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Controlling the qubit-qubit coupling in the superconducting circuit
with double-resonator couplers
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We propose a theoretical scheme of using two fixed-frequency resonator couplers to tune the interaction
between two Xmon qubits. The indirect interaction between two qubits induced by two resonators can cancel
each other, so direct qubit-qubit coupling is not essential for the switching off. So, we can suppress the static
ZZ coupling with the weak direct qubit-qubit coupling and even eliminate the static ZZ coupling through the
destructive interferences of the double-path couplers. The cross-Kerr resonance can induce additional poles for
the static ZZ coupling which should be kept away during the two-qubit gates. The double-resonator couplers
scheme could unfreeze some restrictions during the design of superconducting quantum chips and mitigate the
static ZZ coupling, which might supply a promising platform for future superconducting quantum chips.
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I. INTRODUCTION

In the past several years, superconducting quantum com-
puting has developed quickly. IBM announced a 433-qubit
superconducting quantum chip at the end of 2022, and plans
to launch a quantum chip with more than 1000 qubits in 2023.
The coherence time of superconducting qubits fabricated with
new superconducting materials is greatly enhanced [1–5], and
the introduction of a tunable coupler greatly enhances the
fidelities of two-qubit gates to above 99.5% [6–12]. Quantum
supremacy of random circuit sampling and other multibody
quantum simulation experiments has been conducted on the
superconducting quantum chip with more than 50 qubits
[4,13–15]. But the fidelities of the two-qubit gate are still not
high enough for the universal quantum computer, and state
leakages and residual coupling still need to be suppressed in
the superconducting quantum chip.

The tunable coupler can switch off the interactions be-
tween adjacent qubits, which can isolate qubits from the
surrounding environments for local quantum operations. In
the single-coupler circuit, the induced indirect qubit-qubit
coupling (dispersive type interaction) cannot be zero for finite
frequency detuning between the qubit and coupler, so the
direct qubit-qubit interaction is required for switching off. If
the direct qubit-qubit coupling is very weak, the switching
off frequency should be very high, and this leaves narrow
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available frequency ranges for readout resonators (or qubits).
For the case of strong direct qubit-qubit coupling, the state
leakages and crosstalks should be another may be another
challenge [6–8]. So, there are many limitations during the
design of a single-coupler superconducting quantum chip,
and the residual coupling and state leakages are still serious
problems [16].

In this article, we propose a theoretical scheme to dy-
namically tune the qubit-qubit coupling with double-resonator
couplers in the superconducting quantum chip. As theoreti-
cally and experimentally demonstrated, the superconducting
resonator can function as a coupler [10,17–21]. In particular,
if the two resonator couplers take the respective maximal
and minimal frequencies, the induced indirect qubit-qubit
couplings by two resonators are in opposite signs and can
cancel each other. So, direct qubit-qubit coupling is not in-
dispensable for switching off in the double-resonator coupler
circuit, which can hopefully unfreeze some restrictions on
the superconducting quantum chip, such as the qubit-qubit
coupling strength, maximal frequency of couplers, and so on.
The switching off positions can be very close to two-qubit
gate regimes in the double-resonator couplers circuit, thus the
maximal frequencies of couplers can be smaller. So, available
frequency ranges for readout resonators or qubits can be wider
in a double-path coupler circuit, and this should relieve the
frequency crowding on the superconducting quantum chip.

We also study the effects of a superconducting artificial
atom’s highly excited states on qubits’ energy levels and
switching off positions. The elimination of static ZZ coupling
through the destructive interferences of double-path couplers
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FIG. 1. (a) Schematic diagram. The double-resonator coupler su-
perconducting circuit consists of two Xmon qubits coupled to two
common fixed-frequency resonators. (b) The equivalent circuit. The
ωη is the frequency of a qubit or resonator, with η = a, b, x, y. The
inductive-type coupling is neglected, and there are only capacitive-
type interactions in the superconducting circuit. Cη is the capacitance
of a qubit or resonator, and the two-body relative capacitance is Cηη′ ,
with Cηη′ = Cη′η and η �= η′. La and Lb are the respective inductances
of resonators a and b, while �e,x and �e,y are the external magnetic
fluxes applying on the superconducting loops of qubits x and y,
respectively.

is also explored [12,22–24]. We find that the cross-Kerr reso-
nances through the virtual photon exchange could induce new
poles of static ZZ coupling, which should be kept away from
during the two-qubit gates.

The paper is organized as follows: In Sec. II, we first
perform numerical calculation of the circuit energy levels. In
Sec. III, we then discuss the switching off for the qubit-qubit
coupling. In Sec. IV, we further study the suppression and
cancellation of static ZZ coupling. Finally, we summarize the
results in Sec. V.

II. CIRCUIT ENERGY LEVELS

In this section, we numerically calculate the energy levels
of qubits for the superconducting circuit in Fig. 1 with the
QUTIP software [16,25–27]. The superconducting circuit con-
sists of two Xmon qubits coupled to two common resonator
couplers. The two-body interactions are all assumed as capac-
itive type, and the direct qubit-qubit and resonator-resonator
interactions are very weak. The two-body interactions in the
superconducting circuit are all assumed as capacitive type.
Because of the small anharmonicities, the highly excited states
of superconducting artificial atoms should also make contri-
butions to the energy levels of qubits and couplers. Truncated
to the second excited states of atoms and third excited states
of resonators, the curved surfaces of qubits and resonators’
energy levels are plotted in Appendix A (see Fig. 10).

For simplicity, we focus on the special case that the res-
onant frequency ωa of resonator a, resonant frequency ωb

of resonator b, and transition frequency ωx of qubit x are
fixed, and only the transition frequency ωy for qubit y is tuned
by the external magnetic flux �e,y. By setting ωx/(2π ) =
4.56 GHz, the energy-level curves of qubits and resonators’
single- and double-excited states are plotted in Figs. 2(a)
and 2(b), respectively. During the numerical calculations with
QUTIP software, the transition frequencies of qubits x and y are
respectively chosen as ωx/(2π ) = 4.56 GHz and ωy/(2π ) =
5.12 GHz, and the resonant frequencies of resonator a and res-
onator b are ωa/(2π ) = 4.10 GHz and ωb/(2π ) = 5.20 GHz,
respectively. The coupling strengths between resonator

FIG. 2. The energy-level diagram. The energy-level curves for
(a) single- and (b) double-excited states, where we set the tran-
sition frequency of qubit x as ωx/2π = 4.56 GHz. The maximal
frequencies of qubits x and y are respectively ω(max)

x /2π = 4.56 GHz
and ω(max)

y /2π = 5.12 GHz, and their corresponding anharmonicities
are αx/2π = −175 MHz and αy/2π = −195 MHz. The resonant
frequencies of resonators a and b are ωa/2π = 4.10 GHz and
ωb/2π = 5.20 GHz, respectively. The direct qubit-qubit and direct
resonator-resonator coupling strengths are gxy/2π = 1.0 MHz and
gab/2π = 0.1 MHz, respectively. The coupling strengths of qubits
with resonator a are gax/2π = gay/2π = 32 MHz, and gbx/2π =
gby/2π = 30 MHz label the coupling strengths of qubits with res-
onator b.

a (or b) and two qubits are gax/(2π ) = gay/(2π ) = 32 MHz
[or gbx/(2π ) = gby/(2π ) = 30 MHz], so the qubits and cou-
plers are in the dispersive coupling regimes.

The ket vector of the four-body quantum state is defined
as |mamxmymb〉, and the values of ma, mx, my, and mb respec-
tively describe quantum numbers of resonator a, qubit x, qubit
y, and resonator b. Because of the avoided crossing effect,
each curve in Fig. 2 cannot describe the whole energy level
of a certain quantum state, so here we mark each curve with
the corresponding state at the zero magnetic flux. In Fig. 2(a),
the transition frequency of qubit y decreases under magnetic
field, and it becomes anticrossing with qubit x at the frequency
regimes close to 4.56 GHz and with resonator a at the regimes
close to 4.10 GHz. For the double-excited states, the energy
levels and avoided crossing gaps can be seen in Fig. 2(b). The
energy-level structure in Fig. 2 is important for analyzing the
switching off and static ZZ coupling on the superconducting
quantum chip, as shown in the following sections.

III. SWITCHING OFF

A. Circuit quantization

Figure 1(a) describes the superconducting circuit consist-
ing of two Xmon qubits coupling to two common fixed-
frequency resonators, and the frequencies of the qubits are
tunable. Besides the direct interactions, the qubit-resonator
couplings can also induce indirect qubit-qubit and resonator-
resonator interactions. The resonant frequencies of resonators
a and b are respectively ωa and ωb, while ωx and ωy label
the transition frequencies of qubits x and y, respectively. In
the case of zero magnetic fluxes, the frequencies of qubits
and resonators satisfy ωa < ωx < ωy < ωb. We expect a large
distance between two resonators and neglect their inductive
coupling, then the interactions are all regarded as capacitive
type as shown in Fig. 1(b). The capacitances of resonators
should be distributed by type and proportional to their lengths,
but in the article we simply label the total capacitances of
resonators a and b as Ca and Cb, respectively.
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Inspired by previous work [17,20], the kinetic energy of
a superconducting circuit with double-resonator couplers can
be written as T = ∑

η=a,b,x,y Cηφ̇
2
η/2 + ∑

η,η′=a,b,x,y
η �=η′

Cηη′ (φ̇η −
φ̇η′ )2/4, where Cη is the capacitance of the qubit or resonator,
and Cηη′ (Cηη′ = Cη′η) is the relative capacitance between two
arbitrary devices among qubits and resonators, with η, η′ =
a, b, x, y and η �= η′. φa and φb are the respective magnetic
fluxes of circuit nodes for resonators a and b, while φx and
φy are the respective node fluxes of qubits x and y, and they
can be tuned by the external magnetic fluxes �e,x and �e,y

[28–30]. If we label La and Lb as the respective inductances
of resonators a and b, then the potential energy of the super-
conducting circuit can be written as U = ∑

λ=a,b φ2
λ/(2Lλ) +∑

β=x,y EJβ
[1 − cos(2πφβ/�0)], where the subscript λ = a, b

label the respective variables of resonators a and b, while
β = x, y describe the variables of qubit x and qubit y, respec-
tively. EJβ

= Icβ�0/(2π ) is the Josephson energy of qubit β,
where Icβ is the corresponding critical current, and �0 = h/2e
is the flux quantum with the planck constant h and an electron
charge e.

With the kinetic energy T and potential energy U ,
the Lagrangian of the superconducting circuit in Fig. 1
can be formally written as L = T − U . If we define the
generalized momentum operators as qη = ∂L/∂φ̇η = Cφ̇η

(with η = a, b, x, y), under the conditions Cab � Cxy �
Cax,Cay,Cbx,Cby � Cx,Cy � Ca,Cb, we obtain the expres-
sion of Hamiltonian (see Appendix B)

H = 4
∑
λ=a,b

[
ECλ

(nλ)2 + φ2
λ

8Lλ

]

+
∑
β=x,y

[
ECβ

(nβ )2 − Ejβ cos

(
2π

�0
φβ

)]

+ 8
∑
λ=a,b
β=x,y

Cλβ√
CλCβ

√
ECλ

ECβ
(nλnβ )

+ 8

(
1 + CaxCbx

CxCab
+ CayCby

CyCab

)
Cab√
CaCb

√
ECa ECb (nanb)

+ 8

(
1 + CaxCay

CaCxy
+ CbxCby

CbCxy

)
Cxy√
CxCy

√
ECx ECy (nxny),

(1)

where nη = qη/2e is the Cooper-pair number operator of a
qubit or resonator, and the corresponding charging energy is
ECη

= e2/2Cη. The transition frequencies of resonators and
qubits are respectively defined as ωλ = 1/

√
CλLλ and ωβ =

(
√

8EJβ
ECβ

− ECβ
)/h̄, while αβ = −ECβ

/h̄ labels the anhar-
monicity of qubit β. As shown in Appendix B, the two-body
coupling strengths among qubits and resonators can be de-
fined as

gλβ = 1

2

Cλβ√
CλCβ

√
ωλωβ, (2)

gab = 1

2

(
1 + CaxCbx

CxCab
+ CayCby

CyCab

)
Cab√
CaCb

√
ωaωb, (3)

gxy = 1

2

(
1 + CaxCay

CaCxy
+ CbxCby

CbCxy

)
Cxy√
CxCy

√
ωxωy. (4)

The two-body interactions are mainly decided by their rela-
tive capacitances Cηη′ , with η, η′ = a, b, x, y and η �= η′. The
qubit-resonator coupling strength gλβ in Eq. (2) could in-
duce an indirect interaction between two qubits, so Eq. (4)
cannot describe the complete interaction between two qubits.
In the single-coupler superconducting quantum chip, there
are many restrictions on the capacitances and frequencies of
qubits (or couplers), but these limitations might be unfrozen in
the double-coupler circuit, as will be discussed in the follow
sections.

B. Effective coupling

To get effective qubit-qubit coupling, we try to decou-
ple the qubit-resonator interactions in this section. For the
Xmon qubit, the Josephson energy is much larger than
its charging energy, EJβ

/ECβ
� 1, and then the φβ should

be very small and we can use the approximate equa-
tion cos(φβ ) = 1 − φ2

β/2 + φ4
β/24 − · · · . If we introduce the

creation and annihilation operators by the definitions φβ =
4
√

2EC/EJβ
(a†

β + aβ ) and nβ = (i/2) 4
√

2EC/EJβ
(a†

β − aβ ), the
second-quantization Hamiltonian can be obtained as H =∑

λ=a,b Hλ + ∑
β=x,y Hβ + ∑

λ=a,b
β=x,y

Hλβ + Hab + Hxy, with

Hλ/h̄ = ωλ

2
c†
λcλ, (5)

Hβ/h̄ = ωβ

2
a†

βaβ + αβ

2
a†

βa†
βaβaβ, (6)

Hλβ/h̄ = gλβ (c†
λaβ + cλa†

β − c†
λa†

β − cλaβ ), (7)

Hab/h̄ = gab(c†
acb + cac†

b − c†
ac†

b − cacb), (8)

Hxy/h̄ = gxy(a†
xay + axa†

y − a†
xa†

y − axay). (9)

We define αβ = −ECβ
/h̄ to describe the anharmonicity of

qubit β, and the nonlinear term (αβ/2)a†
βa†

βaβaβ reflects
the effects of highly excited states of the superconducting
artificial atom. We define �λβ = ωβ − ωλ to describe the
frequency detuning between qubit β and resonator λ, while
�λβ = ωβ + ωλ is the frequency summation of qubit β and
resonator λ. �xy = ωy − ωx describes the frequency detuning
between two qubits, and �ab = ωb − ωa labels the frequency
detuning between two resonators.

Separating the Hamiltonian as H = H0 + Hint , the free
term is defined as H0 = ∑

λ=a,b Hλ + ∑
β=x,y Hβ , while the

interaction term is Hint = Hab + Hxy + ∑
λ=a,b
β=x,y

Hλβ . In the

qubit-resonator dispersive coupling regimes gλβ/|�λβ | � 1
and gλβ/�λβ � 1, we define S = ∑

λ=a,b
β=x,y

[(gλβ/�λβ )(c†
λaβ −

cλa†
β ) − (gλβ/�λβ )(c†

λa†
β − cλaβ )]. Under the Schrieffer-

Wolff transformation, if we choose H (d ) = exp (S)H exp (−S)
and Hint + [S, H0] = 0, then the decoupled Hamiltonian
becomes H (d ) = H0 − (1/2)[Hint, S] + O(H3

int ) (see
Appendix C), that is,

H (d )

h̄
=

∑
λ=a,b

ω
(d )
λ c†

λcλ +
∑
β=x,y

(
ω

(d )
β a†

βaβ + α̃β

2
a†

βa†
βaβaβ

)

+ g(d )
xy (a†

xay + a†
yax ) + g(d )

ab (c†
acb + c†

bca). (10)
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Since gab, gxy � gλβ , the contributions of Hab and Hxy have
been neglected. Following the method of previous work [7],
we assumed α̃β ≈ αβ during the derivations of Eq. (10), thus
the contributions of superconducting artificial atoms’ highly
excited states are neglected.

The decoupled frequencies of qubits and resonators can
be respectively defined as ω

(d )
β = ωβ + ∑

λ=a,b(g2
λβ/�λβ −

g2
λβ/�λβ ) and ω

(d )
λ = ωλ − ∑

β=x,y(g2
λβ/�λβ − g2

λx/�λβ ) (as
shown in Appendix C), and the decoupled qubit-qubit cou-
pling strength can be obtained as

g(d )
xy = 1

2

∑
λ=a,b
β=x,y

(
gλxgλy

�λβ

− gλxgλy

�λβ

)
+ gxy. (11)

Since �λβ and �λβ depend on the frequency of
qubit β, the induced qubit-qubit coupling g(in)

λ,xy =
(1/2)

∑
β=x,y

(gλxgλy/�λβ − gλxgλy/�λβ ) can be tuned by

the external magnetic fluxes �e,x and �e,y. To switch off
the qubit-qubit coupling [g(d )

xy /(2π ) = 0 Hz], we should find
parameters to satisfy −g(in)

xy = gxy.

From the expression of g(in)
λ,xy, both resonators make contri-

butions to the effective qubit-qubit coupling, and their contri-
butions might cancel each other out (g(in)

a,xy + g(in)
b,xy = 0) if the

qubit frequency of qubits satisfies certain conditions. Thus,
the direct qubit-qubit coupling might be not be necessary for
the switching off in the double-resonator couplers circuit. The
qubits could also induce indirect interactions between the two
resonators, and the decoupled resonator-resonator coupling
strength can be defined as g(d )

ab = (1/2)
∑

λ=a,b
β=x,y

(gaβgbβ/�λβ −
gaβgbβ/�λβ ) + gab (see Appendix C). Because of the large
frequency detuning between two resonators (|�ab| � g(d )

ab ),
the effective resonator-resonator interaction has little effect on
the energy levels of qubits and resonators.

With the parameters in Fig. 2, we can get gby/ min (|�by|)
∼ 1/3 and gax/ min (|�ax|) ∼ 1/15 in the idling states of
qubits (without external magnetic field). This means that the
qubits and resonators are in the dispersive or weak-dispersive
coupling regimes, thus the perturbation method can be used
to calculate the effective qubit-qubit coupling. If we choose
ωa < ωx < ωy < ωb, the signs of �aβ and �bβ are opposite.
As indicated by g(in)

λ,xy, resonator b will induce negative indi-
rect qubit-qubit coupling, and the contribution of resonator
a is positive. With Eq. (11), the curved surfaces of g(d )

xy
are plotted in Figs. 3(a) and 3(c), and the corresponding de-
coupled frequencies of qubits are shown in Figs. 3(b) and
3(d). The curved surface of g(d )

xy has many crossing points
with the zero-value plane [g(d )

xy /(2π ) = 0 Hz] in Fig. 3(a)
[gxy/(2π ) = 3 MHz], which correspond to switching off posi-
tions for the qubit-qubit coupling. The multiple switching off
points can be used to optimize the quantum operation param-
eters and reduce the effects of adjoint qubits. For the case of
nonzero direct qubit-qubit coupling (gxy �= 0), the distribution
of crossing points forms an approximately elliptical curve in
the φx-φy plane as shown in Fig. 3(a), and this means that the
contribution of resonator b to induced qubit-qubit coupling (in
amplitudes) is larger than the contribution of resonator a.

In the case of gxy/(2π ) = 0 Hz, the effective qubit-qubit
can also be zero if the indirect qubit-qubit couplings induced

FIG. 3. The decoupled qubit-qubit coupling strengths. The
curved surfaces of g(d )

xy are plotted in (a) gxy/2π = 3 MHz and
(c) gxy/2π = 0 Hz, while (b) and (d) describe the corresponding
decoupled frequencies of qubits along the diagonal line direction in
the φx-φy plane. The other parameters are the same as in Fig. 2.

by resonators a and b are the same in amplitudes but op-
posite in signs (g(in)

a,xy = −g(in)
b,xy). As shown in Fig. 3(c), the

curved surface of g(d )
xy can also cross with the zero-value plane

[g(d )
xy /(2π ) = 0 Hz] in the case of gxy/(2π ) = 0 Hz, and this

means that the switching off can be realized without the di-
rect qubit-qubit interaction in the double-resonator couplers
circuit. The distribution of switching off points approximately
forms a circle in the φx-φy plane in Fig. 3(c), which indicates
the approximate equal contributions (in amplitudes) of two
resonators to the effective qubit-qubit couplings. The decou-
pled frequencies of qubits are plotted in Fig. 3(b) [gxy/(2π ) =
3 MHz] and Fig. 3(d) [gxy/(2π ) = 0 Hz], and the effects of
direct qubit-qubit coupling to the transition frequencies of
qubits seem not very large.

The switching off positions are not totally decided by the
direct qubit-qubit coupling in the double-resonator coupler
circuit, thus we can take arbitrary small or even zero direct
qubit-qubit coupling strength in principle, which might be
helpful to suppress the state leakages and crosstalks on the
superconducting quantum chips. And the restrictions on the
direct qubit-qubit coupling strength and coupler’s frequency
can be unfreezed on the double-resonator couplers super-
conducting quantum chip. If we choose the switching off
positions close to two-qubit gate regimes, then the maximal
frequencies of couplers can be smaller, and this might create
wider available frequency ranges for the readout resonators
and relieve the frequency crowding on the superconducting
quantum chip.

C. Highly excited states corrections

In the current theoretical model for the tunable cou-
pler circuit, the nonlinear term Hnl,β = (αβ/2)a†

βa†
βaβaβ is

regarded as invariant during dynamical decoupling processes
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for qubit-resonator interactions [7,16]. This approximation in
fact neglects the effects of superconducting artificial atoms’
highly excited states, so the g(d )

xy in Eq. (11) does not contain
the information of anharmonicity αβ . Because of the small
anharmonicity for the Xmon qubit (between 200 MHz and
400 MHz), the interactions between the resonators and highly
excited states of superconducting artificial atoms should make
corrections to the qubits’ energy levels and effective qubit-
qubit coupling.

The Bogoliubov transformation has been used to analyze
the variations of nonlinear term Hnl,β during the decoupling
processes [31,32], and the derived self-Kerr and cross-
Kerr resonant terms under the unitary transformation reflect
the contributions of superconducting artificial atoms’ highly
excited states. To maintain consistency, in this section we con-
tinue to use the Schrieffer-Wolff transformation to calculate
the effects of the nonlinear term Hnl,β (see Appendix D). In
the qubit-resonator dispersive coupling regimes, gλβ/|�λβ | �
1 and gλβ/|�λβ | � 1, we define Sλβ = (gλβ/�λβ )(c†

λaβ −
cλa†

β ) − (gλβ/�λβ )(c†
λa†

β − cλaβ ) with S = ∑
λ=a,b
β=x,y

Sλβ . Since

Hnl,β is a small quantity, we will separately conduct the
unitary transform H ′

nl,β = exp(S)Hnl,β exp(−S) to study its
contributions to the high-order effects, such as cross-Kerr
resonance, self-Kerr resonance, and so on [32]. With tedious
calculations (see Appendix D), up to the second-order pertur-
bation expansion terms, we get

H ′
nl,β ≈

∑
λ=a,b

(
g2

λβαβ

�2
λβ

− g2
λβαβ

�2
λβ

)
a†

βa†
βaβaβ

+
∑
λ=a,b

[
2g2

λxαβ

�2
λβ

c†
λcλa†

βaβ + 2g2
λβαβ

�2
λβ

cλc†
λa†

βaβ

]
.

(12)

Since gxy, gab � gλβ , the indirect interaction induced by the
weakly direct qubit-qubit and resonator-resonator interactions
have been neglected. The first and second lines in the right
side of Eq. (12) respectively describe the self-Kerr and cross-
Kerr resonance terms, and the complete calculation results can
be seen in Appendix D. There are no external pump fields for
resonator couplers, so the cavity photon numbers should be
very small (nλ = a†

λaλ � 1). Thus, we can get the approx-
imate frequency shift for qubit β induced by the nonlinear
terms

�ωβ =
∑
λ=a,b

(
g2

λβ

�2
λβ

+ g2
λβ

�2
λβ

)
αβ. (13)

We can see that the frequency shift �ωβ for qubit β is pro-
portional to the qubit’s anharmonicity αβ , which reflects the
effects of the second excited state of superconducting artificial
atoms. Adding the frequency shift induced by the nonlinear
term Hnl,β , we can approximately get the corrected frequency
ω

(cr)
β of qubit β in a decoupled coordinate frame:

ω
(cr)
β = ωβ+

∑
λ=a,b

(
g2

λβ

�λβ

− g2
λβ

�λβ

)
+

∑
λ=a,b

(
g2

λβ

�2
λβ

+ g2
λβ

�2
λβ

)
αβ.

(14)

FIG. 4. Corrections by highly excited states. The black solid
curves in (a) qubit x and (b) qubit y describe the decoupled
frequencies ω

(d )
β , while the red dashed curves label the corre-

sponding corrected frequencies ω
(cr)
β (= ω

(d )
β + �ωβ ), and the insert

figures show the frequency shifts �ωβ . The effective qubit-qubit cou-
pling strengths g(d )

xy (black solid curve) and g(cr)
xy (red dashed curve) are

plotted via (c) node phase φy and (d) transition frequency ωy. Here,
ωx/2π = 4.56 GHz and gxy/2π = 1 MHz; the other parameters are
the same as in Fig. 2.

The transition frequency of qubit x in a decoupled coordi-
nate is plotted in Fig. 4(a) ; the deviation between ω(cr)

x and
ω(d )

x is larger in the regimes far from the zero magnetic flux
points, which coincides with the curve of �ωx in the insert
figure. On the contrary, the maximal deviation between ω(cr)

y

and ω(d )
y appears at the regime close to the zero magnetic flux

(�e,y → 0 or φy → 0) in Fig. 4(b), which also coincides with
the curve of �ωy in the insert figure.

If we replace the ω
(d )
β with ω

(cr)
β in Eq. (11), we can get

the corrected effective qubit-qubit coupling g(cr)
xy . The res-

onators’ resonant frequencies ωa and ωb are fixed in this
article, so the effective qubit-qubit couplings are mainly tuned
by the qubits’ transition frequencies ωx and ωy. By setting
ωx/(2π ) = 4.56 GHz, we plot the curves of effective qubit-
qubit coupling g(cr)

xy and g(d )
xy on the respective φy and ωy in

Figs. 4(c) and 4(d), and the points satisfying g(cr)
xy /(2π ) =

0 Hz or g(d )
xy /(2π ) = 0 Hz correspond to the switching off

position for the qubit-qubit interaction. The zero-value points
of g(cr)

xy and g(cr)
xy are different, which reflects the effects of the

nonlinear term Hnl (also the second excited state of a super-
conducting artificial atom) on the switching off positions. The
calculation results of the corrections to qubit frequencies and
effective qubit-qubit coupling strength can help to accurately
design the superconducting quantum chip.

D. Switching off the qubit-qubit coupling

In this section, we study the effects of direct qubit-qubit
coupling gxy and qubit anharmonicity αβ on the effective
qubit-qubit coupling g(cr)

xy and the switching off position. If we
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FIG. 5. Switching off the interaction between two qubits. The
effects of (a) direct qubit-qubit coupling strengths and (b) qubit
anharmonicities on the switching off positions. (a) The three types
of line styles correspond to different direct qubit-qubit coupling
strengths: (1) gxy/2π = 0 Hz for blue solid curves, (2) gxy/2π =
0.5 MHz for black dashed curves, and (3) gxy/2π = 1 MHz for red
dotted curves. For the curves without markers, ωx/2π = 4.56 GHz,
while ωx/2π = 4.53 GHz for the curves with star markers. (b) The
three curves correspond to different anharmonicities: (1) αy/2π =
−190 MHz for the blue solid curve, (2) αy/2π = −195 MHz for the
black dashed curve, and (3) αy/2π = −200 MHz for the red dotted
curve. The variation of ωy on the node phase φy is shown in the insert
figure. We choose ωx/2π = 4.56 GHz and gxy/2π = 0.5 MHz in (b).
The other parameters of (a) and (b) are the same as in Fig. 2.

take the parameters of Fig. 2, we can get gby/ min (|�by|) ∼
1/3 and gax/ min (|�ax|) ∼ 1/15 in the idling states of qubits
(without external magnetic field), so the qubits and resonators
are in the dispersive or weak-dispersive coupling regimes. To
see more clearly the working mechanism of switching off
processes in the double-resonator couplers circuit, we plot
the one-dimensional curves of effective qubit-qubit coupling
g(cr)

xy with the variation of qubit transition frequency ωy in
Fig. 5(a). By fixing ωx/(2π ) = 4.56 GHz, the three curves
without markers in Fig. 5(a) correspond to different direct
qubit-qubit coupling strengths: gxy/(2π ) = 0 Hz in the blue
solid curve, gxy/(2π ) = 0.5 MHz in the black dashed curve,
and gxy/(2π ) = 1 MHz in the red dotted curve. The crossing
points of three curves with the zero-value line [g(cr)

xy /(2π ) =
0 Hz] are different, which means that the direct qubit-qubit
coupling could affect the switching off positions. If we set
ωx/(2π ) = 4.53 GHz, the switching off points in the three
marked curves show considerable shifts relative to the corre-
sponding color curves without markers.

In Fig. 5(b), we plot the curves of effective qubit-qubit cou-
pling g(cr)

xy on the node phase φy with ωx/(2π ) = 4.56 GHz.
For the same ranges of node phase φy, the qubit’s maximal fre-
quencies ω(max)

y are not the same for different anharmonicities
αy as shown in the insert figure. For different anharmonicities
αy, the shifts of switching off positions on three curves reflect
the effects of the superconducting artificial atom’s second
excited states.

The frequency of qubit y should be tuned close to ωy ≈ ωx

for the iSWAP gate and ωy + αy ≈ ωx for the controlled-Z
gate. For the single-path coupler circuit, the switching off
point is usually close to the idling coupler frequency (usually
about 6.0 GHz), which is far from the two-qubit gate regimes
(usually below 5.0 GHz). In the double-resonator couplers
circuit, the switching off positions can be very close to the
two-qubit gate regimes as shown in Fig. 5(a). So the maximal

frequencies of couplers can be smaller in the double-resonator
couplers superconducting circuit, which leaves wider avail-
able ranges for readout resonators (or qubits) and might
relieve the frequency crowding on the superconducting quan-
tum chip.

IV. STATIC ZZ COUPLING

The tunable coupler could isolate the qubits from surround-
ing environments for local quantum operations and reduce the
accumulated phases for the quantum state preparations, and
this can greatly enhance the fidelity of the two-qubit gate [4,9–
15]. Because of the small anharmonicity of the Xmon qubit
and the high-order quantum state exchanges (originating from
the qubit-qubit and qubit-coupler interactions), the quantum
state leakages and the parasitic crosstalks are still important
obstructions for further enhancing the fidelity of the two-qubit
gate [16]. Suppressing the residual coupling and the parasitic
crosstalk among neighboring qubits are the leading tasks for
enhancing the quality of the superconducting quantum chip
[17,22,33–35].

The residual ZZ coupling consists of the static type ZZ cou-
pling and the dynamic type ZZ coupling, but the dynamic ZZ
coupling is usually suppressed by optimizing the microwave
pulse shapes, which is not the interest of this article [16,34]. In
this section, we mainly focus on the static ZZ coupling, which
can be mitigated by the designing structures and working
parameters of qubits and tunable couplers [12,17,22–24,33–
38]. In the double-coupler superconducting quantum circuit,
the direct qubit-qubit coupling can be arbitrarily small in
principle, and this should be helpful for suppressing the static
ZZ coupling. Also, the destructive interferences between
double-path couplers might eliminate the static ZZ coupling
[12,22–24].

A. Analytic calculations

In Figs. 2(a) and 2(b), we have numerically calcu-
lated the energy-level curves of states |0100〉, |0010〉, and
|0110〉, and in principle the static ZZ coupling can be eas-
ily calculated through the definition ξZZ = ω|0110〉 − ω|0100〉 −
ω|0010〉 + ω|0000〉. Practically, it is difficult to accurately fit
the energy-level curves of qubits because the avoided cross-
ing gaps are affected by multibody interactions. By setting
ωx/(2π ) = 4.56 GHz, if we tune the frequency of qubit y to
be nearly resonant with qubit x (ωy ≈ ωx), then we can get
gby/|�by| ≈ gbx/|�bx| ∼ 1/20 and gax/|�ax| ≈ gay/|�ay| ∼
1/15. Thus, the qubit-resonator regimes are dispersive cou-
pling regimes, and the perturbation method can be used to
analyze the static ZZ coupling close to the two-qubit gate
regimes.

For convenience and consistency, we still use ωβ to de-
scribe the energy levels of the first excited state of qubit β

in this section, and the energy level for the second excited
state is 2ωβ + αβ , where αβ is the qubit’s anharmonicity.
If we temporarily disregard the weak direct qubit-qubit and
direct resonator-resonator interactions, up to the fourth-order
perturbation theory the effective Hamiltonian on the qubits’
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eigenstates space can be obtained as [31,32]

H ′
m/h̄ =

∑
λ=a,b

ωλc†
λcλ

+
∑
β=x,y

∑
λ=a,b

jβ =0,1,2,...

(ω jβ + κλ, jβ + χλ, jβ c†
λcλ)| jβ〉〈 jβ |

+
∑
β=x,y

∑
jβ=0,1,2,...

[ ∑
λ=a,b

μλ, jβ (c†
λcλ)2

+ νab, jβ c†
acac†

bcb + νba, jβ c†
bcbc†

aca

]
| jβ〉〈 jβ |. (15)

The ket vector | jβ〉 describes the jβ th excited state of qubit

β, with jβ, j′β = 0, 1, 2, .... We define g
jβ j′β
λ as the coupling

strength between resonator λ and the transition | jβ〉 ↔ | j′β〉
of qubit β. Considering the selection rule, resonator λ can
only interact with the neighboring quantum states of qubit

β: g
jβ j′β
λ = 0 for j′β �= jβ ± 1. In this section, we neglect the

small differences for the coupling strengths between resonator
λ and different neighboring state transitions of qubit β, then
g

jβ−1, jβ
λ = g

jβ , jβ+1
λ = gλβ ( jβ = 1, 2, ...). Defining χ

jβ−1, jβ
λ =

jβgλβ/[�λβ + ( jβ − 1)αβ], then κλ, jβ = χ
jβ−1, jβ
λ describes

the level shifts of Lamb type for the quantum state | jβ〉
which is induced by the interaction between resonator λ

and qubit β(| jβ − 1〉 ↔ | jβ〉 and | jβ〉 ↔ | jβ + 1〉), while

χλ, jβ = χ
jβ−1, jβ
λ − χ

jβ , jβ+1
λ describes the corresponding AC-

Stark type dispersive shifts for the quantum state | jβ〉 [χλ,0β
=

−χ
0β ,1β

λ = −g2
λβ/(2�λβ )] [31,32]. If we add the contributions

of second excited states of superconducting artificial atoms,
besides the self-Kerr resonant term μλ, jβ (c†

λcλ)2, the cross-
Kerr resonant terms νab, jβ c†

acac†
bcb and νba, jβ c†

bcbc†
aca should

also make contributions to the static ZZ coupling (as will be
discussed in the following sections) [31,32,39].

If we temporarily disregard the cross-Kerr resonant terms,
after adding the contributions of weak direct qubit-qubit cou-
pling, then the static ZZ coupling in qubit-resonator dispersive
coupling regimes can be obtained as [8,16,17,24]

ξ
(2)
ZZ = 2(gxy)2(αx + αy)

(�xy + αy)(�xy − αx )
, (16)

ξ
(3)
ZZ,λ = 2gxygλxgλy

[
1

�λy

(
1

�xy
− 2

�xy + αy

)

− 1

�λy

(
1

�xy
− 2

�xy − αx

)]
, (17)

ξ
(4s)
ZZ,λ = 2(gλy)2(gλx )2

�λy + �λx − αλ

(
1

�λy
+ 1

�λx

)2

− (gλy)2(gλx )2

�2
λy

(
1

�xy
+ 1

�λx
− 2

�xy − αx

)

− (gλy)2(gλx )2

�2
λx

(
2

�xy + αy
− 1

�xy
+ 1

�λy

)
. (18)

The ξ
(2)
ZZ is the second-order static ZZ coupling between two

qubits, and ξ
(3)
ZZ,λ describes the third-order static ZZ coupling

between two qubits intermediated by resonator λ. We use ξ
(4s)
ZZ,λ

FIG. 6. Suppression of static ZZ coupling. The (a) effective
qubit-qubit coupling and (b) static ZZ coupling are plotted for
different direct qubit-qubit coupling strengths: (1) gxy/2π = 0 Hz
(red solid curve), (2) gxy/2π = 0.5 MHz (blue dashed curve), (3)
gxy/2π = 1 MHz (green dotted curve), and (4) gxy/2π = 1.5 MHz
(black dashed-dot curve). The insert figures are the partial enlarged
drawing. The ξ

(2)
ZZ , ξ (3)

ZZ (= ∑
λ=a,b ξ

(3)
ZZ,λ), and ξ

(4s)
ZZ (= ∑

λ=a,b ξ
(4s)
ZZ,λ) are

plotted in (c) and (d), and they respectively take the parameters of
the blue dashed and black dashed-dot curves in (b). The frequency of
qubit x is fixed at ωx/2π = 4.52 GHz, and the other parameters of
(a)–(d) are the same as in Fig. 2.

to label fourth-order static ZZ coupling contributed by the
self-Kerr resonance intermediated by resonator λ, and ξ

(4c)
ZZ,λ

describes the static ZZ coupling induced by the cross-Kerr
resonance.

Even being listed together, the second-order ξ
(2)
ZZ , third-

order ξ
(3)
ZZ = ∑

λ=a,b ξ
(3)
ZZ,λ, and fourth-order (self-Kerr) ξ

(4s)
ZZ =∑

λ=a,b ξ
(4s)
ZZ,λ static ZZ coupling terms come from different

sources. As shown in Eqs. (16) and (17), the second-order
term ξ

(2)
ZZ originates from the direct qubit-qubit coupling

[6–8,17] and the fourth-order term ξ
(4s)
ZZ results from the per-

turbation expansion of qubit-resonator dispersive coupling
[31,39], while the third-order term ξ

(3)
ZZ is joint effects of

direct qubit-qubit coupling and qubit-resonator interaction.
Here, αλ = ∑

β=x,y αβ (gλβ/�λβ )4 describes the nonlinearity
of resonator λ induced by the qubit-resonator dispersive cou-
pling [32]. Since gxy, gab � gλβ , the contributions of direct
qubit-qubit and resonator-resonator couplings to fourth-order
static ZZ coupling are neglected.

B. Suppression of the static ZZ coupling

In this section, we try to suppress the static ZZ coupling
with direct qubit-qubit coupling, which can be arbitrarily
small in the double-coupler superconducting circuit. By set-
ting ωx/(2π ) = 4.52 GHz, the curves of static ZZ coupling
ξZZ = ξ

(2)
ZZ + ξ

(3)
ZZ + ξ

(4s)
ZZ are plotted in Fig. 6(b) according
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to Eqs. (16)–(18). The four curves correspond to different di-
rect qubit-qubit coupling strengths. In the regimes suitable for
the two-qubit gates, the values of static ZZ coupling are appar-
ently suppressed by the weaker direct qubit-qubit coupling as
shown in the insert figure. And, the values of ξ

(3)
ZZ and ξ

(4s)
ZZ are

obviously suppressed by weaker direct qubit-qubit coupling in
Fig. 6(c) [gxy/(2π ) = 0.5 MHz] compared with the results in
Fig. 6(d) [gxy/(2π ) = 1.0 MHz]. As shown in Figs. 6(b)–6(f),
the static ZZ coupling can be suppressed below sub-MHz in
a double-resonator coupler circuit, which is on a similar level
with the transmon-based coupler circuit [7,16].

For each static ZZ coupling curve in Fig. 6(b), two poles
appear at �xy = αx and �xy = −αy which originate from res-
onant state exchanges between the state |0200〉 ↔ |0110〉 and
|0020〉 ↔ |0110〉, respectively. There is also a pole located
at ωy = ωx in each curve of static ZZ coupling in Fig. 6(b),
and the pole also appears in the dashed curves (third-order
static ZZ coupling) and dotted curve (fourth-order self-Kerr
resonance static ZZ coupling) in Figs. 6(c) and 6(d), so it
should originate the qubit-qubit resonance state exchanges
as indicated by the term 1/�xy contained in Eqs. (17) and
(18). As shown in Fig. 6(a), the switching off positions in
the double-resonator couplers circuit can be below 5 GHz,
which is very close to the regimes of a two-qubit gate. If the
frequency of qubit y is tuned away from the switching off
positions, the effective qubit-qubit coupling quickly increases
to above 5 MHz for the two-qubit gates.

C. Cancellation of the static ZZ coupling

The nonzero residual coupling leads to unnecessary
always-on quantum gates and additional accumulated phases,
which are the dominant obstructions for the further en-
hancement of two-qubit gate fidelities. Recently, some work
announced the elimination of the static ZZ coupling in the
superconducting quantum chip [24,35,36], and it might also
be removed in our proposed scheme through the destructive
interference of double-path couplers.

When we tune frequencies of qubit x to satisfy ωx < ωa,
the static ZZ coupling ξZZ can be zero at some points as shown
in Figs. 7(b) and 7(d), thus the static ZZ coupling is eliminated
in the double-resonator coupler circuit. The signs of second-
order ξ

(2)
ZZ , third-order ξ

(3)
ZZ , and fourth-order ξ

(4s)
ZZ (self-Kerr

resonance) static ZZ coupling are different in Figs. 7(e) and
7(f), and they cancel each other and eliminate the static ZZ
coupling at certain points. It should be mentioned that the
poles at ωy = ωx in Fig. 6 do not appear in Fig. 7(b) just
because they are outside the scope of the drawing.

As shown in Figs. 7(a) and 7(b), the static ZZ coupling
is not switched off together with the effective qubit-qubit
coupling. This result is not difficult to understand for the per-
turbation calculation methods [16,24], because the effective
qubit-qubit coupling is calculated only up to the second-
order dispersive interaction (AC-Stark/Lamb shifts), but static
ZZ coupling contains some high-order effects, such as self-
Kerr resonance, cross-Kerr resonance, highly excited state
corrections, and so on. The intervals between zero-value posi-
tions of static ZZ coupling and effective qubit-qubit coupling
change for different direct qubit-qubit coupling strengths,
and the black dash-dotted curves [gxy/(2π ) = 1.6 MHz] have

FIG. 7. Cancellation of static ZZ coupling. The effective qubit-
qubit coupling and the static ZZ coupling are respectively plotted in
(a) and (b) in the case of ωx/2π = 4.0 GHz, and the corresponding
results for ωx/2π = 3.95 GHz are shown in (c) and (d). The four
curves in each figure of (a)–(d) correspond to different direct qubit-
qubit coupling strengths: (1) gxy/2π = 0.9 MHz (red solid curves),
(2) gxy/2π = 1.0 MHz (blue dashed curves), (3) gxy/2π = 1.2 MHz
(green dotted curves), and (4) gxy/2π = 1.6 MHz (black dash-dotted
curves). The ξ

(2)
ZZ , ξ

(3)
ZZ , and ξ

(4s)
ZZ are plotted in (e) and (f), and they

respectively take the parameters of the blue dashed and green dotted
curves of (b). The other parameters of (a)–(f) are the same as in
Fig. 2.

the smallest interval in Figs. 7(a) and 7(b). When we set
ωx/(2π ) = 3.95 GHz, the blue dashed curves [gxy/(2π ) =
1.0 MHz] get the smallest interval in Figs. 7(c) and 7(d).
So, the interval between the switching off and zero static ZZ
coupling points can be tuned by direct qubit-qubit coupling
and the frequencies of qubits, and it is possible to conduct
the switching off and two-qubit gates at both the zero static
ZZ coupling regimes in the double-coupler superconducting
circuit.

D. Corrections to static ZZ coupling

If we incorporate the variations of nonlinear term
(αβ/2)a†

βa†
βaβaβ during the decoupling processes of the

qubit-resonator interactions, then the cross-Kerr resonances
will contribute to the ZZ coupling [31,32,39]. The resonator
couplers are not pumped by external fields, and the aver-
age cavity photon number is much smaller than one, so

012601-8



CONTROLLING THE QUBIT-QUBIT COUPLING IN THE … PHYSICAL REVIEW A 109, 012601 (2024)

FIG. 8. Energy-level diagrams of cross-Kerr resonances. The vir-
tual photon exchange among qubit x, resonator a, and resonator
b with qubit x initially in (a) the ground state and (b) the first
excited state. V −

λx (or V +
λx ) describes the virtual photon annihilation

(or creation) process through the interaction between qubit x and
resonator λ, and V −

λx = (V +
λx )†. The energy-level diagram of cross-

Kerr resonances for qubit y can be obtained by replacing qubit x
with qubit y.

the single virtual photon exchanges will dominate the cross-
Kerr resonance processes. The cross-Kerr resonance terms
νab, jβ c†

acac†
bcb and νba, jβ c†

bcbc†
aca in Eq. (15) describe the phys-

ical processes of virtual photon exchange between a qubit
and two resonators, and we plot the energy-level diagrams
of the single-virtual photon exchange process of cross-Kerr
resonance for qubit x in Fig. 8. For simplicity, only the three
lowest energy levels of superconducting artificial atoms are
considered. The virtual photon exchange processes of cross-
Kerr resonance for qubit y can be obtained by replacing the x
with y in Fig. 8.

When qubit x is initially in the ground state, the
energy-level diagrams of cross-Kerr resonance among
qubit x, resonator a, and resonator b are shown in
Fig. 8(a). The six cross-Kerr resonances are attributed as
three types of virtual photon exchange processes among
qubit x, resonator a, and resonator b [31]. In the first
type, qubit x absorbs a virtual photon from resonator a
(or b) and transits to the first excited states from the ground
state, and it immediately returns the virtual photon to res-
onator a (or b) and decays to the ground state. Subsequently,
qubit x jumps to the first excited state again by getting another
virtual photon from resonator b (or a), and finally it emits the
virtual photon to resonator b (or a) and decays to the ground

state. In the second type, qubit x transits to the first excited
state from the ground state by absorbing a virtual photon
from resonator a (or b) and immediately jumps to the second
excited state by taking another virtual photon from resonator
b (or a). Subsequently, the qubit jumps to the first excited
state by emitting a virtual photon to resonator b (or a), and
finally decays to the ground state by emitting another virtual
photon to resonator a (or b). In the third type, the first two
transition processes are the same as the second type, but the
qubit first returns a virtual photon to resonator a (or b) in the
third transition process and transits to the first excited state,
and finally decays to the ground state by emitting another
photon to resonator b (or a). The virtual photon exchange
processes for cross-Kerr resonances among qubit y, resonator
a, and resonator b can be obtained by replacing qubit x with
qubit y in Fig. 8(a). Adding together the contributions of the
six types of cross-Kerr resonant processes, we can obtain the
energy-level corrections to the ground state of qubit β [31],

ξ
(4c,0)
ZZ,β |0β〉〈0β | = g2

aβg2
bβ

[
2

�aβ�bβωβ

+ 1

2ωβ + αβ − ωa − ωb

×
(

2ωβ − ωa − ωb

�aβ�bβ

)2]
|0β〉〈0β |. (19)

For simplicity, we have neglected the small differences in
the interactions of a resonator with different energy levels of

superconducting artificial atom, that is, g
jβ , j′β
λ = gλβ .

When qubit x is initially in the first excited state, the
energy-level diagrams of cross-Kerr resonance among qubit x,
resonator a, and resonator b are shown in Fig. 8(b). The four
cross-Kerr resonances are attributed as two types of virtual
photon exchange processes. In the first type, qubit x in the
first excited state absorbs a virtual photon from resonator a (or
b) and transits to the second excited state, and it immediately
returns the photon to resonator a (or b) and jumps to the first
excited state. Subsequently, the qubit jumps to the second
excited state again by getting another virtual photon from
resonator b (or a), and finally it emits the photon to resonator b
(or a) and jumps to the first excited state. In the second
type, qubit x (in the first excited state) emits a virtual photon
to resonator a (or b) and decays to the ground state, then
immediately transits to the first excited state by absorbing a
virtual photon from resonator a (or b). Subsequently, the qubit
emits a virtual photon to resonator b (or a) and decays to the
ground state, then immediately absorbs another virtual photon
from resonator b (or a), and finally jumps to the first excited
state. The virtual photon exchange processes for cross-Kerr
resonances among qubit y, resonator a, and resonator b can be
obtained by replacing qubit x with qubit y in Fig. 8(b). Adding
together the contributions of the four types of cross-Kerr res-
onant processes, we can obtain the energy-level corrections to
the first excited state of qubit β [31],

ξ
(4c,1)
ZZ,β |1β〉〈1β | = 2g2

aβg2
bβ

ωβ (�aβ + αβ )(�bβ + αβ )
|1β〉〈1β |

+ 2g2
aβg2

bβ

ωβ�aβ�bβ
|1β〉〈1β |. (20)
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FIG. 9. The static ZZ coupling corrected by the cross-Kerr res-
onances. We plot (a) the effective qubit-qubit coupling and (b) the
static ZZ coupling ξ

(t )
ZZ = ξ

(2)
ZZ + ξ

(3)
ZZ + ξ

(4s)
ZZ + ξ

(4c,0)
ZZ − ξ

(4c,1)
ZZ at dif-

ferent direct qubit-qubit coupling strengths: (1) gxy/2π = 0.2 MHz
(red solid curve), (2) gxy/2π = 1.4 MHz (green dashed curve), and
(3) gxy/2π = 2 MHz (black dotted curve). ξ

(2)
ZZ (red solid curve),

ξ
(3)
ZZ = ∑

λ=a,b ξ
(3)
ZZ,λ (blue dashed curve), ξ

(4s)
ZZ = ∑

λ=a,b ξ
(4s)
ZZ,λ (green

dotted curve), ξ
(4c,0)
ZZ = ∑

β=x,y ξ
(4c,0)
ZZ,β (black dashed-dot curve), and

ξ
(4c,1)
ZZ = ∑

β=x,y ξ
(4c,1)
ZZ,β (marked purple solid curve) are plotted with

(c) gxy/2π = 0.2 MHz and (d) gxy/2π = 1.4 MHz. The parameters
of the four figures are the same as in Fig. 2 except for ωx/2π =
4.52 GHz.

Adding the corrections by the cross-Kerr resonances,
the total ZZ coupling can be defined as ξ

(t )
ZZ = ξ

(2)
ZZ +

ξ
(3)
ZZ + ξ

(4s)
ZZ + ξ

(4c,0)
ZZ − ξ

(4c,1)
ZZ , with ξ

(3)
ZZ = ∑

λ=a,b ξ
(3)
ZZ,λ,

ξ
(4s)
ZZ = ∑

λ=a,b ξ
(4s)
ZZ,λ, ξ

(4c,0)
ZZ = ∑

β=x,y ξ
(4c,0)
ZZ,β , and ξ

(4c,1)
ZZ =∑

β=x,y ξ
(4c,1)
ZZ,β . We plot the second-order ξ

(2)
ZZ (red solid

curves), third-order ξ
(3)
ZZ (blue dashed curves), and

fourth-order (self-Kerr resonance) ξ
(4s)
ZZ (green dotted curves)

static ZZ coupling in Fig. 9(c) [gxy/(2π ) = 0.2 MHz]
and Fig. 9(d) [gxy/(2π ) = 1.4 MHz]. By reducing the
direct qubit-qubit coupling strengths, the values of static
ZZ coupling curves are apparently suppressed in Fig. 9(c)
[gxy/(2π ) = 0.2 MHz] compared with the result in Fig. 9(d)
[gxy/(2π ) = 1.4 MHz]. The energy-level corrections to the
qubit’s ground state (ξ (4c,0)

ZZ ) and first excited state (ξ (4c,1)
ZZ )

by the cross-Kerr resonances are respectively plotted in the
black dashed-dot curves and marked purple solid curves in
Figs. 9(c) and 9(d).

The curves of effective qubit-qubit coupling are plotted
in Fig. 9(a), and values of direct qubit-qubit coupling affect
switching off positions. Similar to Fig. 6(b), the two poles
located at �xy = αx and �xy = −αy also appear in each curve
of static ZZ coupling ξ

(t )
ZZ in Fig. 9(b). But, there are two new

poles in each curve of static ZZ coupling ξ
(t )
ZZ in Fig. 9(b)

which should originate from the cross-Kerr resonance [31,32].
As indicated by Eqs. (19) and (20), the cross-Kerr reso-

nances through virtual photon exchanges induce additional
poles for the static ZZ coupling at the point: 2ωβ + αβ =
ωa + ωb [from Eq. (19)], ωβ + αβ = ωa [from Eq. (20)], and
ωβ + αβ = ωb [from Eq. (20)]. So, we can see two new poles
at ωy + αy = ωa and 2ωy + αy = ωa + ωb in each curve of
Fig. 9(b). Another pole (ωy + αy = ωb) is out of the scope
of the drawing. As shown in Figs. 9(c) and 9(d), the pole at
2ωy + αy = ωa + ωb only appears on the black dash-dotted
curves, which correspond to the level correction to qubits’
ground states by the cross-Kerr resonance ξ

(4c,0)
ZZ , while the

pole at ωy + αy = ωa only appears in the marked purple solid
curve, which describes the level correction to qubits’ first ex-
cited states by the cross-Kerr resonance ξ

(4c,1)
ZZ . In this article,

we neglect the level corrections of cross-Kerr resonances to
the double-excited state |01x1y0〉, which should correspond to
more complex physical processes.

V. CONCLUSIONS

In conclusion, we have studied the mechanism of the
switching off in the superconducting circuit consisting of
two fixed-frequency resonator couplers. The induced indirect
qubit-qubit coupling by two resonators can be canceled, so
the switching off can be realized without direct qubit-qubit
coupling. The frequencies of couplers can be much smaller
than the single transmon-based coupler circuit, and this leaves
wider available frequency spaces for couplers (or qubits), thus
the frequency crowding on the superconducting chip might be
relieved.

Weak direct qubit-qubit coupling can be used to suppress
the static ZZ coupling in the double-coupler circuit, and the
destructive interferences between double-path couplers can
eliminate the static ZZ coupling, thus the quality of the super-
conducting quantum chip might be enhanced. Our proposed
double-resonator couplers scheme can unfreeze some restric-
tions on the superconducting quantum chip, mitigate the static
ZZ coupling, and also save the dilution refrigerator lines,
which might be a promising platform for the superconducting
quantum chip.
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APPENDIX A: NUMERICAL CALCULATION
OF ENERGY LEVELS

In this section, we use the numerical method to calcu-
late the two-dimensional energy-level curved surfaces of the
double-resonator couplers circuit (Fig. 1). Since the anhar-
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monicities of the Xmon qubit are very small, we regard the
superconducting artificial atom as a multi-energy-level system
in this section [16,31]. The Hamiltonian for the circuit in
Fig. 1 can be written as

Hm/h̄ =
∑
λ=a,b

ωλc†
λcλ +

∑
jβ

ω jβ j′β Jz
jβ j′β

+ gab(c†
acb + c†

bca)

+
∑

λ=a,b;β=x,y
jβ , j′

β
=0,1,2,...

g
jβ , j′β
λ

(
J+

j′β jβ
+ J−

jβ j′β

)
(cλ + c†

λ)

+
∑

jx , j′x , j′′y , j′′′y
=0,1,2,...

g
jx j′x, j′′y j′′′y
xy

(
J+

j′x jx
J−

j′′y j′′′y
+ J+

j′′′y j′′y
J−

jx j′x

)
, (A1)

where jβ, j′β, j′′β, j′′′β = 0, 1, 2, 3, . . . , and they respectively
label the jβ th, j′β th, j′′β th, and j′′′β th quantum states of qubit
β, with j′′′β > j′′β and j′β > jβ . Between the quantum states
| jβ〉 and | j′β〉, we define the angular momentum operators

as Jjβ j′β = [Jx
jβ j′β

, Jy
jβ j′β

, Jz
jβ j′β

]. The ladder operators can be in-

troduced by J+
jβ j′β

= | j′β〉〈 jβ | and J−
jβ j′β

= | jβ〉〈 j′β |, thus we

can get Jz
jβ j′β

= | j′β〉〈 j′β | − | jβ〉〈 jβ |, Jx
jβ j′β

= (J+
jβ j′β

+ J−
jβ j′β

)/2,

and Jy
jβ j′β

= (J+
jβ j′β

− J−
jβ j′β

)/(2i). The corresponding transition

frequency between states | jβ〉 and | j′β〉 is defined as ω jβ j′β ,

and g
jβ , j′β
λ describes the corresponding coupling strengths with

resonator coupler λ. g
jx j′x, j′′y j′′′y
xy describes the direct coupling

strengths between the transition processes of | j′x〉 ↔ | jx〉 for
qubit x and | j′′′y 〉 ↔ | j′′′′y 〉 for qubit y.

With the QUTIP software, we calculate the two-dimensional
curved surfaces for the energy level of single-excited
[Figs. 10(a)–10(d)] and double-excited [Figs. 10(e)–10(s)]
states. During the numerical calculations with the QUTIP soft-
ware, we truncate to the second excited states of qubits and

assume g
jβ , j′β
λ = g

j′β , jβ
λ = gλβ and g

jx j′x, j′′y j′′′y
yx = g

j′y jy, j′′′x j′′x
xy = gxy.

Because of the anticrossing effects, each curved surface in
Fig. 10 cannot describe a total energy level of a certain
quantum state, and we label the z axis of each figure by the
corresponding state at zero magnetic flux.

APPENDIX B: CIRCUIT QUANTIZATION

In this section, we conduct the quantization for the su-
perconducting circuit in Fig. 1. The kinetic energy of the
superconducting circuit can be obtained as [17,20]

T = 1
2

(
Caφ̇

2
a + Cbφ̇

2
b + Cxφ̇

2
x + Cyφ̇

2
y

)
+ 1

2Cab(φ̇a − φ̇b)2 + 1
2Cxy(φ̇x − φ̇y)2

+ 1
2Cax(φ̇a − φ̇x )2 + 1

2Cay(φ̇a − φ̇y)2

+ 1
2Cbx(φ̇b − φ̇x )2 + 1

2Cby(φ̇b − φ̇y)2. (B1)

As indicated by Fig. 1(b), the self-capacitance of the qubits
and resonators is Cη, and the relative capacitance between
two arbitrary devices is defined as Cηη′ (Cηη′ = Cη′η ), where
η, η′ = a, b, x, y with η �= η′. Here, φa and φb are the respec-
tive magnetic fluxes of the circuit nodes of resonators a and
b, while φx and φy are the respective node fluxes of qubits x
and y. If we define the vector φ = [φa, φb, φx, φy], the kinetic

energy in Eq. (B1) can be written as T = 1
2
̇φT C ̇φ, with

C =

⎛
⎜⎜⎜⎝

C11 −Cab −Cax −Cay

−Cab C22 −Cbx −Cby

−Cax −Cbx C33 −Cxy

−Cay −Cby −Cxy C44.

⎞
⎟⎟⎟⎠, (B2)

where we have defined the coefficients: C11 = Ca + Cab +
Cax + Cay, C22 = Cab + Cb + Cbx + Cby, C33 = Cax + Cbx +
Cx + Cxy, and C44 = Cay + Cby + Cxy + Cy.

The potential energy for the superconducting circuit can be
written as

U = φ2
a

2La
+ φ2

b

2Lb
+ EJx

[
1 − cos

(
2π

�0
φx

)]

+ EJy

[
1 − cos

(
2π

�0
φy

)]
, (B3)

where EJβ
= Icβ�0/2π is the Josephson energy of qubit β,

Icβ is the corresponding critical current, and �0 = h/2e is the
flux quantum.

The Lagrangian of the superconducting circuit can be
obtained by the definition L = T − U , thus the generalized
momentum can be defined as qη = ∂L/∂φ̇η (η = a, b, x, y),
and it can be written in the vector form as q = [qa, qb, qx, qy].
Thus, the Hamiltonian of the superconducting circuit can be

written as H = q · ̇φ − L = 1
2 qT C−1 q + U , and the inverse

matrix is defined as

C−1 = A∗

|C| = 1

||C||

⎛
⎜⎜⎝

A11 A21 A31 A41

A12 A22 A32 A42

A13 A23 A33 A43

A14 A24 A34 A44

⎞
⎟⎟⎠, (B4)

where A∗ is the adjugate matrix of A. With the conditions
Cab � Cxy � Cax,Cay,Cbx,Cby � Cx,Cy � Ca,Cb, thus
‖C‖ ≈ CaCbCxCy, and we get approximate expressions for
the elements in A∗ as

A11 = C22
(
C33C44 − C2

xy

) + Cbx(−CbxC44 − CxyCby)

−Cby(CbxCxy + C33Cby) ≈ CbCxCy,

A12 = Cab
(
C33C44 − C2

xy

) − Cbx(−CaxC44 − CxyCay)

+Cby(CaxCxy + C33Cay)

≈ CabCxCy + CaxCbxCy + CayCbyCx,

A13 = Cab(CbxC44 + CbyCxy) + C22(CaxC44 + CxyCay)

−Cby(CaxCby − CbxCay) ≈ CbCyCax,

A14 = Cab(CbxCxy + C33Cby) + C22(Caxcxy + C33Cay)

+Cbx(CaxCby − CbxCay) ≈ CbCxCay,

A21 = Cab
(
C33C44 − C2

xy

) + Cax(CbxC44 + CxyCby)

+Cay(CbxCxy + C33Cby)

≈ CabCxCy + CaxCbxCy + CayCbyCx,

A22 = C11
(
C33C44 − C2

xy

) − Cax(CaxC44 + CxyCay)

−Cay(CaxCxy + C33Cay) ≈ CaCxCy,

A23 = C11(CbxC44 + CxyCby) + Cab(CaxC44 + CxyCay)

+Cay(CaxCby − CbxCay) ≈ CbxCaCy,
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FIG. 10. The two-dimensional surfaces of energy levels. The curved surfaces for the single-excited state in the circuit are shown
in (a)–(d), and (e)–(s) describe the energy-level curved surfaces of double-excited states. The maximal frequencies of two qubits are
ω(max)

x /2π = 4.56 GHz and ω(max)
y /2π = 5.12 GHz. The other parameters are gxy/2π = 1 MHz, gab/2π = 0.1 MHz, ωa/2π = 4.10 GHz,

ωb/2π = 5.20 GHz, αx/2π = −175 MHz, αy/2π = −195 MHz, gax/2π = gay/2π = 32 MHz, and gbx/2π = gby/2π = 30 MHz.
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A24 = C11(CbxCxy + C33Cby) + Cab(CaxCxy + C33Cay)

−Cax(CaxCby − CbxCay) ≈ CaCxCby,

A31 = −Cab(−CbxC44 − CbyCxy) + Cax
(
C22C44 − C2

by

)
−Cay(−C22Cxy − CbxCby) ≈ CaxCbcy,

A32 = C11(CbxC44 + CbyCxy) + Cax(CabC44 + CayCby)

+Cay(CabCxy − CbxCby) ≈ CbxCaCy,

A33 = C11
(
C22C44 − C2

by

) + Cab(−CabC44 − CayCby)

−Cay(CabCby + C22Cay) ≈ CaCbCy,

A34 = C11(C22Cxy + CbxCby) − Cab(CabCxy − CbxCay)

+Cax(CabCby + C22Cay)

≈ CxyCaCb + CaCbxCby + CbCaxCay,

A41 = Cab(CbxCxy + CbyC33) + Cax(C22Cxy + CbxCby)

+Cay
(
C22C33 − C2

bx

) ≈ CayCbCx.

A42 = C11(CbxCxy + CbyC33) + Cax(CabCxy − CaxCby)

−Cay(−CabC33 − CaxCbx ) ≈ CaCxCby,

A43 = C11(C22Cxy + CbxCby) + Cab(CabCxy + CaxCby)

+Cay(CabCbx + C22Cax )

≈ CxyCaCb + CaCbxCby + CbCaxCay,

A44 = C11
(
C22C33 − C2

bx

) + Cab(−Caxc33 − CaxCbx )

−Cax(CaxCbx + C22Cax ) ≈ CaCbCx. (B5)

Thus, the Hamiltonian of the double-resonator couplers
circuit can be expressed as

H = 4ECa (na)2 + 4ECb (nb)2 + 4ECx (nx )2 + 4ECy (ny)2

+ φ2
a

2La
+ φ2

b

2Lb
− EJx cos

(
2π

�0
φx

)
− EJy cos

(
2π

�0
φy

)

+ 8
Cax√
CaCx

√
ECa ECx (nanx ) + 8

Cay√
CaCy

√
ECa ECy (nany)

+ 8
Cbx√
CbCx

√
ECbECx (nbnx ) + 8

Cby√
CbCy

√
ECbECy (nbny)

+ 8

(
1 + CaxCbx

CxCab
+ CayCby

CyCab

)
Cab√
CaCb

√
ECa ECb (nanb)

+ 8

(
1 + CaxCay

CaCxy
+ CbxCby

CbCxy

)
Cxy√
CxCy

√
ECx ECy (nxny).

(B6)

The two-body coupling strengths can be defined as

gλβ = 1

2

Cλβ√
CλCβ

√
ωλωβ, (B7)

gab = 1

2

(
1 + CaxCbx

CxCab
+ CayCby

CyCab

)
Cab√
CaCb

√
ωaωb, (B8)

gxy = 1

2

(
1 + CaxCay

CaCxy
+ CbxCby

CbCxy

)
Cxy√
CxCy

√
ωxωy. (B9)

The qubit-resonator interaction terms gλβ in Eq. (B9) could
induce indirect coupling between two qubits, which should be
decoupled to obtain the effective qubit-qubit coupling.

APPENDIX C: DECOUPLING PROCESSES

The Josephson energy of the Xmon qubit is much
larger than its capacitance energy, EJβ

/ECβ
� 1, and then

we can approximately get cos(φβ ) = 1 − φ2
β/2 + φ4

β/24 −
· · · . If we introduce the creation and annihilation opera-
tors by the definitions φβ = 4

√
(2EC/EJβ

)(a†
β + aβ ) and nβ =

(i/2) 4
√

(2EC/EJβ
)(a†

β − aβ ), then the second quantized Hamil-
tonian can be obtained as Htot = ∑

λ=a,b Hλ + ∑
β=x,y Hβ +∑

λ=a,b
β=x,y

Hλβ + H (r)
ab + H (q)

xy , with

Hλ = 1

2
h̄ωλc†

λcλ, (C1)

Hβ = 1

2
h̄ωβa†

βaβ + αβ

2
a†

βa†
βaβaβ, (C2)

Hλβ = h̄gλβ (c†
λaβ + cλa†

β − c†
λa†

β − cλaβ ), (C3)

H (r)
ab = h̄gab(c†

acb + cac†
b − c†

ac†
b − cacb), (C4)

H (q)
xy = h̄gxy(a†

xay + axa†
y − a†

xa†
y − axay). (C5)

The transition frequencies of resonators and qubits are re-
spectively defined as ωλ = 1/

√
CλLλ and ωβ = (

√
8EJβ

ECβ
−

ECβ
)/h̄, while αβ = −ECβ

/h̄ describes the anharmonicity of
qubit β.

In the qubit-resonator dispersive coupling regimes,
gλβ/|�λβ | � 1, we can use the Schrieffer-Wolf trans-
formation to decouple the variables of qubits and res-
onators. Since the resonator couplers are not pumped
by the external fields, and the average cavity photon
number should be much smaller than one, the virtual
photon exchanges will dominate the cross-Kerr reso-
nances. We define S = ∑

λ=a,b
β=x,y

[(gλβ/�λβ )(c†
λaβ − cλa†

β ) −
(gλβ/�λβ )(c†

λa†
β − cλaβ )]. Under the unitary transformation

H (d ) = exp(−S)H exp(S), if we choose Hλβ + [H0, S] = 0,
then the decoupled Hamiltonian can be obtained as

H (d ) = h̄ω(d )
a c†

aca + h̄ω
(d )
b c†

bcb + h̄ω(d )
x a†

xax + h̄ω(d )
y a†

yay

+ h̄α̃x

2
a†

xa†
xaxax + h̄α̃y

2
a†

ya†
yayay

+ h̄g(d )
xy (a†

xay + a†
yax ) + h̄g(d )

ab (c†
acb + c†

bca). (C6)

The rotating wave approximation has been used to derive the
above formula, and the constant terms were neglected. We
also neglected the effects of small quantities (Hxy and Hab).
The anharmonicities of qubits are considered as invariant
during unitary transformation (α̃β ≈ αβ), so some high-order
effects relating to highly excited states of superconducting
artificial atoms are neglected.

The transition frequencies of qubits, the resonant frequen-
cies of resonators, the qubit-qubit coupling strength, and the
resonator-resonator coupling strength in decoupled coordi-
nates are obtained as

ω(d )
x = ωx +

(
g2

ax

�ax
+ g2

bx

�bx
− g2

ax

�ax
− g2

bx

�bx

)
, (C7)

ω(d )
y = ωy +

(
g2

ay

�ay
+ g2

by

�by
− g2

ay

�ay
− g2

by

�by

)
, (C8)
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ω(d )
a = ωa −

(
g2

ax

�ax
+ g2

ay

�ay
− g2

ax

�ax
− g2

ay

�ay

)
, (C9)

ω
(d )
b = ωb −

(
g2

bx

�bx
+ g2

by

�by
− g2

bx

�bx
− g2

by

�by

)
, (C10)

g(d )
xy = 1

2

(
gaxgay

�ay
+ gbxgby

�by
+ gaygax

�ax
+ gbygbx

�bx

− gaxgay

�ay
− gbxgby

�by
− gaygax

�ax
− gbygbx

�bx

)
+ gxy,

(C11)

g(d )
ab = 1

2

(
gaxgbx

�bx
+ gaygby

�by
+ gbxgax

�ax
+ gbygay

�ay

− gaxgbx

�bx
− gaygby

�by
− gbxgax

�ax
− gbygay

�ay

)
+ gab.

(C12)

g(d )
xy is the decoupled qubit-qubit coupling strength, which can

be used to analyze the switching off. g(d )
ab is the decoupled

resonator-resonator and is much smaller than the frequency
detuning between two resonators (g(d )

ab � |�xy|), thus its con-
tributions are neglected in this article.

APPENDIX D: CALCULATIONS OF
HIGH-ENERGY-LEVEL CORRECTIONS

In the current theoretical model, the Kerr-nonlinear terms
Hnl,β = (αβ/2)a†

βa†
βaβaβ are assumed to be invariant (α̃β ≈

αβ) during the derivations of Eqs. (C6). This means that some
high-order effects and the contributions of the highly excited
state of the superconducting artificial atom are neglected, so
the decoupled frequency and effective qubit-qubit coupling
in Eqs. (C7)–(C12) contain no information on qubits’ an-
harmonicities. But the anharmonicity of the Xmon qubit is
very small, thus the resonator can couple to the highly excited
states of atoms, which should affect the transition frequencies
of qubits and the effective qubit-qubit coupling strengths. As
discussed by some theoretical work, the anharmonicity could
induced fourth-order self-Kerr and cross-Kerr resonances, and
these effects could create corrections to the qubit’s energy
levels [31,32].

Bogoliubov transformation is used to analyze the higher-
order effect during the decoupling processes for qubit-
resonator interactions [32]. To maintain consistency, in
this article we still use the Schrieffer-Wolf transforma-
tion to analyze the contributions of the Kerr-nonlinear
terms Hnl,β during the decoupling process. In the qubit-
resonator dispersive coupling regimes, (gλβ/�λβ ) � 1 and
(gλβ/�λβ ) � 1, we define Sλβ = (gλβ/�λβ )(c†

λaβ − cλa†
β ) −

(gλβ/�λβ )(c†
λa†

β − cλaβ ), where S = ∑
λ=a,b
β=x,y

Sλβ . Since Hnl,β

is a small quantity, we can separately conduct the unitary
transform H ′

nl,β = exp(S)Hnl,β exp(−S) [32], thus we get

H ′
nl,β = Hnl,β + [S, Hnl,β ] + 1

2!
[S, [S, Hnl,β ]]

+ 1

3!
[S[S, [S, Hnl,β ]]] + · · · . (D1)

The commutation relation for the first-order expansion
term

[Sλβ, Hnl,β ]

=
[

gλβ

�λβ

(c†
λaβ−cλa†

β )− gλβ

�λβ

(c†
λa†

β−cλaβ ),
αβ

2
a†

βa†
βaβaβ

]

= gλβαβ

�λβ

(c†
λa†

βaβaβ + cλa†
βa†

βaβ )

+gλβαβ

�λβ

(c†
λa†

βa†
βaβ + cλa†

βaβaβ ). (D2)

Since gxy, gab � gλβ , we have neglected the effects of the
weak direct qubit-qubit and resonator-resonator interactions.

The commutation relation for the second-order expansion
term

[Sλβ, [Sλβ, Hnl,β ]]

=
[

4g2
λxαβ

�2
λβ

c†
λcλa†

βaβ + 4g2
λβαβ

�2
λβ

cλc†
λa†

βaβ

]

+
(

2g2
λβαβ

�2
λβ

− 2g2
λβαβ

�2
λβ

)
a†

βa†
βaβaβ

+g2
λβαβ

�2
λβ

c†
λc†

λaβaβ + g2
λβαβ

�2
λβ

cλcλa†
βa†

β

+g2
λβαβ

�2
λβ

c†
λc†

λa†
βa†

β + g2
λβαβ

�2
λβ

cλcλaβaβ

+ 2g2
λβαβ

�λβ�λβ

c†
λc†

λa†
βaβ + 4g2

λβαβ

�λβ�λβ

cλcλa†
βaβ

+ g2
λβαβ

�λβ�λβ

(2c†
λcλ + 1)aβaβ+ g2

λβαβ

�λβ�λβ

(2c†
λcλ+1)a†

βa†
β.

(D3)

Up to the second-order expanding terms, keeping the en-
ergy and particle number conservation terms, we can get the
nonlinear term for qubit β in the decoupled coordinate as

H ′
nl,β =

∑
λ=a,b

(
g2

λβαβ

�2
λβ

− g2
λβαβ

�2
λβ

)
a†

βa†
βaβaβ

+
∑
λ=a,b

[
2g2

λxαβ

�2
λβ

c†
λcλa†

βaβ + 2g2
λβαβ

�2
λβ

cλc†
λa†

βaβ

]

+
∑
λ=a,b

[
g2

λβαβ

2�2
λβ

c†
λc†

λaβaβ + g2
λβαβ

2�2
λβ

cλcλa†
βa†

β

]

+
∑
λ=a,b

gλβαβ

�λβ

(c†
λa†

βaβaβ + cλa†
βa†

βaβ ). (D4)

In the right side of Eq. (D4), the first line describes the
self-Kerr resonance, while the second line labels the cross-
Kerr resonance. The third line describes the double virtual
processes between one qubit and one resonator. The fourth
line describes combined physical processes where the qubit
and the resonator exchange a virtual photon, and the qubit
simulatively participates in the self-excitation and subsequent
self-annihilation processes.
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