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High-efficiency rate-adaptive reconciliation in continuous-variable quantum key distribution
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In continuous-variable (CV) quantum key distribution (QKD), the reconciliation efficiency and frame error
rate of the information reconciliation have a significant impact on the secret key rate. For a fixed-rate multiedge-
type low-density parity-check (LDPC) code, the reconciliation efficiency and frame error rate will inevitably
vary due to the fluctuations of the signal-to-noise ratio (SNR) of the CV QKD system, which degrades the
performance of the system. We propose a high-efficiency rate-adaptive information reconciliation scheme by
combining raptorlike (RL) LDPC codes with the addition of trusted noises. We establish the model of adding
trusted noises and combine it with the RL LDPC codes to optimize the secret key rate under the time-varying
channel. The simulation results show that our scheme can maintain a high reconciliation efficiency of more
than 94.4% and a low frame error rate within 15% fluctuation range of the SNR. Furthermore, we implement
the hardware acceleration of the proposed rate-adaptive scheme on a graphics processing unit and achieve a
decoding throughput of 65.5 Mbits/s by optimizing the storage of the parity-check matrix. Our results are useful
for the practical CV QKD under the realistic time-varying channel.
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I. INTRODUCTION

In the modern information society, information security
is crucial and imposes a challenge for humans. Quan-
tum key distribution (QKD) relies on the fundamental
laws of quantum mechanics to enable two users to share
information-theoretically secure keys [1–3]. According to
the different information encoding carriers and measurement
methods, QKD technology is divided into two types, namely,
discrete-variable QKD and continuous-variable (CV) QKD.
Discrete-variable QKD employs the single-photon detection
and has the advantages of long transmission distance and
relatively simple data postprocessing [4–10]. In contrast, CV
QKD encodes information on the quadratures of quantized
optical fields and can provide a high secret key rate over
metropolitan areas. Furthermore, it has good compatibility
with the current coherent optical communication technology
and has seen rapid progress in recent years [11–25].

In a typical CV QKD protocol, Alice encodes the classical
information onto the quadratures of the optical field and sends
the encoded optical fields to Bob through a quantum channel.
Bob randomly selects a measurement basis and measures the
received states with homodyne detection. Then Bob sends
his measurement basis to Alice through the classical channel
and Alice keeps the data according to the measurement basis
information sent by Bob. At this phase, the two users share a
series of interrelated variables. Finally, the final secret key is
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extracted through the data postprocessing. The postprocessing
of CV QKD is mainly divided into four steps, namely, (i)
data sifting, (ii) parameter estimation, (iii) information rec-
onciliation, and (iv) privacy amplification. Among them, the
most complicated step is the information reconciliation [26].
In the information reconciliation process, Alice and Bob use
the classic error-correcting code to correct the correlated raw
keys and obtain a set of completely consistent bit string. It has
high computational complexity and is one of the key bottle-
necks restricting the performance of the QKD system. There
are two main types of information reconciliation schemes in
CV QKD: slice reconciliation [27,28] and multidimensional
reconciliation [29]. The first is suitable for short distances,
i.e., high signal-to-noise ratio (SNR), while the latter is suit-
able for longer distances (low SNR). The multiedge-type
(MET) low-density parity-check (LDPC) code is an extension
of conventional LDPC code with the performance close to
the Shannon limit [30,31]. Its combination with the multi-
dimensional reconciliation greatly improves the efficiency of
the information reconciliation and dramatically increases the
transmission distance of the CV QKD [32,33].

In real application scenarios, due to the variations of the
surrounding environment and the imperfections of the de-
vices, the SNR of the QKD system will inevitably fluctuate.
If a fixed-rate MET LDPC code is employed, even a slight
variation of the SNR will cause significant changes in the
reconciliation efficiency and frame error rate, which will
in turn severely degrade the secret key rate of the system
[34]. Therefore, it requires that the rate of the MET LDPC
code should be adjusted accordingly with the SNR variations
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during the process of information reconciliation to ensure the
security of the system and maintain a high secret key rate.
When extensive changes are occurred for the SNR, the rec-
onciliation can be switched between the slice reconciliation
and the multidimensional reconciliation. For continuous and
small fluctuations of SNRs, it is necessary to adjust the rate of
the error-correction code by rate-adaptive technology. Several
rate-adaptive reconciliation techniques in CV QKD have been
reported, such as puncturing and shortening [34], rateless
reconciliation protocol [35], adding a controlled amount of
digital noise [36], raptorlike (RL) LDPC code [37], and polar-
coding-based rate-adaptive reconciliation [38].

In this paper, we propose a high-efficiency rate-adaptive
scheme for CV QKD by combining RL LDPC codes with
the addition of trusted noises. First, we construct a RL LDPC
code [37,39] with a rate of 0.1, which is further extended to
a series of codes with different rates by adjusting its original
rate. For each code, we add appropriate trusted noises to Bob’s
raw data in terms of the varying SNR to stabilize the SNR.
In this way, a certain range of SNR can be covered by our
information reconciliation method, which ensures a stable and
optimized secret key rate. The simulation results show that our
scheme performs well: It could maintain the reconciliation
efficiency over 94.4% and frame error rate less than 9.3%
when the fluctuation range of the SNR is within 15%. By
using GPU hardware acceleration, the decoding speed of our
rate-adaptive reconciliation reaches above 65.5 Mbits/s.

This paper is organized as follows. In Sec. II we present the
concrete construction process of the RL LDPC code and
the rate-adaptive method based on it. In Sec. III we analyze
the model of adding trusted noises to Bob and then present the
mechanism that combines it with RL LDPC codes. In Sec. IV
we present the simulation results of our scheme. Furthermore,
the GPU hardware acceleration of the decoding algorithm is
investigated. We summarize in Sec. V.

II. RL LDPC CODE IN INFORMATION RECONCILIATION
OF CV QKD

The RL LDPC code was proposed for the cloud trans-
mission system [39] and recently applied to the CV QKD
system [37]. The RL LDPC codes have a similar perfor-
mance to LDPC codes, provide a coding gain close to the
Shannon limit, and have the rateless characteristics of raptor
codes.

The RL LDPC code can also be regarded as a special
MET LDPC code. The degree distribution of nodes is the
basic parameter of MET LDPC codes. We can obtain the
degree distribution of MET LDPC codes by density evolu-
tion [40–42], generalized extrinsic information transfer charts
[43], or other methods. The MET LDPC code defines the
degree distribution from the perspective of variable nodes
and check nodes. We use the vector �b := (b0, b1, . . . , bnτ ) to
represent the parameters of the receiving signal channel, the
vector �d := (d1, d2, . . . , dne) to represent the degree of the
edge type, and the vector �r := (r0, r1, . . . , rnτ ) to represent
the number of receiving channels. Here ne denotes the number
of edge types and nτ denotes the number of channels for
transmitting information. By using these parameters, the de-

FIG. 1. Structure of the parity-check matrix of the RL LDPC
code, where the size of the matrix is M × N . It is formed by cascad-
ing four submatrices A, B, C, and D. Among them, C is an all-zero
matrix, D is an identity matrix, and A and B are constructed according
to the specific degree distribution.

gree distributions of MET LDPC codes are defined by

v(r, x) =
∑

vir
bxd , (1)

μ(x) =
∑

μix
d , (2)

where v(r, x) denotes the degree distribution of variable
nodes, µ(x) denotes the degree distribution of check nodes,
vi denotes the proportion of variable nodes of type i to the
total number of variable nodes, and µi denotes the proportion
of check nodes of type i to the total number of variable nodes.

The schematic diagram of the parity-check matrix of the
RL LDPC code is shown in Fig. 1. Taking the RL LDPC
code with three types of edges as an example, its parity-check
matrix consists of four submatrices A, B, C and D, where
C is an all-zero matrix. The three submatrices A, B, and D
correspond to parity-check matrices with different types of
edges in the MET LDPC code and D is an identity matrix
corresponding to the edge connected to a node with degree 1.

From the degree distribution, we can get the proportions of
variable nodes and check nodes connected by different types
of edges to the total number of variable nodes as well as
the number of different types of edges so that we can obtain
the relevant parameters of different types of edges. By using
these parameters, each submatrix can be constructed and then
connected as shown in Fig. 1 to form the complete RL LDPC
code.

Note that MET LDPC codes with a fixed rate can only
achieve the best performance at a fixed SNR. When the SNR
changes, the code rate needs to be changed accordingly to
maintain their superior performance. The adjustment method
for the code rate is shown in Fig. 2.

The RL LDPC code rate can be increased by cutting the
initial parity-check matrix. After cutting, the RL LDPC code
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FIG. 2. Schematic diagram of the RL LDPC code rate adjust-
ment. The RL LDPC code increases its rate by cutting the lower right
part of the parity-check matrix with a cutting length of c (marked by
the red dotted line). The code rate can be reduced by expanding the
parity-check matrix with the submatrices E , F , G, and H and the
extended length is d .

reduces the same number of variable nodes and check nodes
and its code rate increases to

R = (n − c) − (m − c)

n − c
= n − m

n − c
, (3)

where n is the number of variable nodes, m is the number of
check nodes, and c is the cutting length of the matrix. The
cutting of the matrix will inevitably change the submatrices
of B, C, and D. Because D is an identity matrix and C is an
all-zero matrix, they are immune to the cutting. However, this
is not the case for matrix B. To ensure that the cut parity-check
matrix can maintain good performance, we need to redesign
the degree distribution when constructing the submatrix B.
The design of the degree distribution can refer to the reference
matrix

lim
R→Rt

μ(x) = μt (x), (4)

where R is the code rate of the reconstructed code, Rt is the
code rate of the reference code, µ(x) denotes the degree distri-
bution of the reconstructed code, and µt (x) denotes the degree
distribution of the reference code. By searching the degree
distribution of the reconstructed submatrix B in this way, the
performance of the original matrix can be well maintained.

The rate of the RL LDPC code can be reduced by expand-
ing the parity-check matrix as shown in Fig. 2. The reduced
code rate is given by

R = (n + d ) − (m + d )

n + d
= n − m

n + d
, (5)

where d is the dimension of the extended matrix. After the
extension, the submatrix E is an all-zero matrix, and the
submatrix D and the extended submatrices F , H , and I form a
new identity matrix together. Similar to the method of increas-

ing the code rate, the degree distribution for constructing the
extended submatrix G needs to change accordingly with the
length of the extension. The specific design procedure can also
refer to Eq. (4), where µ(x) denotes the degree distribution
of the combined matrix of submatrix B and the extended
matrix G.

By using the above approaches of cutting and expanding,
we can reduce or increase the rate of the RL LDPC code
according to the change of the SNR.

III. RATE-ADAPTIVE METHOD WITH RL LDPC CODE
AND ADDING TRUSTED NOISE

In continuous-variable quantum key distribution, the
asymptotic secret key rate against collective attacks per signal
pulse is written as [44]

K = (1 − RFE )
( n

N

)
(βIAB − χBE ), (6)

where RFE is the frame error rate (FER), n is the number
of data used to extract the key, N is the number of sifted
data after quantum transmission and measurement, β is the
reconciliation efficiency, IAB is the mutual information of the
data between Alice and Bob, and χBE is the upper bound on
the information that the eavesdropper Eve may steal. It can be
seen from Eq. (6) that the reconciliation efficiency and frame
error rate are crucial to the secret key rate. The reconciliation
efficiency of the multidimensional reconciliation is defined as

β = R

IAB
, (7)

where R denotes the code rate of the error-correction code.
For Gaussian modulated coherent state protocols and additive
white Gaussian noise channel, IAB equals the channel capacity

IAB = C = 1
2 log2(1 + SNR). (8)

The size of the mutual information affects the frame error
rate of the error correction. Therefore, matching the code
rate of the error-correction code with the SNR is critical to
achieve the optimal secret key rate. However, it is infeasible
to construct all required RL LDPC codes with different rates
due to continuous variations of the SNR in real scenarios.
In general, one constructs a series of discrete single-rate RL
LDPC codes and each of them can cover a certain range of
SNR. However, this will inevitably lead to fluctuations in
reconciliation efficiency and frame error rate, which usually
degrade the secret key rate. To overcome this drawback, we
introduce the method of adding trusted noise to Bob’s data to
adjust the system’s SNR and combine it with the RL LDPC
codes to achieve high-efficiency rate-adaptive reconciliation.

In order to adjust the SNR to the target value, we need to
find the variance of the added trusted noise. For a Gaussian
modulated coherent state with homodyne detection protocol,
the SNR of the system is given by

SNR = VB

NB
− 1, (9)

VB = T ηVA + T ηε + Vel + 1, (10)

NB = T ηε + Vel + 1, (11)
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where VB is the variance of Bob’s data, NB is the variance of
the total noises of the system, VA is the modulation variance,
ε is the excess noise, Vel is the electrical noise (VB, VA, Vel,
and ε are all in shot-noise units), T is the transmittance of the
quantum channel, and η is the detection efficiency. When the
channel transmittance T of the quantum channel changes to
T ′ and the modulation variance VA changes to V ′

A, VB and NB

will change accordingly

V ′
B = T ′ηV ′

A + T ′ηε + Vel + 1, (12)

N ′
B = T ′ηε + Vel + 1. (13)

From Eq. (9), the SNR of the system also changes from SNR
to SNR′ due to the variation of VB and NB. To recover the
initial SNR, we add trusted Gaussian noise with variance Vn

to Bob’s data

V ′′
B = V ′

B + Vn, (14)

N ′′
B = N ′

B + Vn, (15)

SNR = V ′′
B

N ′′
B

− 1. (16)

By combining Eqs. (9)–(11) and (14)–(16), we can obtain the
variance of the trusted noise that needs to be added

Vn = T ′ηV ′
A

SNR
− T ′ηε − Vel − 1. (17)

Equation (17) can also be expressed as

Vn = ρ2V ′
B

SNR
− V ′

B(1 − ρ2), (18)

ρ2 = 〈xAxB〉2

VAVB
, (19)

where xA and xB are Alice and Bob’s data. Equation (18) can
be used to directly calculate the variance of the trusted noise
based on the experimental data.

When the quantum channel transmittance and modulation
variance change, the system’s SNR remains unchanged due to
the addition of the trusted noises, so the mutual information
IAB between Alice and Bob remains unchanged. However, the
eavesdropped information χBE will vary and can be estimated
by using the substitutions

VA → V ′
A, (20)

T → T ′, (21)

Vel → V ′
el = Vel + Vn. (22)

At this stage, the secret key rate can be estimated by Eq. (6)
using the modified χBE .

To design the MET LDPC code, we use the progressive
edge growth [45] algorithm to construct the submatrix and
then cascade them together. We design a number of RL LDPC
codes (with different rates) at certain SNRs by the method in
Sec. II, and each RL LDPC code is responsible for reconciling
data within a certain SNR range. The values of these initial
SNRs are determined by searching for the RL LDPC codes
at different SNRs to maximize the secret key rate. Within the
reconciliation SNR range of each RL LDPC code, appropriate

trusted noises are added to ensure the SNR is always kept at
the level of the initial SNR.

The flow chart of the overall postprocessing is shown in
Fig. 3. To break the 3-dB limit [46], reverse reconciliation
is considered hereafter. After the data sifting, the two par-
ties share correlated Gaussian data (raw keys). Then Alice
declares publicly a random sample of her data and Bob uses
it to estimate the relevant parameters of the QKD system,
including quantum channel transmittance, excess noise, SNR,
etc. Based on the estimated parameters, Bob chooses the RL
LDPC code with the rate closest to the ideal code rate, cal-
culates the variance of the trusted noise, and then adds the
trusted noise to his raw data. It is assumed that the required
set of RL LDPC codes with different code rates has been
designed in advance according to the fluctuation range of
the SNR. Next Bob uses the multidimensional reconciliation
method to encode his raw data and sends the side information
to Alice through the classical channel. Alice chooses the RL
LDPC code with the same rate as that of Bob according to
the data length of the received side information and decodes
her data. If the decoding is successful, both parties perform
private amplification and finally identical secret keys can be
shared.

IV. SIMULATION RESULTS

In this section we investigate the performance of our rate-
adaptive reconciliation scheme in detail. First, we design the
base matrix of RL LDPC codes with a rate of 0.1 [43] and a
code length of 20 000 and expand the code length by 50 times
to 106 by using the quasicyclic construction technique [47].
Note that the quasicyclic construction technology can reduce
the complexity of constructing LDPC codes without reducing
the error-correction performance. Then four RL LDPC codes
with base matrix lengths of 18 900, 19 440, 20 600, and 21 240
are constructed. The code lengths of the four base matrices
are determined using Eqs. (3), (5), and (7), where the rec-
onciliation efficiency remains constant. The five RL LDPC
codes cover a SNR range from 0.148 to 0.171, i.e., each code
covers a SNR range of 0.005. The reasons for the SNR range
selection are as follows. For a metropolitan area of 50 km,
the typical SNR of a CV QKD system will be around 0.16.
Considering the fluctuation range of ±7% of the transmittance
for the quantum channel, the corresponding variation range of
the SNR is determined.

Figure 4 shows the FER and reconciliation efficiency of the
five RL LDPC codes versus the SNR. The simulation param-
eters are VA = 2.941, ε = 0.05, η = 0.6, and Vel = 0.1. The
maximum number of decoding iterations is set to 100 times.
Here we have assumed that the variations of the SNR are
mainly caused by the fluctuations of the channel transmittance
and the modulation variance VA remains constant. The reason
is that the source is controlled by Alice and a servo system is
usually employed to stabilize its output, whereas the quantum
channel is exposed to an uncontrollable external environment
and suffers from disturbance. The SNR changes from 0.148
to 0.171, which corresponds to a transmittance variation from
0.0925 to 0.1069. We use a multidimensional reconciliation
method and a layered decoding algorithm. Compared with
the flooding log-likelihood ratio (LLR) belief propagation
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FIG. 3. Flow chart of rate-adaptive reverse reconciliation by combing the RL LDPC code with adding the trusted noise

decoding algorithm, the number of iterations of the layered
decoding algorithm is reduced by nearly half without perfor-
mance degradation and it has lower computational complexity
[48]. For each RL LDPC code, the reconciliation efficiency in-
creases when the SNR decreases, whereas the corresponding
FER increases due to the difficulty of decoding at lower SNR
and vice versa.

By using the results in Fig. 4, we calculate the secret
key rate at each SNR and select the SNR points that have
the highest secret key rate within the SNR range of each
RL LDPC code, as shown in Fig. 5(a). The reconciliation
efficiency reaches above 94.4% for excess noises of 0.01,
0.03, and 0.05 and 95.0% for excess noise of 0.08. The se-
lected SNRs act as the benchmark SNR for each RL LDPC

0.150 0.155 0.160 0.165 0.170
0.0

0.1

0.2

0.3

0.4

Av
er
ag
e
fra
m
e
er
ro
rr
at
e
(F
ER
)

SNR

Reconciliation efficiency
FER

0.0

0.1

0.2

0.90

0.95

1.00

R
ec
on
ci
lia
tio
n
ef
fic
ie
nc
y

FIG. 4. Performance test of RL LDPC codes with code lengths
of 945 000, 972 000, 1 000 000, 1 030 000, and 1 062 000, respec-
tively. The blue circle and red triangle represent the frame error rate
and reconciliation efficiency, respectively. The maximum number of
decoding iterations is set to 100.

code (the minimum SNR). The SNR covering range for a
single RL LDPC code is set to be 0.005, and the SNRs higher
than the benchmark within this range can be adjusted to the
benchmark value by adding trusted noise. From Fig. 5(a), the
optimal reconciliation efficiency for the excess noise of 0.08
is higher than that for excess noises of 0.01, 0.03, and 0.05,
although the corresponding FER is higher. This is because
the secret key rate of the CV QKD is more sensitive to the
reconciliation efficiency than the FER at high excess noise
levels compared to the case of low excess noise.

Figure 5(b) shows the secret key rate of the rate-adaptive
reconciliation versus the SNR. For comparison, the key rate
obtained by the method using only the RL LDPC codes [37]
is also depicted. It can be seen that the secret key rate ob-
tained by our scheme is higher, especially when the excess
noise is high. By adding the trusted noise, the frame error
rate and reconciliation efficiency remain unchanged within
the reconciliation range of each RL LDPC code. Although
the mutual information between Alice and Bob is reduced
due to the addition of noises, from Eq. (7) its product with
the reconciliation efficiency, which is exactly the code rate,
remains unchanged. At the same time, the addition of trusted
noises suppresses the eavesdropped information. Therefore,
the overall effect of adding noises improves the secret key
rate of the QKD system. For example, by adding trusted noise
with a variance of 0.028 15 at the SNR of 0.161 and the excess
noise level of 0.08, we can obtain a secret key rate more than
2 times higher than that using only the RL LDPC code. The
upper bound on the information that the eavesdropper Eve
may steal is 0.096 18 and 0.098 48 bits per pulse for adding
trusted noises or not, respectively.

Hardware acceleration can greatly improve the decoding
throughput [47,49–52]. By using GPUs, decoding through-
puts of 9.17 [47], 30.39 [49], and 64.11 Mbits/s [50] with
the maximum number of iterations of 100, 100, and 50 times,
respectively, have been reported. We implement the hardware
acceleration of our rate-adaptive reconciliation algorithm on
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FIG. 5. (a) Reconciliation efficiency and FER of the five RL
LDPC codes versus the SNR under different excess noises. (b) Se-
cret key rate using our rate-adaptive reconciliation scheme or RL
LDPC codes only. The simulation parameters are set as follows: The
modulation variances VA are 2.935, 2.938, 2.941, and 2.946, which
correspond to the excess noise levels of 0.01, 0.03, 0.05, and 0.08,
respectively; the detection efficiency η is 0.6; and the electric noise
is 0.1.

the GPU (NVIDIA GeForce RTX 3090). In order to maintain
a low frame error rate and high reconciliation efficiency, we
set the maximum number of iterations to 100 without early
termination. First, we construct a base matrix of the RL LDPC
code with a length of 400 and extend its code length to 424.
Then we use the quasicyclic construction technique to expand
the code length by 2500 times to 1 060 000. Next we cut the
code length of the base matrix (424) to 412, 400, 388, and
378 without changing the degree distribution. We expand the
four base matrices by the same expansion factor (2500), and
each submatrix of the quasicyclic expansion has the same shift
amount. In this way, the whole information of the four RL
LDPC codes is involved in the parity-check matrix of the RL
LDPC code with the code length (base matrix) of 424, which

FIG. 6. (a) Error-correction speed versus the different number of
parallel code words. The code rate is 0.1, the code length is 106,
and the number of iterations is 100. (b) Error-correction speed of RL
LDPC codes with five different code lengths (1 060 000, 1 030 000,
1 000 000, 970 000, and 945 000). The number of parallel code words
is 128 and the number of iterations is 100.

saves the memory space for the matrix information on the
GPU and reduces the complexity of programming.

To implement the iterative decoding, a layered decoding al-
gorithm is adopted and the unrelated submatrices are merged
[50] to improve the thread utilization and the decoding speed.
Figure 6(a) shows the decoding throughput as a function of
the number of parallel code words under the code length of
106.

The decoding throughput on the GPU is given by

K = a × b

T
, (23)

where a is the code length of the RL LDPC code, b is the num-
ber of parallel code words, and T is the total time consumed
by the decoding process. Here T includes the time consumed
by GPU initialization, data transfer from CPU to GPU, LLR
initialization, iterative decoding, decoding decision, and data
transfer from GPU to CPU. It can be seen from Fig. 6(a) that
the error-correction speed increases linearly with the number
of parallel code words at first and gradually tends to satura-
tion. In the following, we choose the number of parallel code
words to be 128.

Figure 6(b) shows the error-correction speed of five RL
LDPC codes versus the SNR by using the GPU platform.
The maximum number of iterations is set to 100. In the entire
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FIG. 7. Actual secret key rate obtained by considering the GPU
decoding throughput under different excess noises. The other param-
eters are the same as those in Fig. 5.

adaptive range of the SNR, the decoding throughput is robust
to the SNR of the QKD system and can reach above 65.5
Mbits/s.

When considering the actual decoding throughput, the ob-
tainable secret key rate per second can be calculated by the
formula

K1 = a(1 − RFE )
( n

N

)
(βIAB − χBE ), (24)

where a is the real-time decoding throughput of the informa-
tion reconciliation and we have assumed that the clock rate of
the system is no less than the decoding throughput.

Figure 7 shows the actual secret key rate as a function of the
SNR obtained by considering the GPU decoding throughput.
For the fixed excess noise, the key rate increases with the
SNR, similar to the phenomenon of Fig. 5(b). When the excess
noises are 0.01, 0.03, 0.05, and 0.08, the secret key rate per
second can reach above 1.04 Mbits/s, 750 kbits/s, 500 kbits/s,
and 150 kbits/s, respectively.

V. CONCLUSION

The rapid development of CV QKD technology puts for-
ward higher requirements for the information reconciliation.
Adaptive information reconciliation plays a key role in prac-
tical CV QKD systems: It ensures that the QKD systems
can obtain a high and stable secret key rate in realistic time-
varying channel environments. In this paper, we proposed a
high-efficiency rate-adaptive scheme by combining RL LDPC
codes and adding trusted noise. We established the model of
adding trusted noise and systematically analyzed the recon-
ciliation efficiency and frame error rate of the rate-adaptive
scheme and their effect on the secret key rate under different
excess noise levels. The simulation results showed that our
scheme has superior performance: The reconciliation effi-
ciency remains above 94.4% (95%) and the frame error rate
keeps lower than 9.3% (21.4%) for the excess noise levels of
0.01, 0.03, and 0.05 (0.08) within a SNR variation range of
15%. Furthermore, we implemented hardware acceleration of
the decoding algorithm on a GPU platform. By optimizing
the storage of RL LDPC codes and merging unrelated sub-
matrices, we improved the thread utilization and reduced the
complexity of programming. A decoding throughput of over
65.5 Mbits/s was achieved in the entire SNR range of adap-
tive reconciliation. The proposed rate-adaptive information
reconciliation scheme and hardware acceleration implemen-
tation can be applied to practical CV QKD systems in real
application scenarios and may find useful applications in other
quantum communication fields.
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