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Noisy quantum parameter estimation with indefinite causal order
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Optimal probe states and measurements are always required to achieve the best estimation precision in quan-
tum metrology. In the actual physical environment, ubiquitous noise hinders estimation precision and amplifies
the challenges of optimizing the probe states and measurements. In this study we extend a theoretical proposal,
presented in Phys. Rev. A 103, 032615 (2021), to encompass noisy general Pauli channels for SU(2) phase
estimation. By utilizing a superposition of different causal orders of two channels, we establish theoretically
a probe-state-independent criterion for the estimation precision. We show that the probe-state-independent
property results from the noncommutativity of the Kraus operators of the parameter-encoding channels. Based
on this criterion, one can find some parameter-encoding channels without the requirement of precisely preparing
the probe state. Moreover, our scheme requires only deterministic projection measurement on the control qubit.
In this way, one can simultaneously avoid optimizing both the probe states and measurements. In addition,
we also show that the estimation precision and probe-state-independent property of the indefinite causal order
scheme are independent of representations of the Kraus operators. This alleviates the experimental challenges
in realizing quantum channels. We demonstrate experimentally the advantages of the indefinite causal order for
phase estimation of an SU(2) unitary transformation in the three kinds of quantum noise channels. Our result
shows that the dynamic evolution of indefinite causal order can outperform the conventional cascaded estimation
scenario at high noise levels, exhibiting high robustness and feasibility in practical estimation tasks.

DOI: 10.1103/PhysRevA.109.012603

I. INTRODUCTION

Quantum metrology seeks to surpass the shot-noise limit
and achieve the Heisenberg limit in parameter-estimation
tasks by utilizing quantum resources such as entanglement
and quantum superposition. However, quantum systems are
susceptible to noise, which can diminish or even eliminate
the benefits of quantum enhancement in estimation precision
[1,2].

In order to depress quantum noise, one uses entangled
probe states or entanglement-assisted schemes, which have
shown advantages in phase estimation across different noise
regimes [3–6]. Despite the challenges posed by noise, in-
novative methods have been proposed to maintain quantum
enhancement. For example, delicate preparation of the probe
state may be necessary to utilize noise information, although
this is not always possible in real physical systems [7]. Ad-
ditionally, sophisticated projection measurements are often
required to achieve more precise parameter estimation, which
can pose experimental difficulties and hinder the practical
deployment of quantum metrology techniques. Encoding pa-
rameters within the system dynamics is also a crucial step
in enhancing measurement precision and noise robustness
[8–12]. Moreover, well-designed evolution dynamics have
been proposed to circumvent the no-go theorem that limits
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quantum advantages to a constant factor enhancement in noisy
environments [13].

A new type of quantum evolution dynamics, called indef-
inite causal order, has recently been introduced [14,15]. This
approach allows for quantum evolution in a superposition of
two different causal orders and has been demonstrated exper-
imentally through a quantum switch [16,17]. Indefinite causal
order has been successfully applied in various fields, including
quantum communication [18–21], quantum thermodynamics
[22–24], and quantum metrology [25–28], yielding results
that challenge classical understanding.

For single-parameter estimation, a strict hierarchy has been
established between a general adaptive strategy and an indef-
inite causal order strategy in both nonasymptotic [29] and
asymptotic regimes [30]. By utilizing the quantum switch,
the indefinite causal order scheme can not only enhance the
absolute estimation precision to super-Heisenberg scaling in
a noise-free situation [31], but also potentially overcome the
negative effects of depolarization in phase-estimation tasks
of SU(2) systems [32] and can even turn noise into a ben-
eficial factor to enhance parameter-estimation precision in
intermediate noisy physical systems. Unlike general adaptive
schemes, the indefinite causal order scheme does not require
precisely preparing probe states or sophisticated projection
measurements [33]. Although it may not achieve the Heisen-
berg limit when noise exists, it has been shown to outperform
conventional SU(2) phase-estimation schemes in intermediate
noisy environments within a nonasymptotic regime.
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In this work we focus on phase estimation of the SU(2)
unitary transformation in a noisy quantum channel with the
assistance of the quantum switch. Leveraging the incoherent
superposition property of the quantum channels, we extend
the theoretical proposal [32] to general Pauli channels. We
analyze theoretically the origin of the probe-state-independent
property in the estimation precision and establish a criterion
to avoid precisely preparing the probe state. The probe-state-
independent property is attributed to the noncommutativity
of the Kraus operators of the parameter-encoding channels.
We show that the representations of the Kraus operators
have no impact on the estimation precision and probe-
state-independent property, which alleviates the experimental
challenges in realizing quantum channels. We conduct our
experiments on a photonics platform, specifically utilizing
a phase-flip channel, a depolarization channel, and an arbi-
trary Pauli channel, which are special cases of general Pauli
channels. By encoding the rotation angle of the SU(2) trans-
formation into the photonic polarization degree of freedom,
we estimate the rotation angle and its variance. Our results
show that the estimation precision reaches the bound set-
ting by the quantum Fisher information. We implement the
quantum switch by utilizing the path degree of freedom in
a Mach-Zehnder interferometer. The quantum channels are
realized by postprocessing the outcomes of different single
experiments. To ensure the validity of our method, we perform
quantum process tomography to verify the accuracy of the
implemented channels. We also account for losses caused by
imperfect optical elements in our experiments. Our experi-
mental results reveal that the indefinite causal order scheme
outperforms the conventional cascaded estimation scenario
in situations with high noise levels. Notably, our approach
does not require both precisely optimizing the probe state and
sophisticated measurement setups. Moreover, our work can
be extended to multiparameter estimation by redesigning the
measurement settings to suit the specific requirements of the
target parameters.

The structure of our paper is organized as follows. In Sec. II
we provide an overview of the SU(2) phase-estimation task
and the traditional scenario, highlighting the challenges in
the existing scheme. In Sec. III B we extend the theoretical
framework proposed in [32] to accommodate the general Pauli
channel using the switch channel (detailed in Sec. III A).
We present the experimental setup on a photonic platform in
Sec. IV. The experimental results are shown in Sec. IV C.

II. PHASE ESTIMATION IN THE SU(2) SYSTEM

The Bloch representation is a useful tool for working with
a qubit, a two-level quantum system. The density matrix of a
qubit can be expressed as

ρin = 1
2 (12 + �r · �σ ), (1)

where �r is the Bloch vector that encodes all information about
the qubit and �σ = (σx, σy, σz )T . An SU(2) unitary operator
representing a rotation by ξ ∈ [0, 2π ) about the normalized
axis �n = (nx, ny, nz )T can be expressed as

Uξ = exp

(
−i

ξ

2
�n · �σ

)
= cos

ξ

2
12 − i sin

ξ

2
�n · �σ . (2)

Assume we have an unknown phase ξ encoded on a probe
qubit with a unitary transformation Uξ specified by (2). We
can express the encoded density matrix as

Uξ ρinU
†
ξ = 1

2 (12 + Uξ �r · �σU †
ξ )

= 1
2 [12 + Rñ(ξ )�r · �σ ]. (3)

Utilizing the isomorphism between SU(2) and SO(3) rota-
tions, we can represent the encoding process as a rotation
around the Bloch vector �r, which is specified by Rodrigues’
rotation formula

R�n(ξ ) = eñξ = 13 + ñ sin ξ + ñ2(1 − cos ξ ). (4)

Here 13 is the 3 × 3 identity matrix and ñ denotes the anti-
symmetric matrix defined as

ñ =

⎛
⎜⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎟⎠. (5)

Our goal is to enhance the precision limit of phase estimation
and noise robustness by carefully designing the dynamics of
the system.

In the SU(2) phase-estimation task, the conventional
scheme involves imprinting the estimated parameter ξ onto
the probe state through the SU(2) dynamic evolution (2).
Subsequently, a two-outcome positive-operator-valued mea-
surement (POVM) M± = (1 ± �a · �σ )/2, |�a| = 1, is carried
out on the encoded state (3). By establishing an unbiased
estimator ξ̂ , i.e., E (ξ̂ ) = ξ , we can obtain the variance of
the estimated parameter ξ from the measurement probability
distribution [33]

var(ξ̂ ) � 1

FC (ξ )
= 1 − (�a · �rξ )2

[�a · (�n × �rξ )]2

� 1

FQ(ξ )
= 1

(�n × �r )2
, (6)

where �rξ = R�n�r, and FC (ξ ) and FQ(ξ ) are the classical Fisher
information and quantum information, respectively (detailed
in Appendix A).

Note that the lower bound of variance is influenced by the
geometric relationship between the rotation axis �n and the
Bloch vector of probe state �r. When �n is orthogonal to �r, the
POVM required to achieve the quantum Cramér-Rao bound
depends on the parameter being estimated [33]

�a = �n × �rξ . (7)

In this case, achieving optimal precision without prior knowl-
edge of ξ is difficult. When noise is present, the carefully
prepared probe state is corrupted, and optimizing the POVM
is also difficult in most situations. To overcome this challenge,
it is necessary to devise dynamic evolution that reduces the pa-
rameter’s dependence on state preparation and measurement.

III. DESCRIPTION OF THE QUANTUM CHANNEL
AND SWITCH CHANNEL

A. Operator-sum representation of the quantum channel

A quantum channel is a completely positive and trace-
preserving map that transforms a density matrix into another
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FIG. 1. The two types of quantum channels: (a) the conventional
cascaded channel, where E1 and E2 are composed with a unitary
transformation Uξ and a general Pauli channel EGP in a cascade
manner, and (b) the switch channel, where the order of two channels
E1 and E2 can be controlled using the state of the control qubit.

density matrix. This map can be expressed using the operator-
sum representation

E (ρ) =
∑

i

KiρK†
i , (8)

where Kraus operators {Ki} satisfy
∑

i K†
i Ki = 12.

The evolution of a qubit can be regarded as a quantum
channel acting on its density matrix (1), which can be ex-
pressed in the operator-sum representation as (8). The special
case of unitary evolution occurs when there is only one Kraus
operator, which is the unitary operator itself. For example, a
general Pauli channel can be described as

EGP(ρ) = pIρ + pxσxρσx + pyσyρσy + pzσzρσz, (9)

where pI + px + py + pz = 1. The Kraus operators for the
general Pauli channel are {√pI12,

√
pxσx,

√
pyσy,

√
pzσz},

which reduce to specific channels such as phase-flip and depo-
larization channels depending on the values of the parameters
{pI , px, py, pz}.

Consider two identical channels E1 and E2, each composed
of the unitary transformation Uξ and general Pauli channel EGP

sequentially. Let K (1)
i and K (2)

j be the Kraus operators of E1

and E2, respectively, where i and j denote the index of the
Kraus operators. The Kraus operators for E1 and E2 are

K (1)
0 = K (2)

0 = √
pIUξ , K (1)

1 = K (2)
1 = √

pxσxUξ ,

K (1)
2 = K (2)

2 = √
pyσyUξ , K (1)

3 = K (2)
3 = √

pzσzUξ . (10)

Then we can consider the composition of two quantum chan-
nels E1 and E2 as a cascaded operation, denoted by E2 ◦ E1 and
illustrated in Fig. 1(a). The Kraus operators of the composite
channel E2 ◦ E1 can be obtained as Ki j = K (2)

j K (1)
i , where i j

represents the index of the composite Kraus operators.
By coherently controlling the sequence of the two channels

shown in Fig. 1(b), a switch channel, also known as a quantum
switch, can be obtained. It can be described by the Kraus
operators

Ki j = K (2)
j K (1)

i ⊗ |0〉〈0|c + K (1)
i K (2)

j ⊗ |1〉〈1|c. (11)

Here |0〉〈0|c represents the control state that makes the
composite channel be implemented as E2 ◦ E1, while |1〉〈1|c
represents the control state that enables the composite chan-
nel to be implemented as E1 ◦ E2. The switch channel in the

operator-sum representation then is given as

S (ρin ⊗ ρc) =
∑
i, j

Ki j (ρin ⊗ ρc)K†
i j

= S00(ρ) ⊗ 〈0|ρc|0〉|0〉〈0|c
+ S01(ρ) ⊗ 〈0|ρc|1〉|0〉〈1|c
+ S†

01(ρ) ⊗ 〈1|ρc|0〉|1〉〈0|c
+ S11(ρ) ⊗ 〈1|ρc|1〉|1〉〈1|c, (12)

where ρc is the density matrix of the control qubit and
S00(ρin), S01(ρin), and S11(ρin) are three superoperators de-
fined as

S00(ρin) =
∑
i, j

K (2)
j K (1)

i ρinK (1)†
i K (2)†

j , (13)

S01(ρin) =
∑
i, j

K (2)
j K (1)

i ρinK (2)†
j K (1)†

i , (14)

S11(ρin) =
∑
i, j

K (1)
i K (2)

j ρinK (2)†
j K (1)†

i . (15)

Here we emphasize that the output of the switch chan-
nel S (ρin ⊗ ρc) is independent of a specific representation
of Kraus operators of the two channels E1 and E2 (see
Appendix B for details). Because the phase-flip and phase-
damping channels can be related by a unitary transformation,
we only need to consider one of them under the same noise
level in the experiment.

B. Phase estimation with two types of quantum channels

Now we consider the phase-estimation precision using
quantum Fisher information for the two types of quantum
channels depicted in Fig. 1.

For the conventional cascaded channel illustrated in
Fig. 1(a),

ρc
out = E2[E1(ρin)]

= EGP[UξEGP(UξρinU
†
ξ )U †

ξ ]

= 1
2 {12 + [ARñ(ξ )ARñ(ξ )�r ] · �σ }, (16)

where Rñ(ξ ) is given in Eq. (4) and A is a matrix related to the
parameters of the general Pauli channel EGP, which is given
by

A =

⎛
⎜⎝axx 0 0

0 ayy 0
0 0 azz

⎞
⎟⎠,

axx = pI + px − py − pz,

ayy = pI − px + py − pz,

azz = pI − px − py + pz. (17)

Denoting the Bloch vector of ρout by �r{ξ, �p}, i.e., �r{ξ, �p} =
ARñ(ξ )ARñ(ξ )�r, one has the quantum Fisher information for
the conventional cascaded channel [34]

F c
Q(ξ ) = (�r{ξ, �p}∂ξ �r{ξ, �p})2

1 − |�r{ξ, �p}|2
+ (∂ξ �r{ξ, �p})

2, (18)
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which is named after the traditional limit in the following
discussion.

For the switch channel illustrated in Fig. 1(b), using (13),
we can express S00(ρin) as

S00(ρin) = p2
IU

2
ξ ρinU

†2
ξ + pI

∑
l=x,y,z

plUξ σlUξ ρinU
†
ξ σlU

†
ξ

+ pI

∑
l=x,y,z

plσlU
2
ξ ρinU

†2
ξ σl

+
∑

l,l ′=x,y,z

pl pl ′σlUξ σl ′Uξ ρinU
†
ξ σl ′U

†
ξ σl . (19)

Similarly, using (14), we can express S01(ρin) as

S01(ρin) = p2
IU

2
ξ ρinU

†2
ξ + pI

∑
l=x,y,z

plUξ σlUξ ρinU
†
ξ U †

ξ σl

+ pI

∑
l=x,y,z

plσlU
2
ξ ρinU

†
ξ σlU

†
ξ

+
∑

l,l ′=x,y,z

pl pl ′σlUξ σl ′Uξ ρinU
†
ξ σlU

†
ξ σ ′

l . (20)

To characterize the switch channel with the input state (1), we
can use the equations

S00
[

1
2 (12 + �r · �σ )

] = 1
2 S00(12) + 1

2 S00(�r · �σ ), (21)

S01
[

1
2 (12 + �r · �σ )

] = 1
2 S01(12) + 1

2 S01(�r · �σ ), (22)

where S00(�r · �σ ) and S01(�r · �σ ) are functions of �σ , and there-
fore Tr[S00(�r · �σ )] = Tr[S01(�r · �σ )] = 0.

We prepare the initial control state in |ψ〉c = √
pc|0〉c +√

1 − pc|1〉c. After interacting with the switch channel and
projecting onto the basis (|±〉c = |0〉c ± |1〉c)/

√
2, the probe

state becomes

ρ± =c 〈±|S (ρin ⊗ ρc)|±〉c

= 1

2
S00(ρin) ±

√
pc(1 − pc)S01(ρin). (23)

The probability of the control state being projected onto |±〉c
is given by Tr(ρ±), which can be expressed as

P± = Tr(ρ±)

= 1

2
Tr[ 1

2 S00(12) ±
√

pc(1 − pc)S01(12)]

= 1

2
±

√
pc(1 − pc)Q(ξ, pI , px, py, pz ), (24)

with

Q(ξ, pI , px, py, pz )

=
∑

i=I,x,y,z

p2
i − 4pI sin2 ξ

2

∑
i=x,y,z

pi
(
1 − n2

i

)
+ 2pI (1 − pI ) − 2(px py + py pz + pz px )

+ 4 sin2 ξ

2
[px py

(
1 − n2

z

)
+ py pz

(
1 − n2

x

) + pz px
(
1 − n2

y

)
]. (25)

The classical Fisher information for the switch channel can be
calculated from the probability distribution (24) as

F s
C (ξ ) = 4pc(1 − pc)[∂ξ Q(ξ, pI , px, py, pz )]2

1 − 4pc(1 − pc)Q2(ξ, pI , px, py, pz )
. (26)

The classical Fisher information is maximized when pc = 1
2 .

The above equation is a general result with the general
Pauli channels. We have also investigated other scenarios,
such as the phase-flip channel, which are discussed in Ap-
pendix D. Remarkably, we find from Eq. (24) that the
measurement outcomes are independent of the probe state,
which means that optimizing probe states is not required in
this case. This property is attributed to the noncommutativity
of the Kraus operators of the quantum channel. When adopt-
ing two identical channels, i.e., K (1)

i = K (2)
i = Ki, with Oi j =

[K (1)
i , K (2)

j ], we establish a probe-state-independent criterion.
If probe-state independence is required, the condition holds
for O = ∑

i, j,i< j O†
i jOi j ,

O = c12, c ∈ R. (27)

In the case of a general Pauli channel, this condition is sat-
isfied (the details can be found in Appendix C). In the case
of a general amplitude damping channel, this condition is not
satisfied, so the measurement outcomes are dependent on the
probe state, which has been verified by the previous work in
[26]. Furthermore, only a parameter-independent projection
measurement is needed on the control qubit. These advantages
make the phase-estimation task of the SU(2) system more
accessible.

We have also shown that the above results are irrelevant
to the specific Kraus representations of the two channels
E1 and E2 (see Appendix B for details). So we can choose
the experimentally friendly Kraus operators when implement-
ing quantum channels. Different quantum channels may be
related to a unitary operator such as a phase-flip channel and a
phase-damping channel, and this situation is very similar to a
quantum channel with two kinds of Kraus representations. So
the results of phase-flip channels and phase-damping channels
are the same if we choose the same noise level in the two
channels.

The density matrix of the control qubit after the switch
channel is given by

ρs
out,c = 1

2 Tr[S00(12)]〈0|ρc|0〉|0〉〈0|c
+ 1

2 Tr[S01(12)]〈0|ρc|1〉|0〉〈1|c
+ 1

2 Tr[S†
01(12)]〈1|ρc|0〉|1〉〈0|c

+ 1
2 Tr[S11(12)]〈1|ρc|1〉|1〉〈1|c. (28)

The Bloch vector of the control qubit is given by

�r s
out,c = 1

2

⎛
⎜⎝

Tr[S01(12)]〈0|ρc|1〉 + Tr[S†
01(12)]〈1|ρc|0〉

iTr[S01(12)]〈0|ρc|1〉 − iTr[S†
01(12)]〈1|ρc|0〉

Tr[S00(12)]〈0|ρc|0〉 − Tr[S11(12)]〈1|ρc|1〉

⎞
⎟⎠.

(29)
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Because Tr[S01(12)] = 2Q(ξ, pI , px, py, pz ),

�r s
out,c =

⎛
⎜⎝

2
√

pc(1 − pc)Q(ξ, pI , px, py, pz )

0

2pc − 1

⎞
⎟⎠. (30)

According to Eq. (18), the quantum Fisher information of the
control qubit is given by

F s
Q(ξ ) = 16p2

c(1 − pc)2Q2[∂ξ Q]2

1 − 4pc(1 − pc)Q2
+ 4pc(1 − pc)(∂ξ Q)2

= 4pc(1 − pc)[∂ξ Q(ξ, pI , px, py, pz )]2

1 − 4pc(1 − pc)Q2(ξ, pI , px, py, pz )
. (31)

The quantum Fisher information equals the classical Fisher
information in Eq. (26), which means that our projection
measurement on the control qubit is optimal.

IV. EXPERIMENTAL DETAILS

A. State preparation

An arbitrary polarization pure state can be generated using
a quarter waveplate and a half waveplate such that

Ĥ (θ )Q̂(ν)|H〉 → ρ = |ψ〉〈ψ |. (32)

The Bloch vector of ρ is

�r = [sin(4θ − 2ν) cos(2ν), sin(2ν), cos(4θ − 2ν) cos(2ν)],

(33)

where Ĥ (θ ) and Q̂(ν) refer to the half waveplate (HWP) and
quarter waveplate (QWP), respectively, and θ and ν repre-
sent the angles between the fast axis of the waveplate and
the horizontal polarization direction. To implement an SU(2)
transformation and Pauli operators, we adopt an SU(2) gadget
[35,36]. By cascading Q̂(τ3)Ĥ (τ2)Q̂(τ1) wave plates and ad-
justing {τ3, τ2, τ1}, an arbitrary SU(2) transformation can be
achieved (refer to Appendix F for details).

B. Experimental setup and calibration

In our experiment, we encode the spatial mode of the pho-
ton in each path of the interferometer as the control qubit and
the polarization degree of freedom as the probe qubit carrying
the estimated parameter. By exploiting the incoherent prop-
erty of the quantum channel, we implement the general Pauli
channel by performing the four Pauli operators separately in
each path, resulting in 16 different experimental configura-
tions. We then combine the experimental outcomes with the
classical probability vector �p = pI , px, py, pz and measure the
control qubit in the |±〉c basis by carefully adjusting the phase
of the interferometer using a piezoelectric transducer.

To achieve precision estimation of the unknown parameter
and its variance, we carefully count the number of photons N
injected into the interferometer, accounting for all loss and
detection efficiency. To satisfy the asymptotic reachability
of the Cramér bound, a sufficiently large N is required. In
our experiment, N is choose to be 1000 using Monte Carlo
simulation and we sample with probability distribution �p to
determine the number of photons n1, . . . , n16 injected into
all 16 combinations. We record the time tags of all detected
photons for each experimental trial and extract the values

FIG. 2. We utilize a continuous-wave 405-nm laser diode to
pump a 3-mm periodically poled potassium titanyl phosphate
(PPKTP) crystal for the generation of degenerate photon pairs cen-
tered at 810 nm via type-II spontaneous parametric down-conversion.
One of the photons acts as a trigger to herald the signal photon,
which is fed into a Mach-Zehnder interferometer. The two paths
of the interferometer are encoded as control qubits |0〉c and |1〉c,
respectively. The unknown parameter ξ is initially encoded on the
polarization degree of freedom of the signal photon using the first set
of QWP, HWP, and QWP (QHQ) in the orange shade in each path.
Then the second set of QHQ in the green shade implements Pauli
operators. A piezoelectric transducer is used to control the relative
phase of the interferometer. Finally, the control qubit is measured on
the |±〉 basis by a polarization-maintaining single-mode fiber and a
single-photon detection module (SPDM) and detected by DPC-230
TCSPC. Here BS denotes beam splitter and PBS polarization beam
splitter.

n1, . . . , n16 for analysis. The experimental trial number is 200.
We also provide an analysis of the probability distribution for
each single experiment in Appendix E.

First, we calibrate the detection efficiency by blocking the
reflection beam of the first beam splitter and setting the four
detection probabilities equal to 0.25 theoretically. Since only
the output photon counts of the second beam splitter matter,
we introduce two virtual detectors D+ and D−, which register
photons ejected from two ports of the second beam splitter,
port + and port −, respectively. By tuning the relative phase
of the interferometer with a piezoelectric transducer, D+ is
in the interference-enhanced path with the total counts of D1

and D2, while D− is in the interference-suppressed path with
the total counts of D3 and D4. We denote the five detectors in
Fig. 2 by Dh, D1, D2, D3, and D4 in counterclockwise order.
Adopting a postselection manner, we measure the efficiency
of D+ and D− as η+ = 7.95% ± 0.18% and η− = 7.49% ±
0.17%, respectively.

We verify the validity of utilizing discrete Pauli operators
to simulate Pauli channels. This involves setting all wave-
plates in the {Q̂ĤQ̂}1, {Q̂ĤQ̂2}, and {Q̂ĤQ̂}4 combination
to 0◦. The {Q̂ĤQ̂}3 combination is used to perform Pauli
operators. By postprocessing the coincidence counts using a
classical probability distribution (pI , px, py, pz ), we can sim-
ulate a general Pauli channel. The channel is characterized
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FIG. 3. Estimated value and Fisher information for various probe states in the phase-flip channel. The true value of ξ is π/2 and the
rotation axis �n = (1, 0, 0)T . The theory limit of quantum Fisher information

√
F is calculated with Eq. (26) taking experimental imperfection

into consideration, while the estimated value of
√
F is calculated with Eq. (G20) using experimental data. The traditional limit is calculated

with Eq. (18) under two cascaded phase-flip channels depicted in Fig. 1(a). (a) Estimated value of ξ for the |H〉, |V 〉, and |+〉 probe states.
(b) Square root of the Fisher information per photon for the |H〉, |V 〉, and |+〉 probe states. (c) Estimated value of ξ for the |−〉, |R〉, and
|L〉 probe states. (d) Square root of the Fisher information per photon for the |−〉, |R〉, and |L〉 probe states. Here |+〉 = 1/

√
2(|H〉 + |V 〉),

|−〉 = 1/
√

2(|H〉 − |V 〉), |R〉 = 1/
√

2(|H〉 + i|V 〉), and |L〉 = 1/
√

2(|H〉 − i|V 〉).
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FIG. 4. Estimated value and Fisher information for various probe states in the depolarization channel. The true value of ξ is π/2 and the
rotation axis �n = (1, 0, 0)T . The theory limit of quantum Fisher information

√
F is calculated with Eq. (26) taking experimental imperfection

into consideration, while the estimated value of
√
F is calculated with Eq. (G20) using experimental data. The traditional limit is calculated

with Eq. (18) under the two cascaded depolarization channels depicted in Fig. 1(a). (a) Estimated value of ξ for the |H〉, |V 〉, and |+〉 probe
states. (b) Square root of the Fisher information per photon for the |H〉, |V 〉, and |+〉 probe states. (c) Estimated value of ξ for the |−〉, |R〉,
and |L〉 probe states. (d) Square root of the Fisher information per photon for the |−〉, |R〉, and |L〉 probe states. Here |+〉 = 1/

√
2(|H〉 + |V 〉),

|−〉 = 1/
√

2(|H〉 − |V 〉), |R〉 = 1/
√

2(|H〉 + i|V 〉), and |L〉 = 1/
√

2(|H〉 − i|V 〉).
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FIG. 5. Estimated value and Fisher information for various probe states in the arbitrary Pauli channel N1(ρ ) = pρ + 1−p
5 σxρσx +

3(1−p)
10 σyρσy + 1−p

2 σzρσz. The true value of ξ is π/2 and the rotation axis �n = (1, 0, 0)T . The theory limit of the quantum Fisher information√
F is calculated with Eq. (26) taking experimental imperfection into consideration, while the estimated value of

√
F is calculated with

Eq. (G20) using experimental data. The traditional limit is calculated with Eq. (18) under the two cascaded general Pauli channels N1(ρ )
depicted in Fig. 1(a). (a) Estimated value of ξ for the |H〉, |V 〉, and |+〉 probe states. (b) Square root of the Fisher information per photon for
the |H〉, |V 〉, and |+〉 probe states. (c) Estimated value of ξ for the |−〉, |R〉, and |L〉 probe states. (d) Square root of the Fisher information
per photon for the |−〉, |R〉, and |L〉 probe states. Here |+〉 = 1/

√
2(|H〉 + |V 〉), |−〉 = 1/

√
2(|H〉 − |V 〉), |R〉 = 1/

√
2(|H〉 + i|V 〉), and

|L〉 = 1/
√

2(|H〉 − i|V 〉).
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FIG. 6. (a) Estimated value and (b) Fisher information for various values of the parameter ξ in the general Pauli channel N1(ρ ) = pρ +
1−p

5 σxρσx + 3(1−p)
10 σyρσy + 1−p

2 σzρσz. The probe state is |R〉 = 1/
√

2(|H〉 + i|V 〉) and the rotation axis �n = (1, 0, 0).

using quantum process tomography and the average quantum
channel fidelity exceeds 95%.

In our experiment, we set �n = (1, 0, 0)T and ξ = π/2,
which is achieved using the Q̂( π

2 )Ĥ (− 3π
8 )Q̂( π

2 ) combination
in the orange shade in each path of Fig. 2. In the beginning,
we characterize the interferometer visibility by setting the
relative phase of two paths at 0 and π . When the input state is
|H〉, we obtain a lowest visibility around 91.32%. This result
is attributed to the polarization dependence of the second
beam splitter. The |H〉 photons in the |1〉c path experience a
slight loss upon transmission through the second beam split-
ter, while the reflection rate exceeds the transmission rate in
both input ports. The imperfect device may introduce sys-
tematic errors in the estimation task, which can be reduced
by introducing calibrated parameters to the estimators. (See
Appendix G for more experimental details and the calibrated
process.)

C. Experimental result

To show that our protocol is independent of the probe
state, we prepared the polarization states |H〉, |V 〉, |+〉 =
1/

√
2(|H〉 + |V 〉), |−〉 = 1/

√
2(|H〉 − |V 〉), |R〉 = 1/

√
2

(|H〉 + i|V 〉), and |L〉 = 1/
√

2(|H〉 − i|V 〉) and utilized the
phase-flip channel, depolarization channel, and arbitrary
Pauli channel in the quantum switch, respectively. We define
pI = p in the following discussion. The experiment results
for the phase-flip channel with px = py = 0 and pz = 1 − p
are shown in Fig. 3. We estimated ξ and extracted the Fisher
information per photon at different noise levels. Figures 3(a)
and 3(c) display the estimated value of ξ for the probe states
|H〉, |V 〉, |+〉, |−〉, |R〉, and |L〉, while Figs. 3(b) and 3(d)
show the square root of the Fisher information per photon.
We observe that the estimated value is in good agreement
with the true value of π/2, and the Fisher information is
consistent with the theoretical value. Furthermore, we find
that the estimated value and Fisher information are insensitive

to the probe states. When the noise level is high, the estimated
value is close to the true value and the Fisher information get
larger, indicating a better performance at high noise levels.

It is important to note that a discrepancy between the esti-
mated value and true value exists as p gradually increases to
1, and the adopted approach becomes invalid when p = 1. We
emphasize that noise is crucial in our experimental scheme.
When p = 1, the two quantum noise channels degenerate into
a unitary transformation, making it impractical to evaluate ξ .
The observed discrepancy between the experimentally esti-
mated value and true value is due to the limited visibility
of the interferometer. This can be addressed by revising the
estimator, as described in Appendix G 2. There is a little
photon loss in the second beam splitter, which is dependent
on polarization. After calibrating our setup with the probe
state |R〉 = 1

√
2(|H〉 + i|V 〉), all the superpositions of |H〉

and |V 〉 work well, while the behaviors of |H〉 and |V 〉 are
in the opposite direction when p tends to 1.

The standard deviation of the estimated value σ/
√

N
reaches the same classical bound

√
F for various probe states,

demonstrating that our approach is independent of the probe
state. Even when the probe state |+〉 is parallel to the rotation
axis n̂ = (1, 0, 0)T , the traditional methods fail; however, our
approach is still effective. When the probe state is |H〉 or |V 〉,
our approach outperforms the traditional methods in a high
level of noise (p < 0.6893).

Our approach only requires collecting photon counts from
the two ports of the interferometer, and the information carried
by the polarization degree of freedom is discarded, which
may decrease the precision of the parameter ξ estimation.
However, this simplifies the experimental implementation, as
it does not require parameter-dependent optimal measurement
setups. The projection measurement |±〉〈±|c on the control
qubit is deterministic and can achieve the quantum Cramér-
Rao bound (QCRB). It is also important to note that the phase
stability of the interferometer is crucial for our experiment.
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Since the experiment has a combination property, we can
adjust the relative phase to 0 before each single experiment.
The collection time for each single experiment lasts for 10 s
and the phase drift can be negligible.

We also performed experiments with different values of ξ

ranging from 0 to π in order to eliminate systematic errors
caused by imperfect optical elements and limited visibility.
To achieve this, we introduced calibrated parameters α, β,
and ξe. Using the least-squares method, we determined the
parameters for the phase-flip, depolarization, and arbitrary
Pauli channels by minimizing the discrepancy between the
experimental probability distribution and the theoretical prob-
ability distribution at different ξ and p. Details of this process
are shown in Appendix G 2. For the depolarization channel
with px = py = pz = (1 − p)/3, the experimental results are
shown in Fig. 4. It is notable that when depolarization noise
is at a high level (p < 0.5205), the quantum switch scenario
will outperform the traditional approach, which exhibits ro-
bustness to noise. For the arbitrary Pauli channel N1 with
px = (1 − p)/5, py = 3(1 − p)/10, and pz = (1 − p)/2, the
experimental results are shown in Fig. 5 for various probe
states. The quantum switch outperforms the traditional strat-
egy when 0.375 � p � 0.5626 for |H〉, |V 〉 and 0.375 � p �
0.4590 for |R〉, |L〉. Figure 6 shows the estimation for various
values of ξ with the probe state |R〉. There are some system-
atic errors in the experiment caused by the imperfect optical
elements.

V. CONCLUSION

In summary, we have expanded upon the theoretical pro-
posal presented in Ref. [32] by applying it to the SU(2)
general Pauli channels. We have analyzed theoretically the
origin of the probe-state-independent property in the estima-
tion precision and established a criterion to avoid precisely
preparing the probe state. We have shown that the specific
Kraus representations of the channels have no impact on the
estimation precision and probe-state-independent property.
This provides an experimentally friendly way to implement
quantum switch channels. We have verified experimentally
the advantages of using an indefinite causal order scheme
on a photonics platform. By utilizing three special cases of
general Pauli channels, namely, the phase-flip channel, de-
polarization channel, and arbitrary Pauli channel, we have
successfully demonstrated the SU(2) phase estimation in a
noisy environment by implementing a switch channel. Our
approach achieves estimation precision that can reach the
quantum Cramér-Rao bound and exhibits robustness at high
noise levels. Notably, our approach allows for arbitrary probe
states and deterministic measurement settings, making it more
feasible for real-world physical systems compared to conven-
tional SU(2) phase-estimation tasks [33]. It is worth noting
that that conventional cascaded channel scheme and switch
channel scheme in our paper are special cases of the adaptive
feedback and casual superposition scheme,s respectively, in
Ref. [30]. Our result is consistent with the general single-
parameter-estimation theory in Ref. [30]. Furthermore, our
work can be extended to multiparameter noisy metrology [37],
which would provide insight into easy-to-implement schemes
in quantum metrology.
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APPENDIX A: FISHER INFORMATION

The Fisher information, denoted by F (ξ ), quantifies the
amount of information present in an observed data set about
an unknown parameter ξ in a statistical model. It serves as an
upper bound on the precision of estimating the parameter, as
stated by the Cramér-Rao bound,

var(ξ̂ ) � 1

F (ξ )
, (A1)

where ξ̂ represents an unbiased estimator of the unknown pa-
rameter ξ and the variance of ξ̂ is constrained by the reciprocal
of the Fisher information F (ξ ). The classical Fisher infor-
mation, denoted by FC , is defined for a probability density
function f (x|ξ ) that depends on an unknown parameter ξ . It
is given by the integral expression

FC =
∫

[∂ξ f (x|ξ )]2

f (x|ξ )
dx, (A2)

where x represents the classical measurement value and
f (x|ξ ) denotes the conditional probability of obtaining x
given the value of ξ .

In quantum parameter-estimation tasks, the choice of
POVMs Mmi can affect the conditional probability density
functions fi(x|ξ ) and consequently the Fisher information. To
obtain as much information as possible, we aim to maximize
the Fisher information over all possible POVMs, leading to
the QCRB

var(ξ̂ ) � 1

FQ(ξ )
, (A3)

where ξ̂ represents an unbiased estimator of the unknown
parameter ξ and the denominator FQ(ξ ) denotes the quantum
Fisher information (QFI), which is the maximum attainable
Fisher information. Achieving the QCRB requires finding an
experimentally feasible POVM that can yield the maximum
QFI, allowing for optimal precision in estimating the parame-
ter ξ from the quantum data.

APPENDIX B: PROOF OF KRAUS REPRESENTATION
INDEPENDENCE IN THE SWITCH CHANNEL

We prove that the phase-estimation precision is indepen-
dent of the Kraus representation of quantum channels. The
Kraus operators of the switch channel are

Ki j = K (2)
j K (1)

i ⊗ |0〉〈0|c + K (1)
i K (2)

j ⊗ |1〉〈1|c. (B1)

If we choose two different sets of Kraus operators {K (1)
i } and

{E (1)
l } of channel (1), {K (1)

i } and {E (1)
l } are related to a unitary

transformation R, K (1)
i = ∑

l Ril E
(1)
l .
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When adopting two identical channels, because of
S00(ρ) = S11(ρ) and S01(ρ) = S†

01(ρ), we only need to prove
that S00(ρ) and S01(ρ) are independent of the Kraus represen-
tation of channel (1),

S00(ρ) =
∑
i, j

[(∑
l

K (2)
j Ril E

(1)
l

)
ρ

(∑
m

E (1)†
m R∗

imK (2)†
j

)]

=
∑
i, j

[(∑
l=m

K (2)
j Ril E

(1)
l ρE (1)†

l R∗
il K

(2)†
j

)]

+
∑
i, j

⎡
⎣

⎛
⎝∑

l �=m

K (2)
j Ril E

(1)
l

⎞
⎠ρ

⎛
⎝∑

m �=l

E (1)†
m R∗

imK (2)†
j

⎞
⎠

⎤
⎦

=
∑

j,l

(∑
i

Ril R
∗
il K

(2)
j E (1)

l ρE (1)†
l K (2)†

j

)

+
∑
i, j

⎛
⎝ ∑

l,m,l �=m

Ril R
∗
imK (2)

j E (1)
l ρE (1)†

m K (2)†
j

⎞
⎠

=
∑

j,l

(
K (2)

j E (1)
l ρE (1)†

l K (2)†
j

)

+
∑

j

⎡
⎣ ∑

l,m,l �=m

(∑
i

Ril R
∗
im

)
K (2)

j E (1)
l ρE (1)†

m K (2)†
j

⎤
⎦

=
∑

j,l

(
K (2)

j E (1)
l ρE (1)†

l K (2)†
j

)
, (B2)

S01(ρ) =
∑
i, j

[(∑
l

K (2)
j Ril E

(1)
l

)
ρ

(∑
m

K (2)†
j E (1)†

m R∗
im

)]

=
∑
i, j

[(∑
l=m

K (2)
j Ril E

(1)
l ρK (2)†

j E (1)†
l R∗

il

)]

+
∑
i, j

⎡
⎣

⎛
⎝∑

l �=m

K (2)
j Ril E

(1)
l

⎞
⎠ρ

⎛
⎝∑

m �=l

K (2)†
j E (1)†

m R∗
im

⎞
⎠

⎤
⎦

=
∑

j,l

(∑
i

Ril R
∗
ilK

(2)
j E (1)

l ρK (2)†
j E (1)†

l

)

+
∑
i, j

⎛
⎝ ∑

l,m,l �=m

Ril R
∗
imK (2)

j E (1)
l ρK (2)†

j E (1)†
m

⎞
⎠

=
∑

j,l

(
K (2)

j E (1)
l ρK (2)†

j E (1)†
l

)

+
∑

j

⎡
⎣ ∑

l,m,l �=m

(∑
i

Ril R
∗
im

)
K (2)

j E (1)
l ρK (2)†

j E (1)†
m

⎤
⎦

=
∑

j,l

(
K (2)

j E (1)
l ρK (2)†

j E (1)†
l

)
, (B3)

where we used the fact that
∑

i Ril R∗
im = δlm. We can find that

the Kraus operators of the switch channel are independent of
the Kraus representation of quantum channel (1). Since chan-
nels (1) and (2) are mathematically equivalent in the above

procedure, we prove that the output of the switch channel
is independent of the Kraus representation of the quantum
channel, which also implies that the phase-estimation pre-
cision is irrelevant to the Kraus representation of quantum
channels.

APPENDIX C: PROBE-STATE-INDEPENDENT CRITERION

The probe-state-independent criterion is described as fol-
lows. When adopting two identical channels, i.e., K (1)

i =
K (2)

i = Ki, define Oi j = [K (1)
i , K (2)

j ] and O = ∑
i, j,i< j O†

i jOi j .
If the SU(2) phase estimation with the indefinite causal order
dynamics is probe-state independent, the condition

O = cI2, c ∈ R, (C1)

must be held.
The probe-state-independent property of the switch chan-

nel relates to the noncommutativity of the Kraus operators
of the quantum channel. We only need to prove that
both Tr[S00(ρin)] and Tr[S01(ρin)] are independent of the
probe state �r because of Tr[S11(ρin)] = Tr[S00(ρin)] and
Tr[S†

01(ρin)] = Tr[S01(ρin)]. The details are as follows. For
S00(ρin),

S00(ρin) = 1

2
[S00(12)] + 1

2
[S00(�r · �σ )]

= 1

2

∑
i, j

K (2)
j K (1)

i K (1)†
i K (2)†

j

+ 1

2

∑
i, j

K (2)
j K (1)

i (�r · �σ )K (1)†
i K (2)†

j . (C2)

Utilizing
∑

K (1)†
i K (1)

i = ∑
K (2)†

j K (2)
j = 12, we obtain

Tr[S00(12)] = Tr

⎛
⎝∑

i, j

K (2)
j K (1)

i K (1)†
i K (2)†

j

⎞
⎠

= Tr(12)

= 2, (C3)

Tr[S00(�r · �σ )] = Tr

⎛
⎝∑

i, j

K (2)
j K (1)

i (�r · �σ )K (1)†
i K (2)†

j

⎞
⎠

= Tr[(�r · �σ )]

= 0. (C4)

It is obvious that Tr[S00(ρin)] is independent of the probe state
�r. For S01(ρin),

S01(ρin) = 1

2
S01(12) + 1

2
S01(�r · �σ )

= 1

2

∑
i, j

K (2)
j K (1)

i K (2)†
j K (1)†

i

+ 1

2

∑
i, j

K (2)
j K (1)

i (�r · �σ )K (2)†
j K (1)†

i . (C5)

An arbitrary two-dimensional matrix can be expanded
in the Pauli basis, defining

∑
K (1)

i K (1)†
i = a12 + �k1 · �σ and∑

K (2)
j K (2)†

j = b12 + �k2 · �σ . If
∑

K (1)
i K (1)†

i = ∑
K (2)

j K (2)†
j
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= 12, channels 1 and 2 are called unital channels:

S01(12) =
∑
i, j

K (2)
j K (1)

i K (2)†
j K (1)†

i

=
∑
i, j

(
K (1)

i K (2)
j − Oi j

)
K (2)†

j K (1)†
i

=
∑
i, j

K (1)
i K (2)

j K (2)†
j K (1)†

i −
∑
i, j

Oi jK
(2)†
j K (1)†

i . (C6)

When adopting two identical channels, i.e., K (1)
i = K (2)

i = Ki,

−
∑
i, j

Oi jK
(2)†
j K (1)†

i

= −
∑

i, j,i< j

Oi jK
(2)†
j K (1)†

i −
∑

i, j,i> j

Oi jK
(2)†
j K (1)†

i

= −
∑

i, j,i< j

Oi jK
(2)†
j K (1)†

i −
∑

i, j, j>i

O jiK
(2)†
i K (1)†

j

= −
∑

i, j,i< j

Oi jK
(2)†
j K (1)†

i +
∑

i, j, j>i

Oi jK
(2)†
i K (1)†

j

= −
∑

i, j,i< j

Oi j
(
K (2)†

j K (1)†
i − K (2)†

i K (1)†
j

)

= −
∑

i, j,i< j

Oi j
(
K (2)†

j K (1)†
i − K (1)†

i K (2)†
j

)

= −
∑

i, j,i< j

Oi j
[
K (2)†

j , K (1)†
i

]

= −
∑

i, j,i< j

Oi jO
†
i j, (C7)

S01(�r · �σ ) =
∑
i, j

K (2)
j K (1)

i (�r · �σ )K (2)†
j K (1)†

i

=
∑
i, j

(
K (1)

i K (2)
j − Oi j

)
(�r · �σ )K (2)†

j K (1)†
i

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑
i, j

Oi j (�r · �σ )K (2)†
j K (1)†

i

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i> j

Oi j (�r · �σ )K (2)†
j K (1)†

i

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j, j>i

O ji(�r · �σ )K (2)†
i K (1)†

j

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )K (2)†
j K (1)†

i +
∑

i, j, j>i

Oi j (�r · �σ )K (2)†
i K (1)†

j

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )
(
K (2)†

j K (1)†
i − K (2)†

i K (1)†
j

)

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )
(
K (2)†

j K (1)†
i − K (1)†

i K (2)†
j

)

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )
[
K (2)†

j , K (1)†
i

]

=
∑
i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )O†
i j, (C8)

Tr[S01(ρ)] = 1

2
Tr[S01(12) + S01(�r · �σ )]

= 1

2
Tr[S01(12)] + 1

2
Tr[S01(�r · �σ )]

= 1

2
Tr

⎛
⎝∑

i, j

K (1)
i K (2)

j K (2)†
j K (1)†

i

⎞
⎠ − 1

2
Tr

⎛
⎝ ∑

i, j,i< j

Oi jO
†
i j

⎞
⎠

+1

2
Tr

⎛
⎝∑

i, j

K (1)
i K (2)

j (�r · �σ )K (2)†
j K (1)†

i −
∑

i, j,i< j

Oi j (�r · �σ )O†
i j

⎞
⎠

012603-12



NOISY QUANTUM PARAMETER ESTIMATION WITH … PHYSICAL REVIEW A 109, 012603 (2024)

= b − 1

2
Tr

⎛
⎝ ∑

i, j,i< j

Oi jO
†
i j

⎞
⎠ − 1

2
Tr

⎛
⎝ ∑

i, j,i< j

Oi j (�r · �σ )O†
i j

⎞
⎠

= b − Tr

⎛
⎝ ∑

i, j,i< j

O†
i jOi j

[
1

2
(12 + �r · �σ )

]⎞
⎠. (C9)

We can define a two-dimensional Hermitian operator O,
which can be expanded in the Pauli basis,

O ≡
∑

i, j,i< j

O†
i jOi j = c12 + �o · �σ , (C10)

O
[

1
2 (12 + �r · �σ )

]
= (c12 + �o · �σ )

[
1
2 (12 + �r · �σ )

]
= 1

2 [c12 + (�o · �r )12 + (c�r + �o ) · �σ + i(�o × �r ) · �σ ].

(C11)

It is straightforward to see that �o = 0 when probe-state inde-
pendence is required. When general Pauli channels are used,

1
2 c = −n2

y[cos(ξ ) − 1](p + pz )(px − py)

− n2
z [cos(ξ ) − 1](p + py)(px − pz )

− cos(ξ )(p − px )(py + pz )

+ px py + px pz + 2py pz + ppy + ppz, (C12)

and �o = 0, exhibiting the probe-state independence property
of the switch channel.

APPENDIX D: SEVERAL CHANNELS

The general Pauli channel defined in Eq. (9) can be reduced
to the depolarization channel, phase-damping channel, and
phase-flip channel, depending on the value of pi.

1. Depolarization channel

The general Pauli channel reduces to the depolarization
channel D when pI = p and px = py = pz = (1 − p)/3. The
depolarization channel is isotropic and can be described by
the equation

ED(ρ) = pρ + 1 − p

3
(σxρσx + σyρσy + σzρσz ), (D1)

where ρ is the input density matrix; σx, σy, and σz are the Pauli
matrices; and p lies in the interval [ 1

4 , 1] in the depolarization
channel. The depolarization channel can be visualized as a
uniform Bloch ball shrinking process, resulting in a maxi-
mally mixed state when p = 1

4 ,

12 = ρ + σxρσx + σyρσy + σzρσz

2
. (D2)

2. Phase-flip and phase-damping channel

When px = py = 0, the generalized Pauli channel reduces
to the phase-flip channel, as given by

EPF(ρ) = pρ + (1 − p)σzρσz

=
[

ρ11 (2p − 1)ρ12

(2p − 1)ρ21 ρ22

]
. (D3)

The Kraus operators for the phase flip (PF) are KPF
0 = √

p12

and KPF
1 = √

1 − pσz, where 12 is the two-dimensional iden-
tity matrix. The probability of obtaining the ± outcomes in
the switch channel composed of the PF, denoted by P±, can
be expressed as

P± = Tr(ρp±) = 1

2
±

√
p(1 − p)Q(ξ, p, 0, 0, 1 − p)

= 1

2
±

√
p(1 − p)

(
1 − 4p(1 − p) sin2 ξ

2

)
.

(D4)

Furthermore, the Kraus operators for the phase-damping
channel are

KPD
0 =

[
1 0
0

√
1 − γ

]
, KPD

1 =
[

0 0
0

√
γ

]
, (D5)

where γ is the damping parameter. The Kraus operators for
the PF and phase damping (PD) are related by a unitary
transformation given by

[
KPD

0

KPD
1

]
=

⎡
⎢⎣

1+√
1−γ

2
√

p
1−√

1−γ

2
√

1−p
√

γ

2
√

p
−√

γ

2
√

1−p

⎤
⎥⎦

[
KPF

0

KPF
1

]
. (D6)

It can be shown that when
√

1 − γ = 2p − 1, the PD is equiv-
alent to the PF. The minimum value of p corresponds to the
case where the PF completely destroys the coherence of the
quantum state, resulting in vanishing off-diagonal elements in
the density matrix. The maximum value of p is 1, indicating
no noise present in the channel. Thus, the valid range for p is
[ 1

2 , 1].

A

A

B

B
port +

port -

FIG. 7. Schematic diagram illustrating the experimental setup
with Â and B̂ represented as σiUξ and σ jUξ , respectively. Photons
emitted from port + and port − are collected by virtual detectors D+
and D−, respectively.
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APPENDIX E: SINGLE-EXPERIMENT ANALYSIS
AND COMBINATION STRATEGY

We will now derive the explicit expression (24) from a
combination perspective of the single experiment (see Fig. 7).
Denote the states of the single photon emitted from port + and
port − by |�1〉 and |�2〉, respectively. When the operators Â
and B̂ are exchanged with each other, |�2〉 becomes −|�2〉
while leaving |�1〉 unchanged.

Denote the ratios of the first and second beam splitters by
D1 and D2, respectively. The action of the beam splitter on the

input state |ψin〉 is given by

|ψin〉 beam splitter−−−−−−→
√
Di|ψt 〉 + i

√
1 − Di|ψr〉. (E1)

The expressions for |�1〉 and |�2〉 are then given by

|�1〉 = i[
√
D1(1 − D2)B̂Â +

√
D2(1 − D1)ÂB̂]|ψin〉,

|�2〉 = [
√
D1D2B̂Â −

√
(1 − D1)(1 − D2)ÂB̂]|ψin〉. (E2)

Using these expressions, we can calculate the inner products
as follows:

〈�1|�1〉 = D1(1 − D2) + D2(1 − D1) +
√
D1D2(1 − D1)(1 − D2)〈ψin|(Â†B̂†ÂB̂ + B̂†Â†B̂Â)|ψin〉,

〈�2|�2〉 = D1D2 + (1 − D1)(1 − D2) −
√
D1D2(1 − D1)(1 − D2)〈ψin|(Â†B̂†ÂB̂ + B̂†Â†B̂Â)|ψin〉. (E3)

We conducted an experiment with three categories of Â and B̂ combinations and observed that for all situations, the matrix
Ô = Â†B̂†ÂB̂ + B̂†Â†B̂Â is diagonal with identical elements.

(1) When Â = B̂ = σiUξ , where σi ∈ 12, σx, σy, σz, one can obtain Ô = 212.
(2) When Â = Uξ and B̂ = σiUξ , where σi ∈ σx, σy, σz,

Ô = [
2n2

i (1 − cos ξ ) + 2 cos ξ
]
12. (E4)

(3) When Â = σiUξ and B̂ = σ jUξ , where σi, σ j ∈ σx, σy, σz and i �= j,

Ô = [
2n2

k (cos ξ − 1) − 2 cos ξ
]
12. (E5)

If we choose a general Pauli channel (9), we can simulate the probability distribution of a multipath interferometer with that
of a two-path interferometer, due to the incoherent property of quantum channels. The probability distributions P+ and P− are
given by Eq. (E6), where

P+ = D1(1 − D2) + D2(1 − D1) + 2
√
D1D2(1 − D1)(1 − D2)Q(nx, ny, nz, pI , px, py, pz ),

P− = D1D2 + (1 − D1)(1 − D2) − 2
√
D1D2(1 − D1)(1 − D2)Q(nx, ny, nz, pI , px, py, pz ),

(E6)

Q(nx, ny, nz, pI , px, py, pz ) = 2
[
n2

y (pI + pz )(px − py) + n2
z (pI + py)(px − pz ) + (pI − px )(py + pz )

]
cos ξ

− 2
(
n2

x py pz + n2
y px pz + n2

z px py
) + 2pI

(
n2

x px + n2
y py + n2

z pz
) + p2

I + p2
x + p2

y + p2
z . (E7)

If D2 is exactly 0.5 and we replace D1 with p in Eq. (E6), the
resulting expression will be identical to Eq. (24). This obser-
vation confirms the validity and soundness of our combination
strategy.

APPENDIX F: UNITARY TRANSFORMATION
IMPLEMENTATION

The expression for an SU(2) operator, denoted by U2,

U2 = exp

(
−i

ξ

2
�n · �σ

)
, (F1)

can be written as using the Z-Y decomposition as

U2 = R̂y(α)R̂z(β )R̂y(γ )

= exp

(−iασy

2

)
exp

(−iβσz

2

)
exp

(−iγ σy

2

)

= exp

(
iπ

2

)
Q̂(τ3)Ĥ (τ2)Q̂(τ1), (F2)

where R̂i( j) represents a rotation around the i axis by an angle
j, and α, β, and γ are the Euler angles. The parameters τ1, τ2,

and τ3 are given by (see Fig. 8)

τ1 = −γ

2
+ π

4
,

τ2 = α + β − γ

4
+ π

4
,

τ3 = α

2
+ π

4
. (F3)

By equating Eqs. (F1) and (F2), we obtain the following set
of equations that establish the relationship between the SU(2)

HWP QWPQWP

τ2τ1 τ3

FIG. 8. Arbitrary SU(2) transformation implementation accord-
ing to Q̂(τ3)Ĥ (τ2)Q̂(τ1) cascaded waveplates. Here τ1, τ2, and τ3

represent the angles between the fast axis of the waveplate and the
horizontal polarization direction.
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TABLE I. Implementation of Pauli operators according to Q̂(τ1),
Ĥ (τ2), and Q̂(τ3).

SU(2) operator τ1 τ2 τ3

1 0 0 0
iσx 0 45◦ 0
iσy 90◦ 45◦ 0
iσz 90◦ 0 0

parameters and the waveplate set Q̂(τ3)Ĥ (τ2)Q̂(τ1):

cos
ξ

2
= cos(2τ2 − τ1 − τ3) cos(τ1 − τ3),

nx sin
ξ

2
= − sin(2τ2 − τ1 − τ3) cos(τ1 + τ3),

ny sin
ξ

2
= − cos(2τ2 − τ1 − τ3) sin(τ1 − τ3),

nz sin
ξ

2
= sin(2τ2 − τ1 − τ3) sin(τ1 + τ3). (F4)

The angles of the waveplate set to implement Pauli operators
and SU(2) transformation exp(−iξ n̂ · σ̂ /2) can be solved us-
ing Eqs. (F4). We list the solutions in Tables I and II.

APPENDIX G: EXPERIMENTAL DETAILS

The piezoelectric linear stage (Newport AG-LS25-27) with
a minimum incremental motion of 0.2 µm is used to search
for the optimal interference point. In Fig. 9(a) the maximal
interference visibility is 95.00% when the piezoelectric lin-
ear stage is at 6.9066 mm. The phase of the interferometer
is controlled by a piezoelectric transducer (PZT) (Thorlabs
PA4FKW). We acquire the interference fringe by scanning
the voltage exerted on the PZT with a step of 5 V as shown
in Fig. 9(b). We characterize the simulated general Pauli
channels by quantum process tomography. The results of the
bit-flip channel x, bit-phase-flip channel y, phase-flip channel
z, and depolarization channel d are shown in Fig. 10(a). The
average quantum channel fidelity exceeds 95%. The visibility
of the Mach-Zehnder interferometer for six polarization states
is shown in Fig. 10(b). When the input state is |H〉, we obtain
a lowest visibility around 91.32%.

TABLE II. Implementation of the SU(2) transformation
exp(−iξ n̂ · σ̂ /2) using the waveplate operators Q̂(τ1), Ĥ (τ2), and
Q̂(τ3), where �n = (1, 0, 0).

ξ τ1 τ2 τ3

0◦ 90◦ −90◦ 90◦

22.5◦ 90◦ −84.375◦ 90◦

45◦ 90◦ −78.75◦ 90◦

67.5◦ 90◦ −73.125◦ 90◦

90◦ 90◦ −67.5◦ 90◦

112.5◦ 90◦ −61.875◦ 90◦

135◦ 90◦ −56.25◦ 90◦

157.5◦ 90◦ −50.625◦ 90◦

180◦ 90◦ −45◦ 90◦
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FIG. 9. Degree of first-order coherence of the heralded single-
photon source and the interference fringe of the Mach-Zehnder
interferometer. (a) Signal photons measured in port + with a min-
imum incremental motion of 0.2 µm of the piezoelectric linear
stage. (b) Interference fringe at the optimal interference point of
6.9066 mm.

1. Quantum process tomography

A quantum channel can be express as

E (ρ) =
∑

i

EiρE†
i , (G1)

where {Ei} is the Kraus operator and satisfies
∑

i E†
i Ei = 12.

In the experiment, we aim to characterize an unknown quan-
tum channel using a special group of operators Ẽm to express
the quantum channel as follows:

E (ρ) =
∑

i

ẼmρẼ†
n χmn. (G2)

Quantum process tomography is used to determine the χ

matrix by measuring the output states of the quantum channel.
For a qubit system, the operators Ẽm are chosen as

Ẽ0 = 12, Ẽ1 = σx,

Ẽ2 = iσy, Ẽ3 = σz. (G3)
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FIG. 10. Channel fidelity for different kinds of quantum chan-
nel and visibility of the interferometer for different probe states.
(a) Channel fidelity for four simulated quantum channels at different
noise levels: x, bit-flip channel; y, bit-phase-flip channel; z, phase-flip
channel; and d , depolarization channel. (b) Visibility of the interfer-
ometer for six polarization states in 10 s. Here |+〉 = 1/

√
2(|H〉 +

|V 〉), |−〉 = 1/
√

2(|H〉 − |V 〉), |R〉 = 1/
√

2(|H〉 + i|V 〉), and |L〉 =
1/

√
2(|H〉 − i|V 〉).

Then we need to determine ρ ′
1 = E (|0〉〈0|), ρ ′

4 = E (|1〉〈1|),
E (|+〉〈+|), and E (|R〉〈R|) according to quantum state tomog-
raphy. The χ matrix can be determined as follows:

χ = 1

2

(
12 σx

σx −12

)(
ρ ′

1 ρ ′
2

ρ ′
3 ρ ′

4

)(
12 σx

σx −12

)
, (G4)

ρ ′
2 = E (|+〉〈+|) − iE (|R〉〈R|)

− (1 − i)(E (|0〉〈0|) + E (|1〉〈1|))/2,

ρ ′
3 = E (|+〉〈+|) + iE (|R〉〈R|)

− (1 + i)(E (|0〉〈0|) + E (|1〉〈1|))/2. (G5)

The real and imaginary parts of the χ matrix for the phase-flip
channel at different values of p are illustrated in Figs. 11 and
12, respectively.

2. Estimator

We observe that the probability of projecting onto |±〉c =
|0〉c + |1〉c has the form

P± = f±(p) cos ξ + g±(p), (G6)

where f and g are functions that depend on p. Taking into
account the effects of detector efficiency, nonunit visibility,
and imperfect beam splitters, it is expected that f and g may
deviate from the true values. To eliminate systematic errors in
our experimental setup, we choose �n = (1, 0, 0) and perform
the experiment with different ξ values. By fitting the curve of
P± with respect to p, we can obtain the calibrated functions
f cal
± and gcal

± , which are given by

Pcal
± = f cal

± (p) cos(ξ − ξe) + gcal
± (p), (G7)

where ξe represents the system error. Denote the detection ef-
ficiencies by η+ and η− for detectors D+ and D−, respectively.
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FIG. 11. Quantum process tomography result for the quantum-flip channel under different noise levels p: (a) real part of the χ matrix and
(b) imaginary part of the χ matrix.
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FIG. 12. Quantum process tomography result for the quantum depolarization channel under different noise levels p: (a) imaginary part of
the χ matrix and (b) imaginary part of the χ matrix.

We can obtain the renormalized probabilities as

Pre
+ = η+Pcal

+
η+Pcal+ + η−Pcal−

, Pre
− = η+Pcal

−
η+Pcal+ + η−Pcal−

. (G8)

We can determine the functions f cal
± (p), gcal

± (p), and ξe by
fitting the experimental data. For instance, for the phase-flip
switched channel with �n = (1, 0, 0), the probabilities P± are
given by

P± = ±2
√

p(1 − p)p(1 − p) cos ξ

±
√

p(1 − p)(2p2 − 2p + 1) + 1

2
, (G9)

where

f± = ±2
√

p(1 − p)p(1 − p),

g± = ±
√

p(1 − p)(2p2 − 2p + 1) + 1

2
. (G10)

To calibrate our setup, we introduce the parameters α and β,

f cal
± = α f±, gcal

± = g± ± β. (G11)

So the probabilities Pcal
± for the phase-flip switched channel

become

Pcal
± = α f± cos(ξ + ξe) + g± ± β. (G12)

We can use the least-squares method to fit the experimental
data and obtain the values of α, β, and ξe as

arg min
α,β,ξe

L =
∑
p,ξ

(Pexpt
± − Pre

± )2, (G13)

where Pexpt
± is the experimental probability calculated from

photon counts directly. For the phase-flip switched channel,
we have α = 0.9427, β = −0.024 07, and ξe = −0.021 55.
For the depolarization switched channel, we have α = 0.9436,
β = −0.021 11, and ξe = −0.019 37. For the arbitrary Pauli
channel N1, we have α = 0.9758, β = −0.014 52, and
ξe = −0.023 98.

We consider the scenario where we send Nh heralded
photon pairs into the interferometer. Out of these, some are
detected by D+, some are detected by D−, and some are
not detected by any detector. We can denote the number of
heralded photon pairs detected by D+ by Nc

+, the number of
heralded photon pairs detected by D− by Nc

−, and the number
of loss photons due to transmit loss, coupling efficiency, and
detector efficiency by Nh − Nc

+ − Nc
−.

Using maximum-likelihood estimation (MLE), we can obtain

L(ξ ) = (η+Pcal
+ )Nc

+ (η−Pcal
− )Nc

− (1 − η+Pcal
+ − η−Pcal

− )Nh−Nc
+−Nc

− ,

∂lnL(ξ )

∂ξ
= Nc

+
∂ξη+Pcal

+
η+Pcal+

+ Nc
−

∂ξη−Pcal
−

η−Pcal−
+ (Nh − Nc

+ − Nc
−)

∂ξ (1 − η+Pcal
+ − η−Pcal

− )

1 − η+Pcal+ − η−Pcal−
= 0. (G14)

Taking into account the fact that Pcal
+ + Pcal

− = 0, we can simplify Eq. (G15) as

Nc
+

Pcal+
− Nc

−
Pcal−

+ (Nh − Nc
+ − Nc

−)
η− − η+

1 − η+Pcal+ − η−Pcal−
= 0. (G15)

012603-17



MIN AN et al. PHYSICAL REVIEW A 109, 012603 (2024)

In order to obtain the MLE estimator, we need to determine
the values of η+ and η− first. Based on the given equations,

Ni = ηiPiNh,

Nc
i = ηhηiPiNh,

(G16)

where Ni represents the total counts of channel i (i = +,−, h),
Pi is the theoretical probability of detecting a single photon in
channel i, and ηh is the efficiency of the heralded channel.
Here we assume that the events where D+ or D− detects a
photon while Dh does not detect a photon are omitted. We can
immediately deduce

ηiPi

Ph
= Nc

i

Nh
. (G17)

By adopting the postselection approach, where Ph = 1 and
ηh = 1 always hold, we can simplify the equation as

ηi = Nc
i

NhPi
. (G18)

The detector efficiencies η+ and η− can be measured
in a preexperiment where one path of the interferometer is
blocked. By removing all waveplates in the interferometer,
we can obtain the coincidence counts of ports + and −,
respectively. Using Eq. (G18) with P± = 1

2 , we can calcu-
late η+ = 7.95% ± 0.18% and η− = 7.49% ± 0.17%. The
heralding efficiency of our setup can be calculated as (Nc

+ +
Nc

−)/
√

Nh(N+ + N−) = 14.67% ± 0.13%.

The calibrated Fisher information is

F (ξ ) = (η+∂ξ Pcal
+ )2

η+Pcal+
+ (η−∂ξ Pcal

− )2

η−Pcal−
+ (η+∂ξ Pcal

+ + η−∂ξ Pcal
− )2

1 − η+Pcal+ − η−Pcal−

= (∂ξ Pcal
+ )2

(
η+
Pcal+

+ η−
Pcal−

+ (η+ − η−)2

1 − η+Pcal+ − η−Pcal−

)

= (∂ξ Pcal
+ )2

η+

(
1

Pcal+
+ η−/η+

Pcal−
+ (1 − η−/η+)2

1/η+ − Pcal+ − η−/η+Pcal−

)
.

The Cramér-Rao lower bound on the variance of the estimator
ξ̂ is given by

var(ξ̂ ) � 1

NhF (ξ )
. (G19)

Equality holds when using MLE for large Nh asymptotically.
In our experiment, the total resource usage is determined

by the coincidence counts Nc
+ + Nc

−, which are considered
as the consumed resource due to the postselection approach.
Since only the relative efficiency of detectors D+ and D−
is important, we can set ηr

+ = 1 and consequently ηr
− =

η−/η+ = 94.21%. Taking into account the detector efficiency,
the effective number of photons used in the experiment is
given by Nc

+ + Nc
−/ηr

−. The Fisher information extracted from
the experiment is expressed as

F (ξ ) = ηr
−

(ηr−Nc+ + Nc−)var(ξ̂ )
, (G20)

where var(ξ̂ ) is the variance of the estimator ξ̂ .

3. Multiple photon pairs in spontaneous parametric
down-conversion

We utilized a laser diode centered at 405 nm to pump
a 3-mm PPKTP crystal, generating correlated photon pairs
through type-II spontaneous parametric down-conversion.
However, in this process, there may also be undesired emis-
sions of multiple photon pairs, which need to be taken into
account for accurate resource calculation in the context of
quantum metrology. In particular, we focus on the probability
of emitting more than one pair of photons, denoted by N (m).
This probability can be expressed as

P(m) = N (m)

N
= Nc

i jh

ηiη jPiPjNh

≈ 0.083 73% ± 0.015 10%. (G21)

When the total coincidence count is set to 20 000, the number
of events with multiple photons is estimated to be around 17,
which is considered negligible in the experiment.
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through quantum-controlled noise, Phys. Rev. A 99, 062317
(2019).

[21] G. Rubino, L. A. Rozema, D. Ebler, H. Kristjánsson, S. Salek,
P. A. Guérin, A. A. Abbott, C. Branciard, Ĉ. Brukner, G.
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