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The concept of block coherence encompasses the case where experimental capabilities are not so delicate to
perform arbitrary refined measurements on individual atoms. We develop a framework which facilitates further
investigation of this resource theory in several respects. Using this framework, we investigate the problem of
state conversion by incoherent operations and show that a majorization condition is the necessary and sufficient
condition for state transformation by block-incoherent operations. We also determine the form of the maximally
coherent state from which all other states and all unitary gates can be constructed by incoherent operations.
Thereafter, we define the concept of block-cohering and block-decohering powers of quantum channels and
determine these powers for several types of channels. Finally, we explore the relation between block coherence
and a previous extension of coherence, known as k coherence.
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I. INTRODUCTION

From the very beginning of quantum theory, coherence of
states, as a property that radically distinguishes the quantum
superposition from classical mixtures, has been the subject of
much discussion. While coherence is not entirely unfamiliar
to physicists, as it has been present in all forms of wave phe-
nomena, only in quantum mechanics has it revealed its most
exciting properties. It is here that one encounters intriguing
concepts like superposition of spatial degrees of freedom as in
a double-slit experiment [1,2], superposition of macroscopic
states of many-body systems [3,4] as in a quantum phase
transition, and entanglement which itself underlies the unique
features of quantum computation and quantum information
processing [5]. A plethora of theoretical and experimental
techniques are known for manipulating coherence in optical
experiments [6–8], and theoretical limitations for manipu-
lation of superposition have been studied in various works
[9,10]. Nevertheless, attempts to quantify the superposition
of orthogonal states are rather recent. General measures of
coherence were first introduced by Aberg in [11] and then
formulated in a quantitative resource-theory-based form in
[12,13], which was further developed in various directions in
[14–35].

The resource theory was itself inspired by the understand-
ing that entanglement can be considered as a resource that
is used in an efficient and useful way and consumed at the
end of most quantum communication tasks [36–39]. Like-
wise, superposition and coherence can also be thought of as
kinds of resources that are used in a quantum process and
consumed at the end. The core concept of any resource theory
is the operational restrictions that we have for manipulating
quantum states in our laboratory [40–46]. In entanglement
these restrictions derive from locality and in superposition
and coherence they derive from our insufficient means for
accessing any kind of basis for quantum states, either in our
measurements and filtering operations or in other kinds of

operations. For example, a laboratory may easily put spin- 1
2

particles in states |↑, z〉 or |↓, z〉, but not in their arbitrary
superposition. To summarize the notions introduced in [12],
a basis {|i〉, i = 1, . . . , d} for a Hilbert space is chosen as the
preferred basis. A state is called incoherent if it is diagonal in
this preferred basis, i.e., if

ρinc =
d−1∑
i=0

pi|i〉〈i|, (1)

where {pi} is a probability distribution. In fact, the incoher-
ent states are the ones that can be freely generated by the
measurements of the experimenter in the preferred basis. The
totality of such states form a convex set Iinc in the space of
all conceivable quantum states. The incoherent operations are
then defined to be the ones that do not generate any coherence
from an incoherent state, i.e., they are trace-preserving and
completely positive operations which map the set of incoher-
ent states into itself, i.e., a quantum operation E is incoherent
if E : Iinc → Iinc.

Finally, a maximally coherent state is a state from which
all other states and all unitary operators (quantum gates) can
be constructed purely by incoherent operations, i.e., by op-
erations that are at the disposal of the experimenter in the
laboratory. It was shown in [12] that a state like

|ψ〉 = 1√
d

d∑
i=1

|i〉 (2)

is a maximally coherent state of a d-dimensional Hilbert
space, in the above sense. Therefore, it is a resource state in
the context of coherence theory. Once the free states and free
operations were recognized, quantitative measures of coher-
ence could be defined in the spirit of resource theory.

This primary resource theory of coherence is based on
an orthogonal basis for the description of the density matrix
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and rank-1 measurement of the experimenter and it leads to
measures of coherence which should be expressed in terms of
the individual matrix elements of the density matrix, the de-
termination of which may not be experimentally feasible. The
removal of the constraints of this standard resource theory of
coherence has led to other generalized theories. For example,
the requirement of orthogonality of the basis vectors is relaxed
to their linear independence in [22], and the authors of [23]
write the density matrix in terms of expectation values of Her-
mitian operators and express the known measures of coher-
ence in terms of what they call the observable matrix, all the
elements of which are directly measurable in the laboratory.

In a different development, the author of [11] introduced
the notion of block coherence, and different block coherence
measures were defined in [11,20,21]. In the resource the-
ory of block coherence, the block-incoherent states have a
block-diagonal structure which is determined by a projective
(not necessarily rank-1) measurement. The resource theory
of coherence based on positive-operator-valued measurements
(POVMs) was also introduced in [14], where the authors use
the Naimark theorem to define the POVM-based coherence.
This generalization was also quantified in [15,20,21].

The theory of block coherence is of special importance
in cases where the experimenter does not have an ability to
measure a complete set of observables and prepare a com-
plete basis of states, which is often the case. Mathematically,
this means that the projectors of measurement are not rank-
1 projectors. For example, one may only be interested in
measuring a property of a group of particles, in which case
the projectors will be � j = I ⊗ I ⊗ · · · ⊗ π j ⊗ · · · ⊗ I ⊗ I,
where π j are projectors on that specified group. This is the
case where the projectors � j are no longer of unit rank. Even
for one particle, one may only be able to measure its total
spin and not the z component of its spin, or one may only
be able to determine whether the spins of two particles are
parallel or antiparallel, e.g., in a communication task where
these pairs of particles are sent between two parties with no
shared reference frame [47–54]. In other quantum protocols,
one may need to determine whether the majority of spins
are up or down in a given precision [55]. All these refer to
realistic situations where a preferred and complete basis and
the refined operations induced by that measurement are not ac-
cessible to us. Under such circumstances, we should adapt our
notions and measures of coherence to these new limitations.
For example, in a situation where we can only do projective
measurements with π1 = |0〉〈0| + |1〉〈1| and π1 = |2〉〈2|, in a
three-level system, it is meaningless to assign nonzero coher-
ence to a state like a|0〉 + b|1〉 and zero coherence to a state
like a2|0〉〈0| + b2|1〉〈1|.

Besides its theoretical interest, the resource theory of block
coherence may have significant practical consequences. It is
important to know that the availability of less-refined mea-
surements in a laboratory affects our definition of incoherent
states and operations, and the resourceful states. Do we need
more or less coherence, according to the initial definition of
[12], in order to produce a certain state? Do we need more
complicated incoherent operations to construct arbitrary states
from our resource states? Which states can be transformed
to each other freely? Can one define block-cohering and
block-decohering powers of quantum channels as in [24,25]?

What is the relation of block coherence and the notion of k
coherence developed in [16–19]. These questions have been
left unanswered in previous studies and, as we will see, these
questions guide us to a rich and comprehensive structure of
the resource theory of block coherence.

In the present work we provide answers to these questions.
To this end, we first introduce a mathematical framework,
which facilitates many of the subsequent calculations. Then
we prove a majorizationlike sufficient and necessary condition
for pure state transformation and find the explicit form of
the incoherent operations which perform state conversion. We
also explicitly show that one can use the action of incoherent
operations on the maximally coherent state to construct any
arbitrary gate. We will see that the more course grained our
measurements are, the more complicated incoherent opera-
tions are necessary to convert this state to an arbitrary state
and construct an arbitrary unitary operation. We also define
the block-cohering and block-decohering powers of quantum
channels and derive closed formulas of these quantities for
several families of quantum channels. Finally, we elaborate
on the relation between block coherence and an interesting
notion called k coherence [16–19]. The latter concept, which
is different from block coherence, is based on the number of
basis states which are in a superposition in a given general
state. We find a curious and interesting relation between the
two notions, which we will clarify by an explicit and yet
general example.

The structure of the paper is as follows. In Sec. II we
state our notation and conventions. In Sec. III we recapitulate
the previous results in a simple mathematical form. We then
briefly review two of the previously defined block-coherence
measures in Sec. IV. In Sec. V we investigate the pure state
conversion and show that in the context of block coherence,
majorization is still a sufficient condition for state transforma-
tion by incoherent operations. We show in Sec. VI how, by
having access to a maximally incoherent state and by using
only incoherent operations, one can implement any arbitrary
unitary gate. To this end, we obtain the explicit form of the ap-
propriate Kraus operators. We also define the block-cohering
and -decohering powers of a quantum map in Sec. VII and
we calculate these powers for a few families of channels.
The relation between block coherence and k coherence is
investigated in Sec. VIII. We summarize in Sec. IX. In the
Appendix we show that the majorization condition of Sec. V
is also necessary for state transformation by block-incoherent
operations.

II. NOTATION

Let H be a Hilbert space which can be decomposed into
subspaces such that

H =
M⊕

μ=1

Hμ, (3)

with dim(Hμ) = dμ and let πμ be the projection operator on
the subspace Hμ:

M∑
μ=1

πμ = IH.
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These projectors define the only measurements that are
at our disposal in our laboratory. Let the subspace Hμ

be spanned by an orthonormal basis {|eiμ〉, iμ = 1, . . . , dμ}.
Here we have abbreviated the more detailed denotation
e(μ)

iμ
, where (μ) indicates the subspace and iμ the basis

state in the subspace, simply to eiμ , hoping that this will
not lead to confusion. Obviously, we have 〈eiμ |e jμ〉 = δiμ, jμ
and 〈eiμ |e jν 〉 = 0, with μ 	= ν. We also define an auxiliary
space Q = Span{|1〉, |2〉, . . . , |μ〉, . . . , |M〉} to specify differ-
ent subspaces in the following way. A block-diagonal operator
is then defined as

A =
M∑

μ=1

|μ〉〈μ| ⊗ Aμ (4)

and an operator that is nonzero only on the block μν is written
as B = |μ〉〈ν| ⊗ Bμν . Such an operator maps Hν to Hμ and
acts as a zero operator on all other subspaces.

III. PRELIMINARIES

Consider the d-dimensional Hilbert space H in (3) and
let M = {πμ | μ = 1, . . . , M} describe a measurement with
projective operators πμ, not necessarily of rank 1. A quantum
state is defined to be block incoherent if it is in block-diagonal
form, that is, if

ρinc =
M∑

μ=1

pμ|μ〉〈μ| ⊗ ρμ,
∑

μ

xμ = 1, (5)

in which each ρμ is a density matrix in Hμ. The outcome
of any measurement M on any state is of the above form.
Incoherent states, when being measured, remain intact. In a
more explicit form, an incoherent state has the matrix form

ρinc =

⎛
⎜⎜⎜⎜⎜⎝

p1ρ1

p2ρ2
. . .

. . .

pMρM

⎞
⎟⎟⎟⎟⎟⎠, (6)

where ρμ is a dμ × dμ density matrix. When dμ = 1 for all
μ = 1, . . . , M, this definition coincides with the usual def-
inition of incoherent states. Obviously, the set of all block
incoherent states is a convex set, which is denoted by Iinc.
Note that, in any subspace, no preferred basis is assigned.

Incoherent operations are the ones that do not create coher-
ence out of incoherent states. Different approaches are used to
define these operations [31]. The largest class of incoherent
operations are the so-called maximal incoherent operations
and consist of all operations that map Iinc to itself. A quantum
operation is said to be an incoherent operation if it has a
Kraus representation such that each Kraus operator maps Iinc

to itself.
An operation E =∑a KaρK†

a is a block-incoherent opera-
tion if and only if its Kraus operators have the form [15]

Ka =
∑

μ

|a(μ)〉〈μ| ⊗ Ka
μ, (7)

in which a : {1, 2, . . . , M} → {1, 2, . . . , M} is an arbitrary
function, not necessarily a permutation, and Ka

μ is any arbi-

trary operator. The proof is presented in [15], but can also
be shown straightforwardly by using the auxiliary space in-
troduced in Sec. II. We simply note that a Kraus operator
of the form Ka =∑μ |a(μ)〉〈μ| ⊗ Ka

μ, when acting on ρ =∑
μ pμ|μ〉〈μ| ⊗ ρμ, produces another incoherent state of the

same form.
The explicit form of these Kraus operators are such that in

each column only one block should be nonzero. For example,
when M = 2, regardless of the dimensions of blocks, the
admissible forms of Kraus operators are

K1 =
(

A1

A2

)
, K2 =

(
B1 B2

)
,

K3 =
(

C1

C2

)
, K4 =

(
D1 D2

)
. (8)

IV. MEASURES OF BLOCK COHERENCE

A. Measure based on relative entropy

Given an arbitrary state ρ, one can define its measure of
block coherence as its minimum distance from the set of
block-incoherent states. This approach has been followed in
[11,14,15,20,21], which leads to the block-coherent content
of the state ρ,

C(ρ) = min
δ∈Iinc

D(ρ, δ), (9)

where D is any distance. Although relative entropy does
not have all the properties of distance, it is usually used in
measures like (9) to quantify various resources. If one takes
D(ρ, δ) to be the relative entropy between the two states, then
the closest block-incoherent state to a given state ρ is obtained
by simply removing all the off-diagonal blocks in the density
matrix [11]. Hence a closed and easily calculable formula for
the entropy-based measure of block coherence of a given state
ρ is

CM
s (ρ) = S(ρ∗) − S(ρ), (10)

where

ρ∗ :=
M∑

μ=1

πμρπμ =
M∑

μ=1

|μ〉〈μ| ⊗ ρμ. (11)

We now ask what kind of pure state has the largest value of
block coherence, when we fix the measurement or the block
structure. Consider an arbitrary pure state

|�〉 =

⎛
⎜⎜⎜⎜⎜⎝

x1|ψ1〉
x2|ψ2〉

...

...

xM |ψM〉

⎞
⎟⎟⎟⎟⎟⎠, (12)

subject to
∑M

μ=1 |xμ|2 = 1, where the |ψμ〉 are arbitrary nor-
malized pure states of dimension dμ. Using (10), we find that

CM
s (|�〉) = S(ρ∗) = −

∑
μ

|xμ|2 ln |xμ|2, (13)
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which means that the highest coherence belongs to states of
the form

|�〉MC = 1√
M

⎛
⎜⎜⎜⎜⎜⎝

|ψ1〉
|ψ2〉

...

...

|ψM〉

⎞
⎟⎟⎟⎟⎟⎠, (14)

i.e., the highest coherence corresponds to the states with equal
probabilities of the subspaces. It is important to note that the
states |ψμ〉 are arbitrary as long as they are not zero. They
need not have any coherence in their own subspace at all.

B. Measure based on the l1-norm

Starting from ρ∗, another measure of block coherence
based on the l1-norm, which is a natural generalization of this
measure for the coherence introduced in [12], is defined as
[20]

CM
1 (ρ) = ‖ρ − ρ∗‖l1 =

∑
μ 	=ν

‖ρμν‖1, (15)

where ρμν is the matrix in the block μν of ρ and

‖A‖1 = Tr(
√

A†A) (16)

is the trace norm of A. For this measure, the block coherence
of a general pure state (12) is found to be

CM
1 (|�〉) =

∑
μ 	=ν

|xμxν | ‖|ψμ〉〈ψν |‖, (17)

and since ‖|ψ〉〈φ|‖ = √〈ψ |ψ〉〈φ|φ〉,
CM

1 (|�〉) =
∑
μ 	=ν

|xμxν |. (18)

According to this measure, the maximally coherent state (14)
has a coherence given by

CM
1 (|�〉MC) = M − 1. (19)

Obviously, when there is only one block, there is no coher-
ence and when all blocks are one dimensional (M = d), this
measure coincides with the usual measure of coherence [12].

It should be noted that, by using both measures (9) and
(15), the arbitrary state (12) has the same coherence as the
state

|
〉 =

⎛
⎜⎜⎜⎜⎜⎝

x1|φ1〉
x2|φ2〉

...

...

xM |φM〉

⎞
⎟⎟⎟⎟⎟⎠, (20)

where

|φμ〉 = 1√
dμ

dμ∑
iμ=1

|eiμ〉 (21)

is the maximally coherent state of the subspace Hμ. In fact, the
states (12) and (20) are equivalent since they can be converted
to each other by applying block-diagonal incoherent unitary

operators of the form U =⊕M
μ=1 uμ. For future use, we also

state that the maximally coherent state (14) is equivalent to
the state

|
〉MC = 1√
M

⎛
⎜⎜⎜⎜⎜⎝

|φ1〉
|φ2〉

...

...

|φM〉

⎞
⎟⎟⎟⎟⎟⎠ (22)

with regard to their coherence.
For the maximally coherent states, by suppressing the no-

tation for states, we have

0 = C1
l1 � C2

l1 � · · · � Cd
l1 = d − 1, (23)

which shows that the value of coherence increases as M in-
creases from 1 to d , a result which is expected on physical
grounds, and for M = d we find Cd

l1
(|
〉) = d − 1, which un-

derstandably coincides with the l1 value of standard definition
of coherence. In Sec. V we will show that for any value of M
and for both types of coherence measures (9) and (15), it is
indeed possible to start from the maximally coherent state for
that partition and obtain any other arbitrary state by simply
using the incoherent operations allowable for that type of par-
tition. This verifies that these two measures are indeed correct
measures of block coherence in terms of resource theory.

Remark 1. Both measures of coherence are invariant under
multiplication of each state |eiμ〉 by a local phase eiφiμ |eiμ〉.
Therefore, we take all the coefficients in maximally coherent
states to be real.

Remark 2. Throughout the text, we use |�〉 and |ψ〉 to show
arbitrary states of the form (12) and we use the terms |
〉 and
|φ〉 to denote the states of the forms (20) and (21).

V. PURE STATE CONVERSION BY
BLOCK-INCOHERENT OPERATIONS

In this section, by explicit analytical derivation of Kraus
operators, we show that majorization is a sufficient condi-
tion for pure state conversion by block-incoherent operations.
In the Appendix we will show that it is also the neces-
sary condition. This is the counterpart of the theorem for
state transformation under the standard incoherent operations
derived in [46]. Before proceeding, let us recall the defini-
tion of majorization. Consider two probability distributions
p = (p1 � p2 � · · · � pM ) and q = (q1 � q2 � · · · � qM ).
We say that p majorizes q and write p  q if for all k =
1, 2, . . . , M it holds that

∑k
i=1 pi �

∑k
i=1 qi. To avoid clut-

tering of notation, we first explain the idea by considering the
case where there are two subspaces of arbitrary dimensions
and then we will then extend the argument to the general case,
where there is an arbitrary number of subspaces.

A. Case of two subspaces of arbitrary dimensions

Consider the case where we have only two subspaces of
dimensions d1 and d2, i.e., H = H1 ⊕ H2, with corresponding
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projectors

π1 =
d1∑

i=1

|ei〉〈ei|, π2 =
d2∑

j=1

| f j〉〈 f j |.

Our task is to show that the initial state

|�x〉 =
(

x1|ψ1〉
x2|ψ2〉

)
, x2

1 + x2
2 = 1 (24)

can be converted by an incoherent operation to the final state

|�y〉 =
(

y1|ψ ′
1〉

y2|ψ ′
2〉
)

, y2
1 + y2

2 = 1, (25)

where |ψi〉 and |ψ ′
i 〉 are arbitrary normalized states in their

own subspaces if the majorization condition is valid for the
probability vectors x = (x2

1, x2
2 ) and y = (y2

1, y2
2 ), i.e., y  x.

Note that we have taken the coefficients x1, x2, y1, and y2

to be real, since block-diagonal unitary operators can always
remove any phases from these numbers.

First, we use the fact that in the context of block coher-
ence, the block unitaries of the form U1 ⊕ U2 are regarded as
free incoherent operations; hence the states (24) and (25) can
freely be converted to

|
x〉 =
(

x1|φ1〉
x2|φ2〉

)
, x2

1 + x2
2 = 1 (26)

and

|
y〉 =
(

y1|φ1〉
y2|φ2〉

)
, y2

1 + y2
2 = 1, (27)

respectively, where

|φ1〉 = 1√
d1

d1∑
i=1

|ei〉, |φ2〉 = 1√
d2

d2∑
i=1

| fi〉 (28)

are the maximally coherent states of their own subspaces,
and to study the state conversion problem it will be enough
to investigate the conversion from (26) to (27), without loss
of generality. Now consider the generalized incoherent Kraus
operators in block-diagonal and anti-block-diagonal forms

A0 = γ0

( y1

x1
Id1

y2

x2
Id2

)
(29)

and

Ai j = γ

(
y1

x2
√

d1
|φ1〉〈 f j |

y2

x1
√

d2
|φ2〉〈ei|

)
, (30)

where the coefficients γ0 and γ are considered to be real
without loss of generality. The completely positive and trace-
preserving map Einc can then be defined as

Einc(ρ) = A0ρA†
0 +

∑
i j

Ai jρA†
i j . (31)

It is now straightforward to check that

A0|
x〉 = γ0|
y〉, Ai j |
x〉 = γ√
d1d2

|
y〉, (32)

which leads to

Einc(|
x〉〈
x) = |
y〉〈
y|. (33)

Note that we have used the trace-preserving property

A†
0A0 +

∑
i j

A†
i jAi j = Id1+d2 , (34)

which leaves the following constrains on the coefficients γ0

and γ :

γ 2
0

(
y1

x1

)2

+ γ 2

(
y2

x1

)2

= 1, γ 2
0

(
y2

x2

)2

+ γ 2

(
y1

x2

)2

= 1.

(35)

One can now easily check that the above conditions, i.e.,
positivity of γ 2

0 and γ 2, can be satisfied if and only if x ≺ y.
To see this, multiply both equations of (35) to (x1x2)2 and then
subtract them from each other, which after simplification leads
to

γ 2
0

(
x2

2y2
1 − x2

1y2
2

)+ γ 2
(
x2

2y2
2 − x2

1y2
1

) = 0. (36)

Now suppose that x2 < x1 and y2 < y1. Then positivity of γ 2
0

and γ 2 together with the normalization of probability vectors
x = (x2

1, x2
2 ) and y = (y2

1, y2
2 ) implies that x1 < y1. Having the

same arguments for the other possible orderings of {x1, x2}
and {y1, y2}, we see that the conditions (35) are equivalent
to the majorization condition x ≺ y. Here it should be em-
phasized that the dimensions d1 and d2 of the subspaces are
not necessarily equal and the derived majorization condition
is solely based on the coefficients xi and yi, regardless of
the dimensions of subspaces. Finally, note that the role of
off-diagonal blocks in Ai j is crucial; otherwise one cannot sat-
isfy the trace-preserving condition necessary for the quantum
operation.

B. Case of an arbitrary number of subspaces
of arbitrary dimensions

The method of the preceding section can be generalized
to this case in a straightforward manner. We only need to
use a compact notation, as remarked in the beginning of the
paper. With the notation introduced in Sec. II and following
the discussion presented after Eqs. (24) and (25), it will be
enough to investigate the convertibility of the initial general
state

|
x〉 =
M∑

μ=1

xμ|μ〉 ⊗ |φμ〉,
M∑

μ=1

x2
μ = 1 (37)

to the state

|
y〉 =
M∑

μ=1

yμ|μ〉 ⊗ |φμ〉,
M∑

μ=1

y2
μ = 1, (38)

where

|φμ〉 = 1√
dμ

dμ∑
iμ=1

|eiμ〉

was defined in (21). Without loss of generality, we assume that
all the coefficients are positive. This assumption is justified
because block unitary operators can remove any phase from
these coefficients.
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Let us define the block diagonal operator A0 as

A0 := γ0

M∑
μ=1

yμ

xμ

|μ〉〈μ| ⊗ Idμ
, (39)

which in matrix form looks like

A0 = γ0

⎛
⎜⎜⎜⎜⎜⎜⎝

y1

x1
Id1

y2

x2
Id2

. . .
. . .

yM

xM
IdM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40)

Let I = (i1, i2, . . . , iM ), where iμ ∈ {1, 2, . . . , dμ}, and set
/d := d1d2 · · · dM . Then for any s ∈ {1, 2, . . . , M − 1} we de-
fine the incoherent Kraus operators

As
I = γs√

/d

M∑
μ=1

yμ

xμ+s

√
dμ+s|μ〉〈μ + s| ⊗ |φμ〉〈eiμ+s |. (41)

Direct calculation now shows that
(i)

A0|
x〉 = γ0|
y〉, (42)

(ii)

As
I |
x〉 = γs√

/d
|
y〉 ∀ s, I, (43)

and (iii) the quantum operation

E (ρ) = A0ρA†
0 +

∑
s,I

As
IρAs

I
† (44)

is trace preserving if and only if

γ 2
0 y2

μ +
M−1∑
s=1

γ 2
s y2

μ−s = x2
μ ∀μ. (45)

The above statements show that the incoherent quantum
operation E can convert the state |
x〉 to |
y〉 provided
the equality (45) holds. This equality is nothing but the
condition that the vector y = (y2

1, y2
2, . . . , y2

M ) majorizes x =
(x2

1, x2
2, . . . , x2

M ), denoted by x ≺ y [5].1 Note that any prob-
ability vector y majorizes the normalized coefficient vector
1
M (1, 1, . . . , 1) and hence any quantum state can be obtained
by applying a suitable incoherent operation on the maximally
coherent states (14), as it is expected from the resource theory
of block coherence.

It is instructive to explicitly show this last conversion by
another explicit example which conveys the basic idea in a
simple and yet general way. Let the Hilbert space be parti-
tioned into three parts H = H1 ⊕ H2 ⊕ H3 with dimensions
d1, d2, and d3, respectively. The orthonormal bases of these
Hilbert spaces are given by {|e1

i 〉, i = 1, . . . , d1}, {|e2
j〉, j =

1, . . . , d2}, and {|e3
k〉, k = 1, . . . , d3}, respectively. Then the

Kraus operators (39) and (41) take the following matrix forms:

A0 = γ0

⎛
⎝

y1

x1
Id1

y2

x2
Id2

y3

x3
Id3

⎞
⎠, (46)

A1
i jk = γ1√

/d

⎛
⎜⎝ 0 y1

x2

√
d2|φ1〉

〈
e2

j

∣∣ 0
0 0 y2

x3

√
d3|φ2〉

〈
e3

k

∣∣
y3

x1

√
d1|φ3〉

〈
e1

i

∣∣ 0 0

⎞
⎟⎠,

A2
i jk = γ2√

/d

⎛
⎜⎝ 0 0 y1

x3

√
d3|φ1〉

〈
e3

k

∣∣
y2

x1

√
d1|φ2〉

〈
e1

i

∣∣ 0 0
0 y3

x2

√
d2|φ3〉

〈
e2

j

∣∣ 0

⎞
⎟⎠. (47)

It is now easy to check that

A†
0A0 = γ 2

0

⎛
⎜⎜⎝
( y1

x1

)2 ( y2

x2

)2 ( y3

x3

)2
⎞
⎟⎟⎠ (48)

and

∑
i, j,k

A1†
i jkA1

i jk = γ 2
1

⎛
⎜⎜⎝
( y3

x1

)2 ( y1

x2

)2 ( y2

x3

)2
⎞
⎟⎟⎠,

∑
i, j,k

A2†
i jkA2

i jk = γ 2
2

⎛
⎜⎜⎝
( y2

x1

)2 ( y3

x2

)2 ( y1

x3

)2
⎞
⎟⎟⎠, (49)

which when added together prove the trace-preserving condition (45) for the channel E defined in (44).

1Proposition (12.11) of [5] states that for two probability vectors
x and y, y  x if and only if x =∑ j p jPjy for some probability
distribution pj and permutation matrices Pj .

VI. CONSTRUCTING ARBITRARY GATES

In the preceding section, as a result of the majorization
condition, we saw that maximally coherent states (14) and
(22) are the most resourceful states in the context of state

012435-6



QUANTUM COHERENCE BETWEEN SUBSPACES: STATE … PHYSICAL REVIEW A 109, 012435 (2024)

conversion. Now we also prove that, starting from these states
and only by using incoherent operations, one can implement
any arbitrary quantum gate U .

The goal is to perform the unitary operation U =∑M
μ,ν=1 |μ〉〈ν| ⊗ Aμν on the arbitrary quantum state |�〉 =∑M
α=1 xα|α〉 ⊗ |ψα〉. Following the same idea as in [12] and

without loss of generality, we use an ancillary system with the
maximally coherent state (22) and we define the joint state |ξ 〉,

|ξ 〉 = |�〉
⊗

|
〉 = |�〉
⊗ 1√

M

⎛
⎜⎜⎜⎜⎜⎝

|φ1〉
|φ2〉

...

...

|φM〉

⎞
⎟⎟⎟⎟⎟⎠. (50)

Now consider the incoherent Kraus operators Ks, s =
1, . . . , M, defined as

Ks =
M∑

μ,ν=1

|μ〉〈ν| ⊗ Aμν

⊗
|s〉〈μ + s| ⊗ |φs〉〈φμ+s|. (51)

It is easy to show that
∑M

s=1 K†
sKs = I and KsIincK†

s ⊂ Iinc.
By straightforward calculations, we find that

Ks|ξ 〉 = 1√
M

U |�〉
⊗

(|s〉 ⊗ |φs〉), (52)

which leads to the quantum channel∑
s

Ks(|ξ 〉〈ξ |)K†
s = U |�〉〈�|U †

⊗
ρinc, (53)

where

ρinc = 1

M

∑
μ

|μ〉〈μ| ⊗ |φμ〉〈φμ| (54)

is the completely decohered form of the maximally coherent
state |
〉 which we started with. Thus, by consuming a max-
imally coherent state we can implement any unitary operator
on any arbitrary state.

VII. BLOCK-COHERING AND -DECOHERING POWER

Using the definition of block coherence, one can also de-
fine the block-cohering and block-decohering powers of a
quantum channel E , just like the definitions of [24] or [25]
for cohering and decohering powers. Following the definitions
presented in [24], the block-cohering power (BCP) and the
block-decohering power (BDP) of a channel will be defined
as

BCP(E ) = max
ρinc∈Iinc

C(E (ρinc )), (55)

BDP(E ) = max
|�〉MC

[C(|�〉MC〈�|) − C(E (|�〉MC〈�|))], (56)

respectively, where C is any well-defined block-coherence
measure, ρinc is chosen from the set of block-incoherent states
(6), and |�〉MC stands for maximally block-coherent states of
the form (14). Equations (55) and (56) mean that the BCP of a
channel is equal to the maximum amount of block coherence
that can be generated for an initial block-incoherent state, and

the BDP of a channel is the maximum amount of block co-
herence of a maximally block-coherent state that is destroyed
by the quantum channel. Using the above definitions, one can
now calculate the BCP and BDP of any quantum channel.
Below we will study some channels that are of practical
importance.

A. Examples of block-cohering power

We first follow the same argument as in [24] to show that
for any quantum channel E , linearity of the channel E and
convexity of the coherence measure allow us to write

BCP(E ) = max
|�inc〉

C(E (|�inc〉〈�inc|)), (57)

where |�inc〉 is an incoherent pure state. Note that an inco-
herent pure state |�inc〉 has only one nonzero state in a given
subspace, i.e.,

|�ν〉 = |ν〉 ⊗ |ψν〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·

|ψν〉
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (58)

We now proceed to show Eq. (57) and then we will prove a
theorem and study a few examples.

Lemma. The BCP of a channel that is defined in (55) is
equal to (57).

Proof. Consider an incoherent state ρinc =∑M
μ=1 pμ|μ〉〈μ| ⊗ ρμ. Then by considering the pure state

decomposition of each ρμ, the above incoherent state can be
written as

ρinc =
∑
μ, j

pμq( j)
μ |μ〉〈μ| ⊗ ∣∣ψ j

μ

〉〈
ψ j

μ

∣∣,
where {q( j)

μ } is a probability distribution for each μ. From
there,

C(E (ρinc)) = C

⎛
⎝∑

μ, j

pμq( j)
μ E
(|μ〉〈μ| ⊗ ∣∣ψ j

μ

〉〈
ψ j

μ

∣∣)
⎞
⎠

�
∑
μ, j

pμq( j)
μ C

(
E (|μ〉〈μ| ⊗ ∣∣ψ j

μ

〉〈
ψ j

μ

∣∣))
� C

(
E
(|α〉〈α| ⊗ ∣∣ψ i

α

〉〈
ψ i

α

∣∣)), (59)

where α and i are the block and state numbers that have the
largest value of C(E (|μ〉〈μ| ⊗ |ψ j

μ〉〈ψ j
μ|)) among all possible

values of μ and j. Equation (58) proves the theorem, which
states that the maximization of (55) can only be performed
over pure incoherent states.

This lemma not only simplifies the calculation of cohering
power, but also gives us an alternative method for characteri-
zation of incoherent Kraus operators. In Sec. III we indicated
that any quantum channel whose Kraus operators are of the
form (7) [exemplified in (8)] cannot produce any coherence.
We now present an alternative proof of this fact. This proof
provides us with tools which enable us to calculate in a direct
way the BCP of many other channels.
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Theorem. Based on the definition (55), the block-cohering
power of any quantum channel whose Kraus operators are of
the form (7) is zero.

Proof. For definiteness, consider a pure incoherent state of
the form |�1〉 (a similar analysis applies to other states |�μ〉).
Consider a quantum channel E , with Kraus operators of the
form Ki = |μ〉〈ν| ⊗ Ki

μν . Note that in each block of Ki we
have an operator Ki

μν : L(Hν ) → L(Hμ). The action of this
Kraus operator on the state |�1〉 leads to a non-normalized
vector of the form

|
i〉 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ki
11|ψ1〉

Ki
21|ψ1〉

Ki
31|ψ1〉

...

...

Ki
M1|ψ1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (60)

and from there we can write

E (|�1〉〈�1|) =
∑

i

|
i〉〈
i|. (61)

The convexity of coherence measure again leads to

C(E (|�1〉〈�1|)) = C

(∑
i

(|
i〉〈
i|)
)
�
∑

i

C(|
i〉〈
i|),
(62)

and by using (18) for the coherence measure of pure states we
find

C1(E (|�1〉〈�1|))

�
∑

i

∑
α 	=β

√
〈ψ1|Ki

β1
†Ki

β1|ψ1〉〈ψ1|Ki
α1

†Ki
α1|ψ1〉. (63)

This means that if a quantum channel is such that all its Kraus
operators have only one nonzero element in each column
block, then the cohering power of that channel is zero. This
is in accord with our previous statement in (7).

Example 1: The BCP of a unitary operator. Let Eu(ρ) =
UρU † be a unitary channel acting on a pure incoherent state
|�ν〉 = |ν〉 ⊗ |ψν〉, where the nonzero state exists in the νth
block. The block structure of U is revealed when we write it
as U =∑αβ |α〉〈β| ⊗ Aαβ . We then find

U |�ν〉 =

⎛
⎜⎜⎜⎜⎜⎝

A1ν |ψν〉
A2ν |ψν〉

...

...

AMν |ψν〉

⎞
⎟⎟⎟⎟⎟⎠.

We then find, from (18) and (57),

CM
1 (U |�ν〉) =

∑
μ 	=μ′

√
〈ψν |A†

μνAμν |ψν〉〈ψν |A†
μ′νAμ′ν |ψν〉

=
∑
μ,μ′

√〈ξμ,ν |ξμ,ν〉〈ξμ′,ν |ξμ′ν〉 −
∑

μ

〈ξμ,ν |ξμ,ν〉

=
⎛
⎝∑

μ

√〈ξμ,ν |ξμ,ν〉
⎞
⎠

2

− 1, (64)

where |ξμ,ν〉 = Aμν |ψν〉 and in the last line we have used
unitarity of U to set

∑
μ〈ξμ,ν |ξμ,ν〉 = 1. Therefore, by taking

the initial incoherent state to be a state where |ψ〉 can be in
any of the rows, we find the BCP of a general unitary operator

BCP(U ) = max
{ν,|ψν 〉}

⎛
⎝∑

μ

√〈ξμν |ξμν〉
⎞
⎠

2

− 1, (65)

where

|ξμν〉 = Aμν |ψν〉. (66)

As the simplest case, let M = 2 and consider the coher-
ing power of a unitary operator U = (A B

C D), acting on H =
Hd1 ⊕ Hd2 , where A, B, C, and D are d1 × d1, d1 × d2, d2 × d1,
and d2 × d2 dimensional, respectively. Following (65), we
find for this unitary operator

BCP(U ) = max
|ψ1〉,|ψ2〉

[(
√

〈ψ1|A†A|ψ1〉 +
√

〈ψ1|C†C|ψ1〉)2,

(
√

〈ψ2|B†B|ψ2〉 +
√

〈ψ2|D†D|ψ2〉)2] − 1. (67)

As an explicit example, let M = 2 and U be a unitary oper-
ator acting on H = H2 ⊗ HN = HN ⊕ HN , of the form U =
( aIN bV
−b∗V † a∗IN

), where a and b are complex numbers subject

to |a|2 + |b|2 = 1, IN is the identity operator, and V is an
arbitrary unitary operator acting on HN . For this operator, a
simple calculation shows that

BCP(U ) = (|a| + |b|)2 − 1 = 2|ab|, (68)

which shows that the Hadamard-like block operator U =
1√
2
( IN V
−V † IN

) has maximum BCP, as it should.
Example 2: The BCP of the tensor product of two operators.

Consider the tensor product of two unitary operators W =
U ⊗ V , where U is M dimensional and V is N dimensional.
This operator acts on H = ⊕M

μ=1Hμ where all the subspaces
Hμ are N dimensional. Each block μν of the unitary matrix W
is of the form Wμν = uμνV , where uμν is a complex number
and is the (μν)th entry of the unitary matrix U . Inserting this
in Eq. (66), we see that |ξμν〉 = uμνV |ψν〉, and following the
result (65), we find

BCP(U ⊗ V ) = max
ν

⎛
⎝∑

μ

√
uμνu∗

μν

⎞
⎠

2

− 1. (69)

However, this is nothing but the ordinary cohering power of
a unitary matrix U as defined in [24]. Thus we have shown
that understandably the BCP of a unitary operator U ⊗ V is
nothing but the ordinary cohering power of the unitary matrix
U , as the matrix V acts within each block and it is the matrix
U which acts between blocks.

Example 3: The BCP of a random unitary channel. Consider
now a random unitary operator of the form

E (ρ) =
∑

i

pi(U
i ⊗ V i )ρ(U i ⊗ V i )†,

acting on H = (HM ⊗ HN ). By considering the block struc-
ture H = ⊕M

μ=1Hμ, where all the subspaces Hμ are N
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dimensional, from (57) we have

BCP(E )

= max
|�inc〉

CM
1

(∑
i

pi(U
i ⊗ V i )|�inc〉〈�inc|(U i)† ⊗ (V i )†

)
.

(70)

As in previous examples, consider the pure incoherent input
state |�ν〉, with the only nonzero entity |ψν〉 in the νth block.
We find after straightforward calculations

E (|�ν〉〈�ν |) =

⎛
⎜⎜⎝

Bν
11 Bν

12 · · · Bν
1M

Bν
21 Bν

22 · · · Bν
2M

...
...

...
...

Bν
M1 Bν

M2 · · · Bν
MM

⎞
⎟⎟⎠, (71)

where Bν
μμ′ are the N-dimensional matrices

Bν
μμ′ =

∑
i

pi(U
i )μν (U i )μ′ν Vi|ψν〉〈ψν |V †

i . (72)

In view of the relations (15) and (57), we find

BCP(E ) = max
ν,|ψν 〉

∑
μ 	=μ′

∥∥Bν
μμ′
∥∥

1. (73)

As a very simple example, we find, after some simple calcula-
tions, that for the channel E (ρ) = (1 − p)ρ + (U ⊗ V )ρ(U ⊗
V )† acting on two qubits, with U = ( a b

−b∗ a), BCP(E ) =
2p|ab|.

B. Examples of block-decohering power

In this section we use (56) to calculate the block-
decohering power of a few channels.

Example: The BDP of a unitary channel. Let Eu(ρ) =
UρU † be a unitary channel acting on a maximally block-
coherent state |�MC〉 = 1√

M

∑
μ |μ〉 ⊗ |ψμ〉. The block coher-

ence of this state is, from (19), equal to CM
1 (|�MC〉) = M − 1.

The block structure of U is revealed when we write it as U =∑
αβ |α〉〈β| ⊗ Aαβ . We then find U |�MC〉 = 1√

M

∑
αμ |α〉 ⊗

Aαμ|ψμ〉. The block coherence of this state is determined from
(18) to be

CM
1 (U |�MC〉) = 1

M

∑
α 	=α′

√
〈χα|χα〉〈χα′ |χα′ 〉, (74)

where |χα〉 =∑μ Aαμ|ψμ〉. This can be rewritten as

CM
1 (U |�MC〉) = 1

M

⎡
⎣(∑

α

√
〈χα|χα〉

)2

−
∑

α

〈χα|χα〉
⎤
⎦.

(75)

Using unitarity of U , we note that
∑

α〈χα|χα〉 =∑
α

∑
μ,ν〈ψμ|ψμ〉 = M. The block-decohering power will

then be

BDP(Eu) = M − 1

M
min
{ψμ}

(∑
α

√
〈χα|χα〉

)2

. (76)

As an explicit example, let M = 2 and U be a unitary oper-
ator acting on H = H2 ⊗ HN of the form U = ( aIN bV

−b∗V † a∗IN
),

where a and b are complex numbers subject to |a|2 + |b|2 = 1,
IN is the identity operator, and V is an arbitrary unitary opera-
tor acting on HN . For this unitary operator we have

|χ1〉 = a|ψ1〉 + bV |ψ2〉, |χ2〉 = −b∗V †|ψ1〉 + a∗|ψ2〉,
(77)

leading to

BDP(U ) = 2 − 1
2 min

{|ψ1〉,|ψ2〉}
(
√

1 + x + √
1 − x)2, (78)

where x = 2 Re(a∗b〈ψ1|V |ψ2〉). The minimum value of the
function f (x) = √

1 + x + √
1 − x is obtained at x = ±1.

This demands that the maximally coherent state in (56) which
defines the decohering power of the above unitary operator U
should be chosen such that

|ψ2〉 = e−i arg(a∗b)V †|ψ1〉, (79)

which leads to the following BDP for the operator U :

BDP(U ) = 1 −
√

1 − 4|ab|2. (80)

Understandably, for any block-diagonal or block-anti-
diagonal operator, this will give zero BDP and for the
block Hadamard operator H = 1√

2
(IN IN

IN −IN
) it will give

BDP(EH ) = 1. This last example is in fact a manifestation of
a more general pattern which can be proved by a simple and
similar equation for any block structure.

Proposition. For any unitary operator U ⊗ V acting
on H = HM ⊗ HN = ⊕M

μ=1HN , we have BDP(U ⊗ V ) =
BDP(U ), which is intuitively plausible.

VIII. RELATION BETWEEN BLOCK COHERENCE
AND k COHERENCE

The original notion of incoherence [11,12], which defines
incoherent states as diagonal density matrices in a specific
basis, has been aptly generalized to multilevel or k coherence
[16–19]. In this generalized setting, a state

|ψ〉 =
d∑

i=1

ci|i〉 (81)

is said to have coherence at level k if exactly k of the coeffi-
cients ci are nonzero. Thus an incoherent state has coherence
at level 1, a state like |ψ〉 = a|0〉 + b|1〉 in Hd has coherence
at level 2, and so on. A state with coherence at level k is
said to have coherence rank equal to k: rC (|ψ〉) = k. The
generalization to mixed states is done by defining the states
with coherence level k to be the convex combination of all
pure states whose coherence level is less than or equal to k,
i.e.,

Ck := conv{|ψ〉〈ψ |, | rC (|ψ〉) � k}. (82)

Obviously these sets obey the following inclusion relation:

C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ Cd . (83)

The relation between k coherence and block coherence
is interesting, and we explore it in this section. For the
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(a) (b) (c)

FIG. 1. Three different block structures for a density matrix of two particles: (a) ρ (1), (b) ρ (2), and (c) ρ (3). The basis states are ordered as
|00〉, |01〉, |10〉, and |11〉. These correspond to three different block structures H4 = H2 ⊕ H2. All these states belong to C2 ⊂ H4.

sake of simplicity, we describe this relation by presenting
an explicit simple example. The basic idea can then be un-
derstood in the general setting. Consider a density matrix
ρ ∈ L(H4). It is physically more interesting to consider the
example of two particles (ions in an ion trap), although this
restriction is not necessary. Thus H4 is the four-dimensional
space of two qubits and the preferred basis is taken to be
{|00〉, |01〉, |10〉, |11〉}. Figure 1 shows three different block
structures of this matrix.

In Fig. 1(a) the density matrix is given by

ρ (1) = |0〉〈0| ⊗ ρ0 + |1〉〈1| ⊗ ρ1, (84)

which indicates that the first particle has no coherence at all,
due to a measurement of the first particle in the computational
basis. Decomposition of the states ρ0 and ρ1 casts this state
into the form

ρ (1) =
∑

i

|ψi〉〈ψi| +
∑

i

|φi〉〈φi|, (85)

where

|ψi〉 = αi|0, 0〉 + βi|0, 1〉, |φi〉 = γi|1, 0〉 + δi|1, 1〉. (86)

(Note that in the above equations and in the ones that follow
in this section, we use a minimal notation in order not to
clutter the notation. Thus we use non-normalized states and
density matrices and we also use repetitive symbols.) This
shows that ρ (1) is the convex combination of coherent states
of level 2 and thus ρ (1) ∈ C2. However, not all states of C2 are
of this form, since not all 2-coherent pure states are involved
in this decomposition. Consider now another block structure
shown in Fig. 1(b), induced by measurements on the second
particle, again in the computational basis. Following the same
argument as before, the state is now given by

ρ (2) = ρ0 ⊗ |0〉〈0| + ρ1 ⊗ |1〉〈1|, (87)

or after decomposition of the states ρ0 and ρ1,

ρ (2) =
∑

i

|ψi〉〈ψi| +
∑

i

|φi〉〈φi|, (88)

where

|ψi〉 = αi|0, 0〉 + βi|1, 0〉, |φi〉 = γi|0, 1〉 + δi|1, 1〉, (89)

and thus again we find ρ (2) ∈ C2. The states of the form ρ (1)

and ρ (2) do not still comprise all the states of C2. This is due
to the fact that we have not exhausted all the block struc-
tures, i.e., measurements. The last block structure is shown
in Fig. 1(c) and is induced by a measurement with projectors

π0 = |00〉〈00| + |11〉〈11| and π1 = |01〉〈01| + |10〉〈10|, i.e.,
a measurement which determines the equality or difference of
the two qubits. The state is then written as

ρ (3) =
∑

i

|ψi〉〈ψi| +
∑

i

|φi〉〈φi|, (90)

where

|ψi〉 = αi|0, 0〉 + βi|1, 1〉, |φi〉 = γi|0, 1〉 + δi|1, 0〉. (91)

This shows that ρ (3) ∈ C2 too and any state in C2 is of the
form ρ (1), ρ (2), or ρ (3). After seeing this simple example, we
are ready to state the relation between block coherence and k
coherence.

Suppose that we have a block structure Bk based on the
decomposition of the Hilbert space Hd = ⊕M

μ=1Hμ, subject to
the constraint

dim(Hμ) � k ∀μ. (92)

Then, according to Eq. (6), the set of incoherent states with
regard to block structure Bk is

I (Bk )
inc =

⎧⎨
⎩ρ | ρ =

∑
μ

πμρπμ, rank(πμ) � k

⎫⎬
⎭, (93)

where πμ is the projection operator on the subspace Hμ. We
now conjecture the relation between block coherence and k
coherence, ⋃

B

I (Bk )
inc = Ck, (94)

where
⋃

B means a union over all block structures of the form
(92).

In passing, one may be tempted to ask why an alternative
definition of k coherence has not been adopted from the
very beginning for mixed states, i.e., one in which diagonal
density matrices are 1-coherent states, three-diagonal density
matrices are 2-coherent states, five-diagonal states are
2-coherent states, etc. We think that while this categorization
is in principle possible, it is not motivated by physical
measurements, even on adjacent particles in a many-body
system. The simple two-particle system that we have
analyzed in this section may not show this clearly, but it
is easily seen in a three-particle system with basis states
{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉} that
measurement of the second particle in the basis {|0〉, 1〉}
entails a block structure which contains nonzero elements far
from the diagonal. To our understanding, this explains why
the definition of k coherence as adopted in [16–19] is the
natural one.

012435-10



QUANTUM COHERENCE BETWEEN SUBSPACES: STATE … PHYSICAL REVIEW A 109, 012435 (2024)

IX. CONCLUSION

The concept of block coherence, based on projective mea-
surement, was first introduced in [11] and then generalized
via Naimark extension in [14,15] to include POVMs. In these
works certain general properties of the resource theory of
block coherence were proved. In the present work we re-
stricted ourselves to projective measurements and adopted
a notational framework which facilitated many explicit cal-
culations. In particular, this enabled us to prove that a
majorization condition is sufficient and necessary for state
transformation using block-incoherent operations (Sec. V and
the Appendix). Moreover, we were able to define the block-
cohering power and block-decohering power of quantum
operations (Sec. VII), as an extension of the works in [24,25].

This framework makes it also possible to connect block co-
herence, in a transparent way, with other generalized notions
of coherence. An example is the connection with k coher-
ence, which is discussed via a simple example in Sec. VIII.
Within this framework it is also possible to extend other
classes of resource theories to their block form. An example
is the dephasing covariant incoherent operations. In ordinary
resource theory of coherence, a quantum operation E is a
dephasing covariant incoherent operation if it commutes with
the dephasing operation � : ρ →∑

μ |μ〉〈μ|ρ|μ〉〈μ|. Many
of the results in [26,30,31] on this kind of resource the-
ory can be readily extended after proper modifications by
defining block-dephasing covariant incoherent operations as
those which commute with the block-dephasing operator �B :
ρ →∑

μ |μ〉〈μ| ⊗ ρμν , where ρμ is now the operator on a
block. Actually, such an extension seems to be present also
in [26], where a large system is partitioned into subsystems,
each carrying out a different representation of the translation
symmetry group.
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APPENDIX: PROOF OF THE NECESSARY CONDITION
FOR STATE TRANSFORMATION

In the main text we constructed a block-incoherent op-
eration with specific forms for the Kraus operators which,
provided that x ≺ y, transforms the state |
x〉 to |
y〉. We now
prove the converse statement: If there is any block-incoherent
operation (with any type of incoherent Kraus operators) which
transforms |
x〉 into |
y〉, then necessarily the majorization
condition holds, that is, x ≺ y. Thus majorization is both a
necessary and sufficient condition for this transformation. The
basic idea of the proof of necessity can be conveyed in the
simple case where we have two subspaces, i.e., M = 2. This
saves us and the reader from cluttered formulas and notation.
The argument for the general case of arbitrary number of
subspaces is a straightforward generalization.

So let H = H1 ⊕ H2 and suppose that there is an incoherent
operation E (ρ) =∑n KnρK†

n , which converts the initial state

|
x〉 =
(

x1|φ1〉
x2|φ2〉

)
, x2

1 + x2
2 = 1 (A1)

to the final state

|
y〉 =
(

y1|φ1〉
y2|φ2〉

)
, y2

1 + y2
2 = 1, (A2)

where without loss of generality we have taken the coefficients
xμ and yμ to be real. We will now prove that if∑

a

Ka|
x〉〈
x|K†
a = |
y〉〈
y|, (A3)

then x ≺ y, where x = (x2
1, x2

2 ) and y = (y2
1, y2

2 ).
According to (7), the general form of an incoherent Kraus

operator is such that it has exactly only one nonzero block in
each column and can be written in the form

Ka =
∑

μ

|a(μ)〉〈μ| ⊗ Ka
μ, (A4)

in which a : {1, 2} → {1, 2} is an arbitrary function. By using
a suitable permutation Pa on the blocks, the above Kraus
operator can be cast into the form

Ka = Pa

∑
μ

|a(μ)〉〈μ| ⊗ Ka
μ, (A5)

where a(μ) is now restricted such that 1 � a(μ) � μ. Hence,
without loss of generality, we can write the following form for
the incoherent Kraus operator Ka;

Ka = Pa

(
Ka

1 δ1,a(2)Ka
2

0 δ2,a(2)Ka
2

)
. (A6)

The permutation matrix Pa preceding the upper triangular
Kraus operator effectively covers all the possible forms of
the incoherent Kraus operators Ka. (For a higher number of
subspaces, e.g., when M = 3, the above form of the Kraus
operators is replaced with

Ka = Pa

⎛
⎝Ka

1 δ1,a(2)Ka
2 δ1,a(3)Ka

3
0 δ2,a(2)Ka

2 δ2,a(3)Ka
3

0 0 δ3,a(3)Ka
3

⎞
⎠

and all the arguments which follow are repeated.) From the
condition

∑
a K†

a Ka = I we get∑
a

Ka
μ

†Ka
μ = Iμ, μ = 1, 2

∑
a

δ1,a(2)K
a
1

†Ka
2 = 0d1×d2 . (A7)

On the other hand, according to Eq. (A3), for each a there
exists a complex number αa such that Ka|
x〉 = αa|
y〉 and
hence

Pa

(
x1Ka

1 |φ1〉 + x2δ1,a(2)Ka
2 |φ2〉

x2δ2,a(2)Ka
2 |φ2〉

)
= αa

(
y1|φ1〉
y2|φ1〉

)
, (A8)

or equivalently(
x1Ka

1 |φ1〉 + x2δ1,a(2)Ka
2 |φ2〉

x2δ2,a(2)Ka
2 |φ2〉

)
= αa

(
yP−1

a (1)|φP−1
a (1)〉

yP−1
a (2)|φP−1

a (2)〉
)

,

(A9)

where P−1
a is the inverse of the permutation operator Pa.

012435-11



A. MANI, F. REZAZADEH, AND V. KARIMIPOUR PHYSICAL REVIEW A 109, 012435 (2024)

Equating the norms of vectors in each block on both sides
of (A9) and summing over a and using (A7), we find

x2
1 + x2

2

∑
a

δ1,a(2) =
∑

a

|αa|2y2
P−1

a (1), (A10a)

x2
2

∑
a

δ2,a(2) =
∑

a

|αa|2y2
P−1

a (2). (A10b)

From Eq. (A10a) it is evident that

x2
1 �

∑
a

|αa|2y2
P−1

a (1). (A11)

By adding Eqs. (A10a) and (A10b) we will also find that

x2
1 + x2

2 =
∑

a

|αa|2y2
P−1

a (1) +
∑

a

|αa|2y2
P−1

a (2). (A12)

From Eqs. (A10) it is evident that

(
x2

1, x2
2

) ≺
(∑

a

|αa|2y2
P−1

a (1),
∑

a

|αa|2y2
P−1

a (2)

)
. (A13)

Now note that for μ = 1, 2,∑
a

|αa|2y2
P−1

a (μ) =
∑

a,P−1
a (μ)=1

|αa|2 y2
1 +

∑
a,P−1

a (μ)=2

|αa|2 y2
2.

(A14)

Let bμν :=∑a,P−1
a (μ)=ν |αa|2 for μ, ν ∈ {1, 2}. Then, in view

of the relation
∑

a |αa|2 = 1, the matrix B = (bμν ) is a doubly
stochastic matrix and

B
(
y2

1, y2
2

)t =
(∑

a

|αa|2y2
P−1

a (1),
∑

a

|αa|2y2
P−1

a (2)

)t

, (A15)

which implies that [5](∑
a

|αa|2y2
P−1

a (1),
∑

a

|αa|2y2
P−1

a (2)

)
≺ (y2

1, y2
2

)
. (A16)

From Eqs. (A13) and (A16) we infer that(
x2

1, x2
2

) ≺ (y2
1, y2

2

)
. (A17)

This proves the theorem.
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