation is not only suitable for the Rabi model, but
also applicable to other models lacking analytical solutions.

A. Assumptions

Because our objective is to design a protocol for determin-
ing the errors of high-fidelity Raman gates, we assume that
their errors are small. Hence we make three general assump-
tions.

(1) We assume that the detuning � is small and constant

|δ| 	 π (with δ = �T ), (22a)

which we call the detuning error.
(2) For the pulse shape f (t ), we define the filling ratio

r = 1

T

∫ T

0
f (t ) dt (0 � r � 1), (22b)

the role of which will be revealed below.
(3) Because at resonance the Cayley-Klein parameter a is

a = cos(A/2), where A = ∫ T
0 � f (t ) dt is the RMS pulse area,

and because the target value of a is −1, the RMS pulse area A
must be very close to 2π ; hence we should have

A = �

∫ T

0
f (t ) dt = �rT = 2(π − ε), (22c)

where |ε| 	 π is the pulse area error.
We will make these assumptions throughout the text here-

after.

B. Rabi model and NR approximation

The Rabi model is convenient in two aspects: first, it is an
exactly solvable model and second, it allows for any filling
ratio 0 � r � 1. The Rabi model periodical time dependence
is shown on Fig. 2 and it has the following form:

fR(t ) =
N−1∑
n=0

R

[
t

rT
− (2n + 1)

2r

]
, (23)

where R denotes the rectangular function. In this case, both
CK parameters are given by the exact expressions

a =
[

cos(σ/2) + i
δ

σ
sin(σ/2)

]
e−iδr/2, (24a)

b = −i
A

σ
sin(σ/2)e−iδ/2, (24b)

where σ =
√

δ2 + A2/r2. Taking into account conditions (22),
we find the following expressions, which will be referred to as
the NR approximation:

a ≈ − cos(ε)e−iδr/2, (25a)

b ≈ −i sin(ε)e−iδ/2, (25b)

aδ ≈ − cos(ε)eiδ(1−r)/2, (25c)

bδ ≈ −i sin(ε), (25d)

ϑ ≈ π −
√

ε2 + δ2(1 − r)2/4. (25e)

From here and Eq. (15) we find

α ≈ δr/2, β ≈ δ/2, γ ≈ ε. (26)

Note that the parameters α, β, and γ are propagator (gate)
parameters, while δ, r, and ε are Hamiltonian parameters;
hence we have direct connections between them.

C. Fidelity

For any unitary gate U the fidelity is

F = |Tr(U0U †)|2
d2

, (27)

where U0 is the target gate and d is the Hilbert space dimen-
sion. In our case d = 3.

(1) For r = 1 i.e., α = β, we find from Eq. (27) for the
fidelity

F = 1
9 [cos2 ζ ′ + 2 cos α cos ζ ′ cos γ (1 + cos ζ ′)

+ (1 + cos ζ ′)2 cos2 γ ], (28)

where ζ ′ is the error of ζ , i.e., for the X gate ζ ′ = π
2 − ζ and

for the Hadamard gate ζ ′ = π
4 − ζ . For small error, |ζ ′| 	 1,

we find from here

F = 1 + 4 cos α cos γ + 4 cos2 γ

9

− 1 + 3 cos α cos γ + 2 cos2 γ

9
ζ ′2. (29)

For ζ ′ = 0, only the first term survives. Obviously, if all errors
vanish, α = γ = ζ ′ = 0, then F = 1.

(2) For r < 1, the result derived from Eq. (27) for the
fidelity is too cumbersome to be presented here. For ζ ′ = 0,
the fidelity can also be expressed using the parameters ε, δ,
and r that characterize the Hamiltonian. Thus, we have

F = 1
9 {1 + 2 cos ε[cos(rδ/2) + cos(δ − rδ/2)

+ (1 + cos(δ − rδ)) cos ε]}. (30)

IV. DETERMINATION OF THE GATE ERRORS

Now we shall determine the errors α, β, and γ speci-
fied in Eqs. (26) by the multipass probabilities in the NR
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 r

orre ae ra esl
u

P
ϵ

(r
ad

)

Detuning error δ (rad)

FIG. 3. Multipass probability P(N )
a according to the exact Rabi

model solutions (24). The plots are nearly identical for the NR
approximation (31). For small ε and δ, the probability Pa depends
slightly on both δ and r and can be approximated according to
Eq. (32). This allows the error γ = ε to be determined by the multi-
pass probability in Eq. (33). The values of r are selected for the sake
of comparison because they naturally emerge for other pulse shapes
in Sec. V.

approximation. All figures use the exact solution of the Rabi
model. Nevertheless, for the error range of 0.05, which is of
interest to us, the plots are practically identical with those
for the NR approximation. In Sec. V, we apply the NR ap-
proximation (25) for other models with various pulse shapes
f (t ), respectively, the other filling ratio r, and compare the
results with the exact (or numerical) solutions. In all figures,
we choose |�0|/� = |�1|/� = 1/

√
2, which corresponds to

the X (NOT) gate.

A. Determination of γ

By using connections (17) and the exact Rabi model so-
lution (24), we can obtain the multipass probabilities P(N )

a ,
according to Eq. (19). According to the NR approximation
(25) the probability is

P(N )
a = |�0|2

�2

sin2 ε sin2 Nϑ

sin2 ϑ
, (31)

where ϑ is given in Eq. (25e). It is shown in Fig. 3. Equa-
tion (31) gives almost identical results in the range |δ| < 0.05
and |ε| < 0.05 as the exact one in Fig. 3 and therefore the NR
approximation plot is not shown. From Fig. 3 we see that at
small δ, the multipass probability P(N )

a depends weakly on δ

and r and at δ = 0 we simply have

P(N )
a = |�0|2

�2
sin2(Nε), (32)

0 20 40 60 80 100
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Number of gates, N

P
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ti
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δ�0.025
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FIG. 4. Multipass probability P(N )
a according to the exact Rabi

model solutions (24) at ε = 0.025 and r = 0.25. At a smaller num-
ber of repeated gates N (the dashed line region), all curves almost
overlapped at a given ε, that allows to determine γ = ε. At bigger N ,
the curves diverge that allows to determine δ.

from which γ = ε can be found as

γ = 1

N
arcsin

[
�

|�0|
√

P(N )
a

]
. (33)

B. Determination of α and β

Having already the error γ = ε determined, we proceed to
determine α = rδ/2. Having found α and knowing the value
of r a priori, we can find the value of β = δ/2 as simply
β = α/r. Hence we focus our attention on the determination
of α. We will show that, depending of the filling ratio r,
two approaches are required: one for r < 0.5 and another for
r > 0.5.

1. Determination of α for r < 0.5

For r < 0.5, the probability Pa depends very strongly on
δ, r, and N , which is visible on Fig. 3. For already known ε

(measured at smaller number of N), see above, we could also
perform another experiment with larger N . In Fig. 4 we see
these two regions of the probabilities. The first region (dashed
lines) corresponds to the smaller N , where ε is determined for
any value of δ. The inflection point is almost the same for all
curves and after it the curves begin to diverge for different δ.
By using the Taylor series up to δ2 in Eq. (31) we find

P(N )
a = |�0|2

�2
sin2(Nε)

×
[

1 − δ2(1 − r)2[1 − Nε cot(Nε)]

4ε2

]
, (34)

from which δ and the error α = rδ/2 can be found.

2. Determination of α for r > 0.5

For r > 0.5 the curves on Fig. 4 come close to each other
and at r = 1 they overlap for any N . In this case we need other
approaches to determine α. By using a similar approach as in
Sec. IV A, connections (17) and the exact Rabi model solution
(24), we can find the multipass probabilities P(2M )

1 of Eq. (19),
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Detuning error δ (rad)

 r
orre aera esl

u
P

ϵ
(r

ad
)

FIG. 5. Multipass probability P(2M )
1 . At known ε and r > 0.5, the

detuning error δ can be found numerically. For small ε � 0.005,
P1 can be approximated according to Eq. (36). For small ε and
r < 0.5, the amplification is not sufficient and it is necessary to use
the procedures described in Sec. IV B 1.

shown in Fig. 5. According to the NR approximation (25) the
probability is

P(2M )
1 = 2|�0|2|�1|2

�4

[
1 − cos

Nδ

2
cos Nϑ

+ sin Nδ
2 sin Nϑ sin δ(1−r)

2

sin ϑ
− sin2 ε sin2 Nϑ

2 sin2 ϑ

]
.

(35)

In the NR approximation, the probabilities in Eq. (35) give
almost indistinguishable results as the exact ones in Fig. 5
and therefore the NR approximation plot is not shown. If r is
known approximately, then δ can be found numerically from
Eq. (35).

For small ε (ε < 0.005) it can be approximated to

P(2M )
1 ≈ 4

|�0|2|�1|2
�4

sin2(Nδr/4), (36)

from which α = δr/2 can be found.

V. COMPARISONS OF NR APPROXIMATION WITH
OTHER MODELS

In Secs. III B and IV, we stated that the NR approxima-
tion nearly coincides with the exact Rabi model for error
ranges up to 0.05. In this section, we present results for three
additional models with various time dependencies f (t ) and
filling ratios r and compare the results with those of the NR
approximation. We will see that, for a Raman qubit, driven
by a MS-Hamiltonian, the NR approximation is a convenient

FIG. 6. Illustration of the pulses of the time dependence fRZ (t )
for RZ model (37) for r = 0.1.

approximation also for other pulse shapes, which considerably
broadens the applicability of the NR approach.

A. Rosen-Zener model

The Rosen-Zener (RZ) model [36], which assumes a
hyperbolic-secant pulse shape sech(t/T ) (running from −∞
to +∞) is exactly solvable. Strictly speaking, even a single
pass requires an infinitely long duration, meaning a filling
ratio r → 0. However, for a sech pulse of a finite duration
[−τ, τ ], truncated sufficiently far from its maximum, such that
r � 0.1 (meaning τ � 15.7T , which in turn corresponds to an
amplitude value of less than 3 × 10−7 of the maximum value),
the RZ model is essentially exact. According to assumptions
in Sec. III A the periodical time dependence is

fRZ (t ) =
N−1∑
n=0

sech

[
π

r

(
t

T
− 2n + 1

2

)]
, (37)

shown in Fig. 6. In this example, we choose a filling ratio
r = 0.1,

r = 1

T

∫ T

0
fRZ (t ) dt = 0.1. (38)

Considering the conditions in Sec. III A, the CK parame-
ters have the following exact solution:

a = �2
(

1
2 + i δr

2π

)
�

(
1
2 + A

2π
+ i δr

2π

)
�

(
1
2 − A

2π
+ i δr

2π

) , (39a)

b = −i
sin(A/2)

cosh(δr/2)
e−iδ/2. (39b)

The multipass probabilities (19) can be found from
Eqs. (39) and (17). In Fig. 7 we show the comparison between
the exact (RZ) probabilities P(N )

a and the NR approximated
ones (31). It is visible that both plots are practically the same
for the error range of 0.05. The plots for the populations P(2M )

1
are not shown but they are practically indistinguishable as the
ones shown in Fig. 5 for r = 0.1. Based on these findings
we conclude that the NR approximation and the method for
derivation presented in the preceding section are perfectly
applicable for sech pulses.

B. sin2 model

Now we present an example where the time dependence is

fS (t ) = sin2(πt/T ). (40)
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FIG. 7. Comparison between the multi-pass probabilities P(N )
a

obtained from the exact RZ-model solutions (39) and the NR ap-
proximation (31), for r = 0.1.

The benefit of such a pulse shape is that it has a well-defined
finite duration (contrary to the sech shape), smooth pulse
shape (contrary to the rectangular pulse), but unfortunately,
the Schrödinger equation cannot be solved analytically. Yet, it
is easily integrated numerically. The filling ratio for this pulse
shape is

r = 1

T

∫ T

0
fS (t ) dt = 0.5. (41)

The probability map for P(N )
a is shown in Fig. 8. The NR

approximation for the same filling ratio r = 0.5 (top row) is
almost identical to the numerical results (bottom row). The
plots for the populations P(2M )

1 are not shown because they are
very similar to the ones shown in Fig. 5 for r = 0.5.

C. Second trigonometric model

We now proceed to another numerically solved pulse shape
with the time dependence of

fC (t ) = 1 − cos10[πt/T ], (42)

shown in Fig. 9. Compared to the sin2 model, it features a
filling ratio r = 1

T

∫ T
0 fC (t ) dt = 0.754, hence the choice of

r in the corresponding frames for this value of r in Figs. 4
and 5.

 r
orre aera es l

u
P

ϵ
(

dar
)

Detuning error δ (rad)

FIG. 8. The multipass probability P(N )
a . The upper row shows the

NR approximation (31) for r = 0.5 and the bottom row shows the
numerically calculated probability for a time dependence according
to Eq. (40), which also corresponds to r = 0.5.

FIG. 9. The first three pulses of the time dependence according
to Eq. (42), with the filling ratio r = 0.754.

For this model, instead of comparing P(N )
a , and to provide

additional information, we compare the probability map for
P(2M )

1 , as depicted in Fig. 10. The NR approximation for the
same filling ratio, r = 0.754 (top row), is nearly identical to
the numerical results (bottom row). The plots for the popula-
tions P(N )

a are not shown because they are very similar to the
ones shown in Fig. 3 for r = 0.754.

VI. DISCUSSION AND CONCLUSION

In this paper we presented a tomographic method designed
for the characterization of high-fidelity Raman qubit gates,
which obey the Morris-Shore transformation. The proposed
method makes use of coherent amplification of the gate errors
by repeating the same gate numerous times. By examining the
multipass probabilities, we establish their dependence on four
key parameters: pulse area error ε, detuning error δ, filling
ratio r, and the number of pulses (passes) N .

From these expressions, it becomes feasible to directly
calculate the errors ε and δ, which determine the gate errors
α, β, and γ . Since the Raman system is reduced to an effective
two-state system in the near-resonance regime, employing the
NR approximation with a filling factor r serves as a conve-
nient and practical approach. Additionally, this approximation
can be extended to other pulse shapes, thereby removing the
restriction of the rectangular shape.

An added benefit to this method is the fact that it does
not add any further requirements in addition to those for the
implementation of the Raman gate because the tomography

Detuning error δ (rad)

 r
orre aera esl

u
P

ϵ
(

dar
)

FIG. 10. The multipass probability P(2M )
1 . The upper row refers

to the NR approximation (31) at r = 0.754. The lower row refers to
the numerically solved probability for a time dependence expressed
in Eq. (42), which also corresponds to r = 0.754.
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is done by repeating this gate sufficiently many times. In-
deed, the only additional limitation in our protocol is that
the repetitions should not exceed the coherence times of the
qubit.

The next step is to consider the application of the multi-
pass strategy to other dynamical systems of dimension d > 2.
Beginning with the NR approach, if a given dynamical system
can be reduced to U(2) or SU(2), such as the Wigner-Majorana
(WM) system explored in Ref. [23], with a → −1 and b → 0,
then we can employ the same procedure. It is worth noting
that, while WM is applicable for sensing, as elaborated in
Refs. [37,38], it may not be as suitable for Raman qubit gates.
Nonetheless, our discussed NR approximation model remains
effective in such cases. In the same vein, it is tempting to
extend the multipass strategy to systems of multiple qubits.
In either case, the exploration can be delineated into two
principal components: (i) the unitary case, characterized by

U (d ) symmetry, and (ii) the nonunitary case, where the
propagator is articulated as a completely positive and trace
preserving (CPTP) map represented by a d2 × d2 matrix. In
the unitary scenario, the propagator is defined by d2 parame-
ters, of which d can be amplified through repetitions, enabling
precise measurements. However, the present state of multi-
qubit gates reveals noteworthy incoherent errors, necessitating
the incorporation of CPTP propagators, which imply a much
larger computational problem.
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