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Landscape approximation of low-energy solutions to binary optimization problems
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We show how the localization landscape, originally introduced to bound low-energy eigenstates of disordered
wave media and many-body quantum systems, can form the basis for hardware-efficient quantum algorithms for
solving binary optimization problems. Many binary optimization problems can be cast as finding low-energy
eigenstates of Ising Hamiltonians. First, we apply specific perturbations to the Ising Hamiltonian such that the
low-energy modes are bounded by the localization landscape. Next, we demonstrate how a variational method
can be used to prepare and sample from the peaks of the localization landscape. Numerical simulations of
problems of up to ten binary variables show that the localization landscape-based sampling can outperform
quantum approximate optimization algorithm (QAOA) circuits of similar depth, as measured in terms of the
probability of sampling the exact ground state.
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I. INTRODUCTION

Finding optimal solutions to quadratic unconstrained bi-
nary optimization (QUBO) problems is one proposed near
term application of quantum computers [1]. Solving large-
scale QUBO problems has importance in scheduling and
allocation tasks [2–4] and machine learning [5–9], amongst
others [10–13]. The search for these optimal solutions is
generally difficult, as QUBO problems are NP-hard [14–16].
However, in many cases obtaining approximate solutions
close to the optimal can be sufficient. This is especially true
within the context of industry applications where a higher
quality solution, despite being suboptimal, may still result in
significant cost savings [17–19].

Commonly employed techniques for solving QUBO prob-
lems using quantum computers are typically based on
mapping the QUBO problem at hand to an Ising Hamil-
tonian, solving the problem by finding the ground state
of the Ising Hamiltonian. Quantum algorithms to find the
ground state include quantum annealing [20–22], variational
problem-specific algorithms such as the quantum approxi-
mate optimization algorithm (QAOA) and its generalizations
[23,24], variational quantum eigensolvers [25–27], and quan-
tum assisted methods [1,28,29].

Methods such as quantum annealing and QAOA have
shown provable convergence to the exact ground state in the
limit of infinite annealing time and circuit depth. In many
applications it is necessary to obtain a solution in a finite
time, in which case these methods will ideally give a mixture
of low-lying states. Hyperparameters such as the annealing
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schedule, mixer Hamiltonian, number of QAOA steps, and
sampling frequency thresholds for QAOA can affect the qual-
ity of the solutions obtained [30].

Here we consider a different approach. Instead of an ex-
act method that, when run on a finite-sized circuit, gives
approximate solutions whose quality is difficult to predict,
we consider a scheme to sample from low-energy solutions
with well-defined bounds, to solve the QUBO problem ap-
proximately using shallower-depth circuits. Our approach is
inspired by the “localization landscape” used to study the
Anderson localization of low-energy modes of disordered sys-
tems.

Anderson localization is the phenomenon where eigen-
function solutions to the Schrödinger equation with disor-
dered potentials are confined due to wave interference [31].
Finding the locations where these quantum states localize
typically requires solving the eigenvalue problem, as there is
often seemingly little correlation between the potentials and
the subregions where the peaks of these eigenfunctions can
be found. Efforts into identifying these regions of localization
resulted in the localization landscape function [32].

The localization landscape is a function that places a tight
bound on the subregions where low-energy states tend to lie.
The inverse of the landscape function serves as an effective
potential that can be used to predict areas of confinement
for low-energy eigenstates by identifying valleys within this
effective potential. Since its introduction, efforts have gone
into using the localization landscape to obtain the integrated
density of states, thereby giving an estimate for the energies
of the lowest eigenstates for the one-dimensional (1D) tight-
binding model [33,34]. The original localization landscape
function loses its accuracy when attempting to accurately
identify localized regions of higher-energy eigenstates, mo-
tivating the development of related landscape functions such
as the L2 landscape [35]. The L2 landscape is able to provide
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a tight bound on the localization of midspectrum eigenstates,
and can be efficiently computed with a stochastic procedure
using sparse matrix methods [36].

Remarkably, landscape functions can be generalized be-
yond low-dimensional disordered systems to more general
families of real symmetric matrices (M matrices) [37].
The localization landscape theory has also been applied to
many-body quantum systems [38], extending many of its
well-known properties to Hamiltonians describing interact-
ing spins, enabling the identification of regions of Hilbert
space where the low-energy many-body eigenstates localize.
Qualitative changes in the shape of the landscape, e.g., quan-
tified using methods such as persistent homology, can be
used as indicators of phase transitions in many-body quantum
systems [39].

In this paper, we present a method of using the localization
landscape to prepare a quantum state from which low-energy
solutions to QUBO problems can be sampled with higher
probabilities. We describe how this quantum state can be
prepared on a near term quantum device, and demonstrate
our methods for two problem instances—a nondegenerate ran-
domly generated QUBO, and a degenerate MaxCut problem
[2,40]. Existing efforts have explored the use of operators,
such as the inverse of the Hamiltonian, to produce a quantum
state with similar properties where eigenstates can be sampled
with probabilities inversely related to their energy levels [41].

The outline of this paper is as follows: Sec. II reviews the
localization landscape and its application to Anderson local-
ization and many-body localization. Section III presents the
mapping of QUBO problems to Ising Hamiltonians, showing
how the Ising Hamiltonian can be perturbed such that its low-
energy eigenstates are bounded by the localization landscape
and proposing a heuristic using shallow variational circuits for
sampling from this landscape suitable for noisy intermediate-
scale quantum (NISQ) devices. Section IV presents numerical
simulations showing how the method can be used to sample
low-energy solutions with higher probability than shallow
QAOA circuits. We analyze the effect of the two hyperparam-
eters of the method (the energy offset and coupling strength)
in Sec. V before concluding with Sec. VI.

II. LOCALIZATION LANDSCAPE

Given a disordered Hamiltonian Ĥ , finding the regions
where eigenstates localize typically requires solving the
eigenvalue equation. However, Ref. [32] introduced a function
called the localization landscape, u, that is able to predict
these subregions where the eigenstates of Ĥ peak, with the re-
quirement that all the elements of its inverse are non-negative,
i.e., (Ĥ−1)i j � 0 ∀ i, j. The landscape function u is the solu-
tion to the following differential equation:

Ĥu = �1 (1)

where �1 is a vector of all 1’s. For an eigenstate |φβ〉 of Ĥ
expressed in an orthonormal basis {|J〉} with energy Eβ , u can
be expressed as [35]

uJ =
∑

β

〈J|φβ〉
Eβ

∑
m

〈m|φβ〉 (2)

where uJ is the Jth component of u and the summation is
performed over all the basis states.

Originally developed to predict areas of localization for
a single-particle system in a random potential with Dirichlet
boundary conditions, u has the useful property of being able to
bound the eigenstate amplitudes according to their energies.

An effective potential, W , can be defined from the inverse
of the landscape function W = 1

u , and the regions where
low-energy eigenstates peak correspond to minima in W ,
providing greater insights into the regions of localizations
compared to the original potentials, which are seemingly un-
correlated to these regions.

Reference [38] extended the concept of a localization land-
scape to many-body systems, showing that u bounds the
eigenstate amplitudes of Ĥ according to

|〈J|φβ〉| = |Eβ |
∣∣∣∣∣
∑

m

(Ĥ−1)Jm〈m|φβ〉
∣∣∣∣∣ (3)

� |Eβ |‖ �φβ‖∞
∑

m

(Ĥ−1)Jm (4)

= |Eβ |‖ �φβ‖∞uJ (5)

where ‖ �φβ‖∞ = maxm(|〈m|φβ〉|) is the infinity norm of �φβ ,
and the definition of u in Eq. (1) was used to get from Eq. (4)
to Eq. (5).

This extension of the localization landscape to many-body
systems also places additional considerations on Ĥ for these
bounds to hold, namely that sufficiently short-ranged hopping
in Ĥ is required. For a Fock space graph GF where nodes
correspond to the N-spin states and edges connect state transi-
tions according to the the hopping terms in the potential, this
can be realized by maintaining the maximum degree of the
Fock space graph GF to be linear in N .

Further efforts in Ref. [37] explored the useful properties
of the landscape function beyond disordered wave media,
laying out additional constraints on the matrix form of Ĥ
for these bounds to hold. More generally, Ĥ can be a posi-
tive semidefinite matrix with Ĥi j � 0 for i �= j, and Ĥi j � 0
for i = j.

III. SAMPLING FROM THE LANDSCAPE FUNCTION

Our intention with this paper is to prepare a quantum
state |u〉 that represents the localization landscape function u,
from which exact solutions to Eq. (7) can be sampled with
probability α|〈�x∗|u〉|2, where α is the number of degenerate
solutions to the problem. Other low-energy solutions can also
be sampled with probabilities inversely proportional to their
energy, as suggested by Eq. (2).

A. Quadratic unconstrained binary optimization

The QUBO problem can be represented as

Find �x∗ = argmin
�x

CQ(�x), (6)

where CQ(�x) = �x
A�x. (7)

The vector �x consists of N binary variables, �x =
(x1, . . . , xN ) ∈ {0, 1}N , and A is a real symmetric matrix
that defines the problem. Finding optimal solutions to QUBO
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problems, �x∗, is NP-hard in general [14], and serves as a
strong impetus for designing classical and quantum heuristics
to find approximate solutions.

Quantum algorithms used to solve QUBO problems typi-
cally begin by mapping the QUBO cost function to an Ising
Hamiltonian of the form

ĤIsing = 1

4

N∑
i j

Ai j
(
σ̂ z

i + Î
)(

σ̂ z
j + Î

)
(8)

where σ̂ z
i is the Pauli-Z operator acting on the ith qubit. By

mapping each binary variable in �x to a qubit, the expectation
value 〈ĤIsing〉 has a minimum value of CQ(�x∗) in Eq. (7), and
the QUBO problem can be solved by finding the ground state,
|�x∗〉, that minimizes 〈ĤIsing〉.

B. Fitting the constraints

In general, ĤIsing in Eq. (8) does not satisfy the afore-
mentioned constraints for the landscape Eq. (5) to bound
the support of the low-energy eigenstates. However, the
constraints can be satisfied by introducing the following trans-
formation accompanied by two hyperparameters � and λ:

Ĥ = ĤIsing + �Î − λ

N∑
i

σ̂ x
i (9)

where Î is the identity matrix.
The role of � is to add a positive offset to the diagonal

elements of ĤIsing that is at least as large as its largest negative
eigenvalue. However, the largest negative eigenvalue is typi-
cally not known a priori as it requires finding the solution to
Eq. (7), although in practice it is adequate to pick a sufficiently
large value heuristically which can then be further fine tuned.

The ground state of ĤIsing in Eq. (8) is a basis state in the
computational Z basis. For problems with symmetries, such
as the Z2 symmetry in MaxCut problems [42], finding the
exact ground state can lead to further ground states with the
same energy. In general, being able to find the ground state
or an approximate ground state provides little information on
nearby states with similar energy values, although there are
heuristics that attempt to find “nearby” solutions in terms of
energy [43].

The role of λ is to introduce a mixing parameter into ĤIsing

to increase the overlap between states that are similar in terms
of energy levels. This is done so that the ground state of Ĥ
in Eq. (9) will contain components of surrounding low-energy
eigenstates of ĤIsing. It is worth noting that by parametrizing
λ = λ(t ), Eq. (9) is often used as the Hamiltonian in quantum
annealing, where one starts in the ground state of an easy-
to-solve Hamiltonian in the large λ limit and adiabatically
decreases λ(t ) to zero to obtain the ground state of HIsing. The
conditions imposed on Ĥ at the end of Sec. II and the negative
sign in Eq. (9) limit λ > 0.

The Hamiltonian Ĥ can be visualized using a Fock space
graph, GF , where nodes representing states of ĤIsing are con-
nected by an edge if they are one spin flip away, corresponding
to the potential term λ

∑N
i σ̂ x

i in Eq. (9). An example of GF

for a N = 4 Hamiltonian with randomly generated ĤIsing with
randomly chosen � and λ values satisfying these criteria is

FIG. 1. Representation of the modified Hamiltonian in Eq. (9)
as a graph in Fock space for an N = 4 random QUBO instance.
The considered perturbation induces an N-dimensional hypergraph
structure with each bitstring coupled to N nearest neighbors obtained
by flipping one bit. Colors show (a) values of 〈ĤIsing〉 at each site
normalized between 0 and 1, compared with (b) the amplitude of the
landscape function |u|/‖u‖∞ (right).

shown in Fig. 1, The similarities between the peak ampli-
tudes of the localization landscape and the low-energy states
of ĤIsing at each site can be observed, along with their de-
cay based on the Hamming distance to the optimal solution
(although the rate of decay is different). The short-ranged
hopping condition for the many-body localization landscape
outlined at the end of Sec. II is satisfied by GF having a
maximum degree of N .

Thus, we have shown that the QUBO problem can be
mapped to a Hamiltonian whose low-energy eigenstates are
bounded by the localization landscape, at the cost of introduc-
ing two hyperparameters � and λ, which control the tightness
and extent in Hilbert space of the bounds provided by the land-
scape, respectively. While the process of finding the optimal
values of λ and � for each problem instance is beyond the
scope of this paper, we will show some results on how they
can affect the probability of sampling the optimal solutions in
Sec. V.

C. Preparing the landscape function

Once we have the transformed Hamiltonian Ĥ the final step
is to prepare |u〉, the state that corresponds to the landscape
function of Ĥ . Then, measuring |u〉 in the computational basis
will sample bitstrings corresponding to peaks of |u〉 (or equiv-
alently, valleys of the landscape) with higher probability. |u〉
can be obtained by solving the qubit analog of Eq. (1) as a
linear system of equations using a quantum device:

Ĥ |u〉 = |+〉 (10)

where we use |+〉 to denote the N-qubit superposition state
|+〉⊗N .

In this paper, we use a variational method [44] to pre-
pare |u〉 using a variational ansatz |ψ (�θ )〉 = Û (�θ )|0〉. This is
achieved by minimizing the following variational cost func-
tion:

fv(�θ ) = [〈ψ (�θ )|Ĥ |ψ (�θ )〉 − 〈ψ (�θ )|+〉]2 (11)

which is constructed from Eq. (10) by taking the inner product
with |u〉 on both sides of the equation, squaring the difference
between the two terms, and replacing |u〉 with a variational
ansatz.

We note that using a variational approach comes with sev-
eral potential issues, namely the risk of encountering barren
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plateaus [45–47] or having limited expressibility where only
a portion of the target state overlaps with states that can be
produced. Notably, variational quantum algorithms can also
be difficult to optimize [48]. Despite the plethora of issues,
we pursue the variational approach here for its simplicity
when implemented on NISQ devices and compatibility with
shallow hardware-efficient circuits. Common techniques used
to mitigate the effects of barren plateaus can also be applied
[49–53], although this was not required in obtaining the pre-
sented results.

We contrast our variational approach here to traditional
variational quantum approaches to QUBO problems, where
the ground state of 〈ĤIsing〉 is typically not known, and the
variational method is used to search for the optimal state, as
opposed to preparing a known state. One major advantage
of our method is that the target state in our case is known
and |u〉 can be obtained using any of the existing approaches
for solving linear equations of the form A|x〉 = |b〉, such as
the well known Harrow-Hassidim-Lloyd (HHL) algorithm
[42]. Other, more NISQ-friendly methods for solving linear
equations include variational methods such as the variational
quantum linear solver (VQLS) [54,55], the classical com-
bination of variational quantum states [56], and the hybrid
classical-quantum linear solver [57]. Regardless, the choice
of method used to prepare |u〉 does not affect the validity of
the following results.

IV. RESULTS

To demonstrate the effectiveness of using the landscape
function to solve QUBO problems and our variational ap-
proach to prepare |u〉, we apply the methods described above
to two problem instances with N = 10 variables—a ran-
domly generated fully connected QUBO matrix A, with Ai j ∈
[−1, 1] to showcase the nondegenerate case, and a randomly
generated three-regular MaxCut problem (formulated as a
minimization problem) as a common example of a problem
with multiple degenerate solutions. Using the landscape ap-
proximation for QUBO is generally problem agnostic, and
in later sections, we use the nondegenerate case to further
investigate the behavior of the landscape function, and the
degenerate case as an example of how prior knowledge about
a structured problem can be used to improve the quality of the
solutions.

For small problem sizes, the exact solutions can be ob-
tained exactly, and the minimum QUBO cost function for
our MaxCut and randomly generated instances are CMC

Q (�x∗) =
−12 and Crand

Q (�x∗) ≈ −7.895 respectively. To fit our problems
to the constraints, we used a value of � = 8.5 and λ = 0.3
for the randomly generated QUBO instance, and � = 13 and
λ = 0.3 for the MaxCut instance.

Figure 2 shows the landscape function u of the respective
perturbed Hamiltonians Ĥ for both the randomly generated
QUBO instance and the MaxCut problem, compared with
the four lowest-energy eigenstates for the Ising Hamiltonians
representing the two problem instances. We observe that the
peaks of the landscape function u line up with basis states of
Ĥ which are the lowest-energy eigenstates of ĤIsing. Based off
Fig. 2, we intend to prepare the target state |u〉 that will have
amplitudes of a similar structure to u as shown in Fig. 2, from

FIG. 2. Localization landscape, u, of Ĥ for N = 10 qubits as
constructed in Eq. (9), compared with the four lowest-energy states
of ĤIsing for (a) a randomly generated QUBO instance (nondegenerate
case) and (b) a randomly generated three-regular MaxCut problem
(degenerate case). The peaks of the landscape function correspond to
the low-energy eigenstates of ĤIsing.

which these low-energy states of ĤIsing can be sampled with
high probability.

For both problem instances, we used the same variational
ansatz consisting of an initial layer of Hadamard gates on all
qubits, followed by four alternating layers of Ry(θ ) rotations
on all qubits and nearest-neighbor controlled-NOT (CNOT)
entangling gates in a linear topology, keeping all the coeffi-
cients of the quantum state real. We used COBYLA [58–60],
a gradient-free classical optimizer, to search for the optimal
parameters that minimize Eq. (11) from ten initial starting
sets of �θ angles. Gradient-based optimizers can also be used
[61], and we show how the gradient of fv can be obtained
in Appendix A using a gate-based circuit that produces a
quantum state with only real coefficients.

We compare the expectation value of 〈ĤIsing〉 obtained
using our postoptimized state, |ψ (�θ∗)〉, and from |u〉 ob-
tained from inverting Ĥ in Eq. (10). We also compare
the final 〈ĤIsing〉 values obtained using both our landscape
method and the QAOA with p = 1 layers. Finally, we com-
pare the solutions obtained by sampling from our optimized
ansatz, from |u〉, and from |ψ (γ , β )〉QAOA with p = 1 as de-
fined in Appendix B. All simulations were conducted using
the state vector simulator (i.e., number of shots → ∞) in
PENNYLANE [62].

In Fig. 3 we show the optimization runs used to prepare
|u〉 using our variational ansatz, and the quality of the solu-
tions obtained after every 200 iterations of COBYLA used to
calculate the classical QUBO cost function, CQ in Eq. (7) for
both the MaxCut and random QUBO instances. Also shown
in Fig. 3 are comparisons between 〈ĤIsing〉 from preparing
the exact |u〉, from randomly sampling bitstrings over a uni-
form distribution, from optimizing the QAOA with p = 1, and
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FIG. 3. Variational search for |u〉 for (a) a randomly generated QUBO problem with −1 < Ai j < 1 (nondegenerate case) and (b) a
randomly generated three-regular MaxCut problem (degenerate case). The variational search was performed using COBYLA to minimize fv(�θ )
in Eq. (11) over ten unique initial sets of �θ using the state vector simulator in PENNYLANE. Solid lines show the average cost function at each
optimizer iteration over ten unique initial sets of �θ . Shaded areas show the minimum and maximum of fv(�θ ) over the ten runs at each iteration.
Dashed lines show different 〈ĤIsing〉 values, obtained from randomly sampling bitstrings over a uniform distribution (purple), preparing |u〉
exactly (orange), from the output state of our variational circuit after attempting to minimize fv(�θ ) (blue), and from the optimized state of the
QAOA with p = 1 (green). Red markers and error bars show the average and standard deviation of classical QUBO cost function CQ obtained
from ten bitstrings sampled every 200 iterations per optimization run.

from our variational ansatz after optimization 〈ĤIsing(�θ∗)〉 =
〈ψ (�θ∗)|ĤIsing|ψ (�θ∗)〉. Further information regarding our im-
plementation of the QAOA and the number of CNOT gates used
can be found in Appendix B.

As observed in Fig. 3, the mean QUBO cost function from
sampled bitstrings obtained every 200 iterations tends towards
〈u|ĤIsing|u〉 as the ansatz converges to a state representing |u〉.
In both problem instances, being able to prepare |u〉, whether
exactly or using our simple circuit ansatz, allows one to obtain
a lower cost function value compared with the QAOA.

For the nondegenerate case, being able to prepare and
sample from the exact landscape function state |u〉 brings
us closer to the optimal CQ value compared to p = 1 of the
QAOA. This is likely due to our specific problem and choice
of hyperparameters, where the mixing introduced by λ in
Eq. (9) is small compared to the difference between the lowest
two energy states of 〈ĤIsing〉 for the nondegenerate case. This
causes the ground state of 〈ĤIsing〉 to be the dominant basis
state in the ground state of Ĥ and preparing |u〉 will produce a
strong peak at |�x∗〉.

V. EFFECT OF HYPERPARAMETERS

In this section we explore how the hyperparameters � and
λ affect the quality of the solutions obtained for the nonde-
generate case, although similar properties hold for degenerate
problem instances as well.

To properly characterize the capabilities of |u〉, the results
presented from this section on are limited to states that can be
prepared exactly. As mentioned in Sec. III C, the variational
method in Sec. IV was mainly an example of how |u〉 can
be prepared quickly using NISQ-friendly methods, and other
methods can be used for |u〉 with potentially higher accuracy.

We begin by noting that the optimal solution to the QUBO
problem in Eq. (6) can be represented by a computational
basis state of ĤIsing in Eq. (8) used to construct Ĥ . Using
Eq. (5), we can find the probability amplitude associated with
sampling |�x∗〉 if we have prepared the ground state of Ĥ :

ux∗ |Eβ |‖φβ‖∞ � |〈�x∗|φβ〉| (12)

where in this case we let |φβ〉 and Eβ be the ground state and
ground-state energy of Ĥ , respectively. For small values of λ,
we can expand the denominator using perturbation theory and
express Eβ in terms of �, λ, and the ground-state energy of
ĤIsing [i.e., E∗ = CQ(�x∗)]. To first order, this gives

ux∗ � |〈�x∗|φβ〉|
|Eβ |‖φβ‖∞

(13)

≈ |〈�x∗|φβ〉|
|E∗ + � + λ〈�x∗| ∑i σ̂

x
i |�x∗〉|‖φβ‖∞

. (14)

The left-hand side of Eq. (13), ux∗ , is not |〈�x∗|u〉|, since
the landscape function u from Eq. (5) is not a normalized
state. Nevertheless, it is related to the probability amplitude of
sampling |�x∗〉 from |u〉 and it is still in our interest to maximize
it. According to Eq. (14), this can be done by choosing � to
be as close to −E∗ as possible.

Figure 4(a) shows the probability of sampling the optimal
solution �x∗ from |u〉 as a function of both � and λ for the
randomly generated QUBO instance. Values of λ > 1 are
beyond the perturbative regime used in the approximation in
Eq. (14).

Shown in Fig. 4(b) is the Hamming distance between the
optimal solution �x∗ and the vector �x that has the highest prob-
ability of being sampled from |u〉 for the randomly generated
QUBO instance. This can be expressed more succinctly as

d (�x∗, argmax
�x

|〈�x|u〉|2), (15)
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FIG. 4. (a), (c) Probability of sampling x∗ from |u〉 as a function
of hyperparameters λ and � for (a) the random QUBO instance
and (c) the three-regular MaxCut instance. (b), (d) Bitstrings with
Hamming distance to solution most likely to be sampled from |u〉 as
a function of hyperparameters λ and � for (b) the random QUBO
instance and (d) the three-regular MaxCut instance. Gray areas show
values of λ and � for which there exist elements of Ĥ−1 < 0, where
the conditions for the landscape to bound the low-energy eigenstates
are not satisfied.

where d (�x1, �x2) is the Hamming distance between �x1 and �x2.
Figures 4(b) and 4(d) show the same plots but for the MaxCut
instance. The results in Fig. 4 also suggest that sampling
solutions close to the optimum favor having λ to be as large
as possible while still respecting the constraints for a given
E∗ + �, which should be as close to zero as possible.

In Fig. 5, we compare the total probability of sampling
solutions with Hamming distance d away from the optimal so-
lution for the randomly generated QUBO problem from three
states—|u〉, the ground state of the perturbed Hamiltonian Ĥ ,
and the same optimal state of the QAOA with p = 1 in Fig. 3.
These probabilities change as a function of � and λ.

In Fig. 5(a) � and λ are too small, and there is insufficient
mixing between the low-energy states of the corresponding
ĤIsing, and preparing the landscape function provides similar
probabilities to sample the ground state of ĤIsing from the
perturbed Hamiltonian. This can be desirable in most cases
where we are only interested in the optimal solution to the
QUBO problem.

In contrast, for cases where � and/or λ are too large, such
as in Figs. 5(b) and 5(c), the majority of the solutions sampled
will be approximately N

2 Hamming distances away. For large
values of λ, the perturbation term in Ĥ becomes dominant
compared to the ZZ interactions in ĤIsing, and |u〉 tends toward
the uniform superposition state in the computational basis.

However, there is also an interesting regime in Fig. 5(d)
where, for well-chosen values of � and λ, sampling from |u〉
is able to provide the optimal solution with a high probability
along with nearby solutions in terms of Hamming distance.
In practice, this can be used to find the optimal bitstring from
just a handful of samples on |u〉.

FIG. 5. Probability of sampling a solution with Hamming dis-
tance d away from the optimal solution �x∗ for the randomly generated
QUBO problem for different values of � and λ. Colored triangles
show the probability of sampling these individual solutions from |u〉
(orange), from the ground state of Ĥ (blue), and from the optimal
state of the QAOA with p = 1 (green). Connected lines show the
total probability of all solutions of Hamming distance d away from
the optimal solution (i.e., the sum of all the triangles at a given d).

On the other hand, sampling from the optimal state pro-
duced by the QAOA with p = 1 will result in the majority
of the samples being N

2 Hamming distance away from the
optimal solution.

We note that in all of these cases, the probability of obtain-
ing the optimal solution �x∗ from |u〉 is still higher than any
other bitstring, although it may not form the majority of the
samples obtained.

The main results presented so far mainly concerned two
different problem instances for N = 10. Figure 6 represents an
initial foray into how using the localization landscape scales
with problem sizes, as well as how prior knowledge of the
problem can be used to increase the probability of sampling
optimal solutions.

For each problem type (random QUBO and MaxCut in-
stances), the probability of sampling eigenstates of ĤIsing (�x∗,
�x1, and �x2) corresponding to the three distinct lowest-energy
values (E∗, E1, and E2) is plotted against the problem size
N , and compared against the probability obtained from sam-
pling the optimal solution from a uniform distribution. For the
MaxCut instances in Fig. 6(b), the curves show the total prob-
ability, i.e., α|〈�xi|u〉|2, where α is the number of degenerate
states corresponding to energy Ei.

At first glance, it is worth noting that while the exponen-
tially decreasing probability of sampling the optimal solution
may pose a glaring issue, especially for the random QUBO
instance, the probability of sampling �x∗ remains consistently
above that of random sampling.

As mentioned earlier, a “good” choice of � would be one
that is as close to −E∗ as possible. For any QUBO problem,
−∑

i, j |Ai j | is a lower bound of CQ and an initial value � =
1.1 × ∑

i, j |Ai j | can be used for unstructured problems.
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FIG. 6. Probability of sampling eigenstates of ĤIsing correspond-
ing to the first three lowest-energy states from |u〉 for (a) randomly
generated QUBO problems (nondegenerate case) and (b) randomly
generated three-regular MaxCut problems (degenerate case). Solid
lines in (b) show these probabilities using � and λ values chosen
with some prior knowledge of the problem instances. Dotted lines
in (b) show these probabilities using the same method of choosing
� and λ values as in (a). Purple dashed lines shows the probability
of sampling �x∗ from a uniform distribution. Each plot point was ob-
tained by averaging over 100 randomly generated problem instances,
and |u〉 was found by solving Eq. (10) exactly.

For a MaxCut problem, one can use the maximum possible
number of edge bisections in a graph as the lower bound for
CQ. This is equal to the total number of edges, ne = Nd

2 , for
a d-regular graph. For three-regular graphs, one can choose
� = 3N

2 + 1 which is typically less than
∑

i, j |Ai j | to obtain
a much higher probability in sampling �x∗, as observed when
comparing the solid and dotted lines in Fig. 6(b).

We used a value of λ = 0.07 � for the random QUBO
instances, and λ = 0.03 � for the MaxCut problems to fulfill
the constraints in Sec. II for the instances considered in Fig. 6.
However, these values may not be valid or ideal for all QUBO
problems in general. In all problem instances, the exponential
decrease in probability can be ameliorated with further tuning
of � and λ for the specific instance.

Another interesting observation of Fig. 6(b) is how higher-
energy states can have a greater overall probability of being
sampled compared to the optimal solution. This can be ex-
plained by the increase in number of degenerate states closer
to the middle of the energy spectrum. As shown in Fig. 2(c),
the probability of sampling individual ground states is still
dominant compared to the other states.

As mentioned in Sec. III C, quantum approaches such as
the HHL or VQLS algorithm can be used to prepare |u〉. The
runtime complexity of these algorithms grows with the con-
dition number of the perturbed Hamiltonian, κ (Ĥ ), defined
as the ratio between the largest and smallest singular values
[42,63]. Here, we investigate how the condition number of

FIG. 7. Condition number of the perturbed Hamiltonian, κ (Ĥ ),
for (a) the randomly generated QUBO instance and (b) the three-
regular MaxCut instance, as a function of the hyperparameters � and
λ. Gray areas show values of λ and � for which there exist elements
of Ĥ−1 < 0 and the conditions outlined in Sec. II are not satisfied.
We observe that κ (Ĥ ) diverges when both λ and E∗ + � are small,
suggesting that having |u〉 to tightly bound the exact ground state of
ĤIsing can make it more difficult to prepare.

Ĥ , and therefore the difficulty of preparing |u〉, depend on
the perturbation terms � and λ. Figure 7 shows κ (Ĥ ) for
different values of � and λ used to perturb ĤIsing according
to Eq. (9). We observe, for both the random QUBO instance
in Fig. 7(a) and the MaxCut instance in Fig. 7(b), that the
condition number decreases for increasing values of � and λ.

In Eq. (14), we saw that the localization landscape more
tightly bounds the ground state of ĤIsing as E∗ + � (i.e., the
smallest eigenvalue of H) and λ are close to zero. The diver-
gence of the condition number in this limit suggests there is
no free lunch from using a landscape that very tightly bounds
the exact ground state, since it will also be difficult to prepare.
Conversely, the decrease in condition number in Fig. 7 further
suggests that adding offset and mixing terms to perturb the
Hamiltonian allows for approximate solutions such as |u〉 to
be more easily prepared and sampled from.

VI. DISCUSSION AND CONCLUSION

A key part in obtaining the results in this paper was per-
turbing 〈ĤIsing〉, which is diagonal in the computational basis,
with a uniform transverse magnetic field

∑N
i σ̂ z

i , equivalent
to a uniform nearest-neighbor hopping on an N-dimensional
hypercube. This was done to controllably smear out the eigen-
states of ĤIsing in the Fock space, allowing for the QUBO
problem to be solved approximately by sampling from the
solutions of the easier-to-solve landscape problem.

As we have observed, the quality of the resulting solutions
will depend on the strength and form of the perturb-
ing potential, and the properties of alternative perturbation
terms provide interesting avenues for further exploration.
For example, one may replace the perturbative term with a
number-conserving perturbation (arising in the case of mod-
els of many-body localization), such as

∑
i, j (σ̂

+
i σ̂−

j + H.c.)

where σ̂± = 1
2 (σ̂ x ± iσ̂ y), leading to landscape functions that

explore decoupled subspaces of the full Hilbert space as in
Ref. [38]. Such a perturbative term may be more useful when
sampling solutions to QUBO problems involving hard con-
straints, such as those requiring the number of spin excitations
to be preserved.
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Another interesting avenue for exploration would be to
consider QUBO problems where the eigenvalue spectrum of
the Hamiltonian encoding the problem is skewed towards
having a few low-energy states separated from many high-
energy states by a large gap. These types of QUBO problems
are typically present in industry-relevant contexts, where the
use of a penalty term when constructing the unconstrained
problem causes all solutions that do not satisfy any constraints
to have very high costs. By preparing the landscape function,
it should be possible to prepare a state such that solutions
satisfying the constraints can be sampled more easily, and the
optimal solution can be easily found from this smaller, finite
group of samples.

In conclusion, we showed how to apply the localization
landscape theory used to find localized regions of low-energy
eigenstates in many-body systems to prepare quantum states
that can be used to sample low-energy solutions to the QUBO
problem with high probability. We demonstrated our methods
on two problem instances, a randomly generated MaxCut
problem [2,40] exemplifying the degenerate case and a ran-
domly generated QUBO problem for the nondegenerate case,
and showed that by preparing a state, |u〉, representing the
landscape function, low-energy solutions to the Ising Hamil-
tonian corresponding to the QUBO problem can be sampled
with higher probability. An advantage of the approach is that
the good solutions can be sampled using relatively shallow
circuits, minimizing the effect of gate noise and decoherence
present in current noisy intermediate-scale quantum proces-
sors.
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APPENDIX A: GRADIENT CALCULATION

In this Appendix, we show how the derivative of the cost
function, ∂ fv

∂θi
, can be obtained in situ using a quantum device

and the parameter shift rule:

fv = [〈ψ (�θ )|Ĥ |ψ (�θ )〉 − 〈ψ (�θ )|+〉]2 (A1)

∂ fv

∂θi
= 2[〈ψ (�θ )|Ĥ |ψ (�θ )〉 − 〈ψ (�θ )|+〉]

× ∂

∂θi
[〈ψ (�θ )|Ĥ |ψ (�θ )〉 − 〈ψ (�θ )|+〉]. (A2)

From here, we will proceed term by term. Using the parameter
shift rule,

∂

∂θi
〈ψ (�θ )|Ĥ |ψ (�θ )〉 = 1

2

[
〈Ĥ〉

(
θi + π

2

)
− 〈Ĥ〉

(
θi − π

2

)]
.

(A3)

To evaluate ∂
∂θi

[〈ψ (�θ )|+〉], we observe that for a real quantum

state |ψ (�θ )〉
∂

∂θi
|〈ψ (�θ )|+〉|2 = 2〈ψ (�θ )|+〉 ∂

∂θi
[〈ψ (�θ )|+〉] (A4)

and
∂

∂θi
|〈ψ (�θ )|+〉|2 = ∂

∂θi
[〈ψ (�θ )|+〉〈+|ψ (�θ )]. (A5)

Putting Eqs. (A4) and (A5) together, and letting M̂ =
|+〉〈+| = ( I+σ̂x

2 )⊗N , we obtain

∂

∂θi
[〈ψ (�θ )|+〉] = 1

2

1

〈ψ (�θ )|+〉
∂

∂θi
〈ψ (�θ )|M̂|ψ (�θ )〉 (A6)

= 1

2

1

〈ψ (�θ )|+〉
∂

∂θi
〈M̂〉(�θ ) (A7)

= 1

4

〈M̂〉(θi + π
2

) − 〈M̂〉(θi − π
2

)

〈ψ (�θ )|+〉 (A8)

where we have used the parameter shift rule in Eq. (A8) to
evaluate ∂

∂θi
〈M̂〉. Evaluating the gradient ∂ fv

∂θi
therefore requires

three state preparations per variational parameter, at θi, θi +
π
2 , and θi − π

2 .

APPENDIX B: QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The QAOA is a variational quantum algorithm for finding
approximate solutions to combinatorial optimization prob-
lems. The QAOA state is parametrized by two sets of angles,
�γ = {γ1, . . . , γp} and �β = {β1, . . . , βp}:

|ψ (�γ , �β )〉QAOA =
p∏
i

Ux(βi )UH (γi)|+〉 (B1)

where

UH (γ ) = e−iγ ĤIsing , (B2)

Ux(β ) = e−iβ
∑

i σ̂
x
i . (B3)

FIG. 8. Grid search for the QAOA with p = 1 for (a) the MaxCut
problem and (b) a randomly generated QUBO problem. The expec-
tation values 〈ĤIsing〉 for the respective problems were calculated for
a 100 × 100 grid using the state vector simulator in PENNYLANE. The
optimal parameters found using the grid search (green star) were
used as starting parameters for further fine tuning of 〈ĤIsing〉 using
COBYLA (magenta line). The red cross denotes the final parameters
obtained using COBYLA.
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In Sec. IV, we compared the results obtained from prepar-
ing the landscape state |u〉 with results obtained from p = 1
of QAOA. For p = 1, the state in Eq. (B1) only contains two
variational parameters, and the optimal parameters to obtain
the QAOA results in Fig. 3 were found by using a grid search
with a resolution of 100 × 100 and then using COBYLA to
perform a local search, further fine tuning the parameters.
Figure 8 shows the grid and fine tuning needed to obtain the
optimal parameters.

The variational ansatz described in Sec. IV to produce
the results in Fig. 3 uses 4 × (N − 1) = 36 CNOT gates. By
comparison, decomposing the unitaries in the QAOA to simi-
lar gatesets requires 2 × ne number of CNOT gates per depth
p, where ne is the number of edges in the problem graph
[64]. For p = 1, this amounts to 30 and 90 CNOT gates
for the MaxCut and random QUBO graph before account-
ing for measures to handle long-ranged interactions between
qubits.

[1] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann,
T. Menke et al., Noisy intermediate-scale quantum algorithms,
Rev. Mod. Phys. 94, 015004 (2022).

[2] F. Glover, G. Kochenberger, and Y. Du, A tutorial on formulat-
ing and using QUBO models, arXiv:1811.11538.

[3] A. I. Pakhomchik, S. Yudin, M. R. Perelshtein, A. Alekseyenko,
and S. Yarkoni, Solving workflow scheduling problems with
QUBO modeling, arXiv:2205.04844.

[4] C. Papalitsas, T. Andronikos, K. Giannakis, G.
Theocharopoulou, and S. Fanarioti, A QUBO model for
the traveling salesman problem with time windows, Algorithms
12, 224 (2019).

[5] P. Date, D. Arthur, and L. Pusey-Nazzaro, Qubo formulations
for training machine learning models, Sci. Rep. 11, 10029
(2021).

[6] C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, and S.
Wrobel, A QUBO formulation of the k-medoids problem, in
Lernen. Wissen. Daten. Analysen. (Fraunhofer, Berlin, 2009),
pp. 54–63.

[7] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, Train-
ing a binary classifier with the quantum adiabatic algorithm,
arXiv:0811.0416.

[8] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen,
L. Linder, and A. Smith, A pattern recognition algorithm
for quantum annealers, Comput. Software Big Sci. 4, 1
(2020).

[9] N. Matsumoto, Y. Hamakawa, K. Tatsumura, and K. Kudo,
Distance-based clustering using QUBO formulations, Sci. Rep.
12, 2669 (2022).

[10] F. Glover, G. Kochenberger, and Y. Du, Applications and
computational advances for solving the QUBO model, in The
Quadratic Unconstrained Binary Optimization Problem: The-
ory, Algorithms, and Applications (Springer, New York, 2022),
pp. 39–56.

[11] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S.
Vallecorsa, and J.-R. Vlimant, Quantum machine learning in
high energy physics, Mach. Learn.: Sci. Technol. 2, 011003
(2021).

[12] Z. Huang, Q. Li, J. Zhao, and M. Song, Variational quantum
algorithm applied to collision avoidance of unmanned aerial
vehicles, Entropy 24, 1685 (2022).

[13] H. Wang, D. Huo, and B. Alidaee, Position unmanned aerial
vehicles in the mobile ad hoc network, J. Intell. Rob. Syst. 74,
455 (2014).

[14] Y. Fu and P. W. Anderson, Application of statistical mechan-
ics to NP-complete problems in combinatorial optimisation, J.
Phys. A 19, 1605 (1986).

[15] C. H. Papadimitriou, Computational complexity, in Encyclope-
dia of Computer Science (Wiley, New York, 2003), pp. 260–265.

[16] F. Barahona, On the computational complexity of Ising spin
glass models, J. Phys. A 15, 3241 (1982).

[17] D. S. Hochba, Approximation algorithms for np-hard problems,
ACM Sigact News 28, 40 (1997).

[18] J. K. Lenstra, D. B. Shmoys, and É. Tardos, Approximation
algorithms for scheduling unrelated parallel machines, Math.
Program. 46, 259 (1990).

[19] D. P. Williamson and D. B. Shmoys, The Design of Approxima-
tion Algorithms (Cambridge University, New York, 2011).

[20] A. Rajak, S. Suzuki, A. Dutta, and B. K. Chakrabarti, Quantum
annealing: An overview, Phil. Trans. R. Soc. A 381, 20210417
(2023).

[21] G. E. Santoro and E. Tosatti, Optimization using quantum
mechanics: quantum annealing through adiabatic evolution, J.
Phys. A 39, R393 (2006).

[22] A. Das and B. K. Chakrabarti, Colloquium: Quantum annealing
and analog quantum computation, Rev. Mod. Phys. 80, 1061
(2008).

[23] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[24] S. Hadfield, Z. Wang, B. O’gorman, E. G. Rieffel, D. Venturelli,
and R. Biswas, From the quantum approximate optimization
algorithm to a quantum alternating operator ansatz, Algorithms
12, 34 (2019).

[25] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[26] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[27] R. Shaydulin, H. Ushijima-Mwesigwa, C. F. A. Negre, I. Safro,
S. M. Mniszewski, and Y. Alexeev, A hybrid approach for
solving optimization problems on small quantum computers,
Computer 52, 18 (2019).

[28] O. Kyriienko, Quantum inverse iteration algorithm for pro-
grammable quantum simulators, npj Quantum Inf. 6, 7
(2020).

[29] K. Bharti and T. Haug, Iterative quantum-assisted eigensolver,
Phys. Rev. A 104, L050401 (2021).

[30] D. Lykov, J. Wurtz, C. Poole, M. Saffman, T. Noel, and
Y. Alexeev, Sampling frequency thresholds for quantum
advantage of quantum approximate optimization algorithm,
arXiv:2206.03579.

[31] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

012433-9

https://doi.org/10.1103/RevModPhys.94.015004
https://arxiv.org/abs/1811.11538
https://arxiv.org/abs/2205.04844
https://doi.org/10.3390/a12110224
https://doi.org/10.1038/s41598-021-89461-4
https://arxiv.org/abs/0811.0416
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1038/s41598-022-06559-z
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.3390/e24111685
https://doi.org/10.1007/s10846-013-9939-y
https://doi.org/10.1088/0305-4470/19/9/033
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1145/261342.571216
https://doi.org/10.1007/BF01585745
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1088/0305-4470/39/36/R01
https://doi.org/10.1103/RevModPhys.80.1061
https://arxiv.org/abs/1411.4028
https://doi.org/10.3390/a12020034
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1109/MC.2019.2908942
https://doi.org/10.1038/s41534-019-0239-7
https://doi.org/10.1103/PhysRevA.104.L050401
https://arxiv.org/abs/2206.03579
https://doi.org/10.1103/PhysRev.109.1492


TAN, GAN, LEYKAM, AND ANGELAKIS PHYSICAL REVIEW A 109, 012433 (2024)

[32] M. Filoche and S. Mayboroda, Universal mechanism for An-
derson and weak localization, Proc. Natl. Acad. Sci. USA 109,
14761 (2012).

[33] D. N. Arnold, G. David, M. Filoche, D. Jerison, and S.
Mayboroda, Computing spectra without solving eigenvalue
problems, SIAM J. Sci. Comput. 41, B69 (2019).

[34] G. David, M. Filoche, and S. Mayboroda, The landscape law for
the integrated density of states, Adv. Math. (NY) 390, 107946
(2021).

[35] L. Herviou and J. H. Bardarson, L2 localization landscape for
highly excited states, Phys. Rev. B 101, 220201(R) (2020).

[36] M. Kakoi and K. Slevin, A stochastic method to compute
the l2 localisation landscape, J. Phys. Soc. Jpn. 92, 054707
(2023).

[37] M. Filoche, S. Mayboroda, and T. Tao, The effective potential
of an m-matrix, J. Math. Phys. 62, 041902 (2021).

[38] S. Balasubramanian, Y. Liao, and V. Galitski, Many-body local-
ization landscape, Phys. Rev. B 101, 014201 (2020).

[39] G. A. Hamilton and B. K. Clark, Analysis of many-body local-
ization landscapes and Fock space morphology via persistent
homology, arXiv:2302.09361.

[40] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simpli-
fied NP-complete problems, in Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing (Association for
Computing Machinery, New York, 1974), pp. 47–63.

[41] D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M.
Benedetti, and M. Lubasch, Filtering variational quantum algo-
rithms for combinatorial optimization, Quantum Sci. Technol.
7, 015021 (2022).

[42] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm
for linear systems of equations, Phys. Rev. Lett. 103, 150502
(2009).

[43] S. T. Goh, J. Bo, S. Gopalakrishnan, and H. C. Lau, Techniques
to enhance a QUBO solver for permutation-based combinatorial
optimization, in Proceedings of the Genetic and Evolutionary
Computation Conference Companion (Association for Comput-
ing Machinery, New York, 2022), pp. 2223–2231.

[44] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[45] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[46] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[47] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio,
and P. J. Coles, Noise-induced barren plateaus in variational
quantum algorithms, Nat. Commun. 12, 6961 (2021).

[48] L. Bittel and M. Kliesch, Training variational quantum algo-
rithms is NP-hard, Phys. Rev. Lett. 127, 120502 (2021).

[49] X. Liu, G. Liu, J. Huang, H.-K. Zhang, and X. Wang, Mit-
igating barren plateaus of variational quantum eigensolvers,
arXiv:2205.13539.

[50] H.-Y. Liu, T.-P. Sun, Y.-C. Wu, Y.-J. Han, and G.-P. Guo, Miti-
gating barren plateaus with transfer-learning-inspired parameter
initializations, New J. Phys. 25, 013039 (2023).

[51] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[52] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran,
Transfer learning in hybrid classical-quantum neural networks,
Quantum 4, 340 (2020).

[53] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt,
and M. Leib, Layerwise learning for quantum neural networks,
Quantum Mach. Intell. 3, 5 (2021).

[54] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio,
and P. J. Coles, Variational quantum linear solver Quantum 7,
1188, (2020).

[55] H. Patil, Y. Wang, and P. S. Krstić, Variational quantum lin-
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