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Dissipative quantum Fisher information for a general Liouvillian parametrized process
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The dissipative quantum Fisher information (DQFI) for a dynamic map with a general parameter in an open
quantum system is investigated, which can be regarded as an analog of the quantum Fisher information in
the Liouville space. We first derive a general dissipative generator in the Liouville space, and based on its
decomposition form, find the DQFI stems from two parts. One is the dependence of eigenvalues of the Liouvillian
supermatrix on the estimated parameter, which shows a linear dependence on time. The other is the variation
of the eigenvectors with the estimated parameter. The relationship between this part and time presents rich
characteristics, including harmonic oscillation, pure exponential gain and attenuation, as well as exponential gain
and attenuation of oscillatory type, which depend specifically on the properties of the Liouville spectrum. This is
in contrast to that of the conventional generator, where only oscillatory dependencies are seen. Particularly, we
find that the nonunitary parameter encoding process induced by the dissipative generator can be transformed into
two unitary encoding processes plus the contribution of the commutator between the two. Further, we illustrate
the theory through a toy model: a two-level system with spin-flip noise. Especially, by using the DQFI, we
demonstrated that the exceptional estimation precision cannot be obtained for this model at the Liouvillian
exceptional point.

DOI: 10.1103/PhysRevA.109.012432

I. INTRODUCTION

Accurate estimation of the values of parameters charac-
terizing an underlying physical setting has important applica-
tions in a wide range of scientific fields, which has promoted
the rapid development of parameter estimation theory [1–3].
Quantum Fisher information (QFI), “being at the heart of
quantum parameter estimation theory,” is the supremum of
the classical Fisher information (CFI) [4] and its inverse is
used to quantify the lower bound of mean-square error of
unbiased estimator about the unknown parameter [5–7]. This
indicates that the larger the QFI of the unknown parameter,
the higher the estimation precision that may be achieved. In-
terestingly enough, QFI plays a key role in other aspects aside
from characterizing estimation precision, such as measuring
the statistical distinguishability between adjacent quantum
states [8,9], the witness of quantum correlations [10–13],
and non-Markovian effects [14–19], characterizing quantum
phase transition [20–23], bound quantum speed limit [24–28],
and so on.

There is no doubt that the most pivotal task in the re-
search of quantum parameter estimation is to calculate the
QFI of unknown parameters. Considering the convenience of
the solution, early researchers mainly focused on estimating
the overall factor of Hamiltonian, that is, Ĥθ = θĤ [29–35],
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in which θ is the parameter to be estimated. For instance, the
phase estimation in the interferometer models. However, in
many physical models, the estimated parameters do not nec-
essarily appear as the overall factor of Hamiltonian [36,37]. A
prominent example is a two-level system in a magnetic field,
which is described by the Hamiltonian Ĥθ = B[cos(θ )σ̂x +
sin(θ )σ̂z] [38,39]. The direction angle of magnetic field θ ,
as the parameter to be estimated, is not the overall factor
of Hamiltonian in the current case. In 2014, Pang and Brun
studied the quantum metrology problem of this kind of gen-
eral Hamiltonian parameter in detail [36]. The results show
that QFI is proportional to the variance of the conventional
generator of local unknown parameter translation. More in-
terestingly, they found that QFI originated from two parts
based on the decomposition form of the generator: one is
the dependence of the eigenvalues of the Hamiltonian on the
parameter to be estimated, which is proportional to time t ; the
other is the dependence of the eigenvectors of the Hamiltonian
on the estimated parameter, which oscillates with time t . This
is a major breakthrough in the study of parameter estimation
in closed quantum systems, which has attracted widespread
attention to the quantum estimation theory based on the gen-
erator method [37–47].

Further progress in parameter estimation theory stemmed
from incorporating environment-induced decoherence pro-
cesses since a real physical system inevitably interacts
with the surrounding environment [48,49]. Compared with
the closed system, the introduction of environmental noise
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significantly increases the difficulty of analytical solutions,
which hinders us from deeply understanding the influence of
noise on estimation precision. The breakthrough point to solve
this difficulty is that Fujiwara et al. proposed to apply quan-
tum channels technology to the metrological problem [50].
The resulting general framework quantifying the estimation
precision bounds in the decoherence models including the
simulation-based [51,52], the purification-based [53], and
the channel-extension-based methods [54]. Furthermore, the
variational method can also be utilized to calculate the
fundamental metrological bounds for some decoherence mod-
els [55]. In particular, the estimation precision limit that can
be achieved by performing continuous measurements on open
quantum systems has also been evaluated [56,57]. Moreover,
the impact of the geometry of noise on sensing precision and
error scale has been studied [58]. Recently, Alipour et al.
considered a variant of QFI for computational simplicity [59],
whose essential idea is to transform the estimation problem
from Hilbert space to Hilbert-Schmidt space (Liouville space)
for processing. From then on, we named the variant QFI
proposed by Alipour et al. “dissipative quantum Fisher infor-
mation” (DQFI). Interestingly, the DQFI is proportional to the
covariance between �Lθ and �L†

θ , here �Lθ refers to the matrix
representation of Liouvillian superoperator in the Liouville
space. So, the connection between estimation precision and
properties of the underlying dynamics of the open system is
established in the Liouville space, which is difficult to realize
under the conventional QFI framework due to the complexity
brought by superoperators in the Hilbert space. It is worth
mentioning that, compared to other methods, the DQFI gives
the correct scaling of error with unprecedented simplicity and
the constant factor for capturing precision scales is more accu-
rate in some open systems [52,53,59]. Subsequently, Benatti
et al. applied DQFI to the parameter estimation of N-particle
two-mode bosonic systems with dissipation and enjoyed great
success [60]. In fact, as early as 2005, the problem of revisit-
ing quantum concepts in Liouville space has been presented
in Ref. [61], where the authors generalized the concept of
adiabaticity to the realm of open systems.

On the other hand, there are several variants of QFI,
depending on the differences in definition method, such as
QFIs based on (symmetric, right, left) logarithmic deriva-
tives [3,5,62,63], and the paradigmatic QFI closely related to
the skew information [64,65]. Here the first three are mainly
applied in the quantum metrology field, while the last one
plays an important role in the discrimination of quantum
states [65]. In recent years, the above variant QFIs have
developed rapidly in different application scenarios, but the
relevant theories of DQFI have not been further developed
since it was proposed. We noticed that for the sake of math-
ematical simplicity, the original theory of DQFI has made
an ideal assumption that the parameter to be estimated is
an overall factor of Liouvillian supermatrix [59], namely,
�Lθ = θ �L where θ is the parameter to be estimated, or a little
more relaxed, that [�Lθ , ∂θ �Lθ ] = 0. The former implies that
the estimated parameter simply rescales the evolution time
of the open quantum system, the physical models studied in
Refs. [59,60] are limited to this situation. By comparison, the
latter assumption means that the parameter can simply be an
overall factor of the coherent part or the dissipative part of the

Liouvillian supermatrix but the two parts of dynamics have to
be commutative.

Nevertheless, two common as well as exemplary physi-
cal scenarios do not meet the above assumptions: (i) The
estimated parameter is not an overall factor of Hamilto-
nian [37–39,43–46]. For example, as we mentioned before,
a two-level system in the magnetic field and affected by noise
at the same time, with the magnetic field direction as the
estimated parameter. (ii) For open systems where coherent
and dissipative dynamics are noncommutative (non-phase-
covariant dynamics), which is characteristic of most kinds of
noises [66–71]. For instance, a photon-loss Jaynes-Cummings
model with the Rabi frequency as the parameter to be esti-
mated. As a consequence, the assumption that [�Lθ , ∂θ �Lθ ] =
0 may limit the application scenarios and development of
DQFI. Considering that DQFI may be a new avenue and
has exhibited great power in dealing with quantum parameter
estimation problems in some open systems. It is thus urgent
and significant to extend DQFI theory to general Liouvillian
parametrized processes, i.e., [�Lθ , ∂θ �Lθ ] �= 0. This necessarily
provides some theoretical guidance for researchers (to circum-
vent the involved superoperators) who want to utilize DQFI to
deal with parameter estimation problems or study other inter-
esting physical phenomena in general dissipative systems.

Here, inspired by the method of Pang et al. for systems
without dissipation [36], we first derive an effective gen-
erator for a dynamic map with a general parameter in the
Liouville space for dissipative systems. Further, we express
this generator by eigenvalues and eigenvectors of the Liou-
villian supermatrix, and find that the DQFI originates from
the following two parts: one is the dependence of eigenvalues
on parameters to be estimated, which is linear dependence
on time t ; the second is the variation of the eigenvectors
with the estimated parameters and the relation between this
part and time t is closely related to the gaps of Liouville
spectrum. Remarkably, we find that the nonunitary parameter
encoding process induced by the dissipative generator can
be transformed into two unitary encoding processes plus the
contribution of the commutator between the two. We then
apply the theory to a concrete example: a two-level system
with spin-flip noise (corresponding to non-phase-covariant
dynamics), taking the transition frequency as the estimated
parameter. The dynamic evolution of DQFI over time is
carefully studied for different decay rates, and the physical
mechanism behind it is explained in detail.

It is worth mentioning that in recent years using Hamil-
tonian exceptional point (HEP) to improve measurement
precision (owing to susceptibility diverges at the exceptional
point) has been widely studied in quantum metrology [72,73].
Nevertheless, the influence of quantum noise on exceptional-
point-based sensors has been controversially debated in some
theoretical studies [74–78]. To demonstrate the remarkable
efficacy of DQFI in dissipative quantum metrology, we also
explored the behavior of QFIs around the Liouvillian ex-
ceptional point (LEP). The result clearly shows that the
estimation precision near the LEP is not significantly en-
hanced.

To facilitate the reading, in Table I we concisely list some
important physical terms as well as corresponding abbrevi-
ations and symbols. Note that in order to better distinguish,
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TABLE I. Symbol, abbreviations, and corresponding full names
used in the paper.

Symbol: Full name Abbreviation

Fc: Conventional classical Fisher information CCFI
Fq: Conventional quantum Fisher information CQFI
Conventional quantum Cramér-Rao bound CQCRB
M̂: Conventional symmetric logarithmic derivative CSLD
F̃ : Dissipative quantum Fisher information DQFI
Dissipative quantum Cramér-Rao bound DQCRB
M̃: Dissipative symmetric logarithmic derivative DSLD
Positive-operator valued measure POVM
Hamiltonian exceptional point HEP
Liouvillian exceptional point LEP

we add “conventional” in front of the familiar QFI and its
related words, and “dissipative” in front of the variant version
proposed by Alipour et al..

The paper is organized as follows. In Sec. II, we in-
troduce the related knowledge of parameter estimation and
conventional quantum Fisher information (CQFI). In Sec. III,
the dissipative generator for a general dynamical map and
corresponding DQFI are derived in the Liouville space, and
their related properties are discussed in detail. In Sec. IV,
we demonstrate the theory by using a specific dissipative
two-level system and focus on studying the dynamic evo-
lution of DQFI then compare it with CQFI. In Sec. V, the
application scenarios and advantages and disadvantages of
CQFI and DQFI are discussed. The last section concludes this
paper. To ensure the integrity of this paper, we present four
Appendixes, in which we present a detailed derivation of the
spectral decomposition form for general dissipative generator
(Appendix A), review some basic properties of superoperator
and vectorization (Appendix B), review the main aspects of
non-Hermitian matrix and its adjoint (Appendix C), and give
the spectral decomposition formulas for calculating DQFI
and dissipative symmetric logarithmic derivative (DSLD)
(Appendix D).

II. A REVIEW OF BASIC THEORIES

To facilitate the comparison with DQFI, let us start by
reviewing the essential features and formulas of CQFI. Sup-
pose H is a Hilbert space that corresponds to a physical
system described by Hamiltonian Ĥ (�x) with the unknown
vector of parameters �x := [x0, x1, . . . , xm]T. In order to infer
the unknown parameter information, one needs to employ
the means of parameter estimation. A typical parameter es-
timation protocol usually consists of the following four steps,
as shown in Fig. 1 [1–3]: (i) Preparation of quantum probe
state ρ̂in. (ii) Parametrization processes: let the probe state ρ̂in

evolve under the dynamic mapping Û (�x) = e−iĤ (�x)t where we
set h̄ = 1 in this paper, so that encoding information about
the unknown parameter to the output state, that is ρ̂out(�x) =
Û (�x )̂ρinÛ †(�x). (iii) Construct a set of positive-operator-valued
measure (POVM) {M̂y} that satisfy positive semidefinite as
well as completeness, and then measuring the output state to
obtain the conditional probability distribution of the reading
results {P(y|�x) = Tr[̂ρout(�x)M̂y]} (given by the Born rule),

FIG. 1. Schematic diagram of complete parameter estimation
protocol, which contains four steps: (i) preparation of quantum probe
state; (ii) parametrization processes; (iii) POVM measurements; (iv)
estimation.

here y denotes the measurement outcome. (iv) The unbiased
estimator �̂x := [̂x0, x̂1, . . . , x̂m]T is constructed, which is a
statistic that satisfies �x = 〈̂�x〉 [5–7]. Further, the obtained
data are processed and analyzed by statistical techniques to
infer indirectly the information on parameters of interest.
The above steps qualitatively describe the main process of
parameter estimation. In order to quantitatively describe the
estimation precision of the unknown parameters, one needs
to resort to the conventional quantum Cramér-Rao bound
(CQCRB), which is the most renowned metrological tool in
quantum estimation theory. In the single-parameter estima-
tion scenario, the CQCRB inequality satisfies the following
relationship [1–7]:

Var(̂x) � 1

nFc({M̂y})
� 1

nFq
, (1)

with

Var(̂x) =
∑

y

P(y|x)(̂x − x)2, (2a)

Fc({M̂y}) =
∑

y

1

P(y|x)
[∂xP(y|x)]2, (2b)

Fq = Tr
[̂
ρout(x)M̂2

x

]
, (2c)

where Var(x̂) is the mean-square error for unbiased esti-
mator x̂, characterizing the average deviation of the estimated
value from the true; Fc({M̂y}} stands for conventional classical
Fisher information (CCFI), which depends on the specific
measurement strategies; Fq represents the CQFI, which relies
only on the Hamiltonian and initial state of the system as
well as already optimized over all theoretically admissible
estimators and measurement schemes; n denotes the number
of repetitions or trials; M̂x being the conventional symmetric
logarithmic derivative (CSLD) operator for unknown parame-
ter x, which is a Hermitian operator satisfying 2∂xρ̂out(x) =
ρ̂out(x)M̂x + M̂xρ̂out(x). According to Eq. (1), in order to
obtain higher estimation precision, the Fisher information or
n should be as big as possible. Crucially, Fc = Fq for single-
parameter estimation scenario when {M̂y} is constructed from
the eigenbasis of the CSLD [3,54], namely, optimal measure-
ment strategy.

At present, various formulas for calculating CQFI have
been derived based on the definition. Here, we mainly
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introduce the method of calculating CQFI based on con-
ventional generator, which is closely related to our current
work. Let Ĥ (θ ) be the Hamiltonian of the system we study
with the initial state ρ̂in (without parameters to be estimated),
and θ is the estimated parameter. For a closed system, the
evolved state under the action of time-independent Hamilto-
nian is ρ̂out(θ, t ) = Û (θ )̂ρinÛ †(θ ), where Û (θ ) = e−iĤ (θ )t is
parameter-dependent time evolution operator. One can define
a Hermitian operator representing the local conventional gen-
erator of parameter translation with respect to θ [36,79,80],

ĥθ = i[∂θÛ (θ )]Û †(θ ). (3)

Based on the definitions of CQFI [see Eq. (2c)] and ĥθ , the
CQFI of parameter θ for the closed system reads as [3]

Fq(θ, t ) =
S∑

i=1

[∂θ pi(θ )]2

pi(θ )
+

S∑
i=1

4pi(θ )〈ψi(θ )|̂h2
θ |ψi(θ )〉

−
S∑

i, j=1

8pi p j

pi + p j
|〈ψi(θ )|̂hθ |ψ j (θ )〉|2. (4)

Here |ψi(θ )〉 and pi(θ ) are the ith eigenstate and correspond-
ing eigenvalue of ρ̂out(θ, t ), respectively. S is the support
dimension of ρ̂out(θ, t ). Suppose that the initial state of the
system is a pure state, Eq. (4) can be reduced to

Fq(θ, t ) = 4 Cov|ψ (θ )〉 (̂hθ , ĥθ )

= 4〈ψ (θ )|�ĥ2
θ |ψ (θ )〉 = 4〈�ĥ2

θ 〉. (5)

This shows that, for the case of pure state the CQFI is pro-
portional to the variance of local conventional generator ĥθ .
Further, the uncertainty relation

〈�θ̂2〉〈�ĥ2
θ 〉 � 1/4 (6)

can be obtained for a single-metrology protocol by combining
Eqs. (1) and (5). Obviously, in order to obtain the ultimate
precision limit, 〈�ĥ2

θ 〉 needs to be maximized. One can find
this is achieved under a special supposition state

|�(θ )〉 = 1√
2

[|ηmax(̂hθ )〉 + eiφ|ηmin(̂hθ )〉], (7)

where |ηmax(̂hθ )〉 [|ηmin(̂hθ )〉] is the eigenstate corresponding
to the maximum (minimum) eigenvalue ηmax(̂hθ ) [ηmin(̂hθ )] of
ĥθ [9,79,81] and φ is an arbitrary phase. Substituting |�(θ )〉
into Eq. (5), the maximal CQFI reads as

F max
q (θ, t ) = [ηmax(̂hθ ) − ηmin(̂hθ )]2. (8)

Note that this maximum value is given under the situation
that the optimal initial state of the system is without unknown
parameters. The optimal initial state can be deduced by a time
reversal, e.g., |�in〉opt = Û †(θ )|�(θ )〉. If the optimal initial
state contains parameters to be estimated, it needs to be pre-
pared adaptively based on accumulated data [82].

Particularly, when the estimated parameter is an overall
factor of Hamiltonian, e.g., Ĥ (θ ) = θĤ , the generator ĥθ =
Ĥt and Eq. (5) can be further reduced to

Fq(θ, t ) = 4t2〈ψin|�Ĥ2|ψin〉, (9)

where |ψin〉 denotes the initial state of the system. From
the above formula, one can predict that when the Hamil-
tonian is time independent, the CQFI is proportional to t2

for the closed system, namely, achieving the Heisenberg
precision [36,39]. Nevertheless, when Ĥ (θ ) �= θĤ , such as
the example mentioned in the Introduction earlier Ĥθ =
B[cos(θ )σ̂x + sin(θ )σ̂z], the maximal CQFI F max

q (θ, t ) =
4 sin2(Bt ) [36,83], indicating that more time may even lead
to worse estimation precision. This exhibits a significant dif-
ference between the parameter to be estimated as an overall
factor and not as an overall factor. This is one of the motiva-
tions for the research in this paper.

III. DISSIPATIVE GENERATOR FOR A GENERAL
DYNAMICAL MAP AND CORRESPONDING DQFI

IN THE LIOUVILLE SPACE

In this section, we will present the derivation process of a
dissipative generator for a dynamic map with a general param-
eter and the corresponding DQFI in the Liouville space. First,
one needs to prepare the mathematical framework required to
derive the dissipative generator for open quantum systems. Let
the time evolution of an open quantum system described by
M-dimensional Hilbert space obey the convolutionless master
equation [84,85]

∂t ρ̂s(θ, t ) = L̂(θ, t )[̂ρs(θ, t )], (10)

with

L̂(θ, t )[•] := −i[Ĥ (θ, t ), •]

+ 1

2

∑
k

γk (θ, t )([�̂k, •�̂†
k ] + [�̂k•, �̂

†
k ]). (11)

Here L̂(θ, t ) is the Liouvillian superoperator, in which Ĥ (θ, t )
is time-dependent internal Hamiltonian, the substitution sym-
bol “•” is transformed operator (e.g., density matrices), and
quantum jump operator �̂k is associated with a dissipation
quantum channel occurring at the rate γk (θ, t ). Note that
the estimated parameter θ can appear in the Hamiltonian
Ĥ (θ, t ), or in γk (θ, t ), or even in both. It is easy to get
ρ̂s(θ, t ) = T̂ e

∫ t
0 L̂(θ,τ )dτ ρ̂s(0) by performing formal integra-

tion on Eq. (10), where T̂ is a chronological time-ordering
operator, but the disadvantage of this density-matrix-formed
integral is that the physical interpretation is extremely difficult
since it contains a superoperator.

In light of this, one can vectorize the master equa-
tion (10) using the Hilbert-Schmidt expression of the density
matrix [86–88], namely, rewrite the M × M density ma-
trix ρ̂s(θ, t ) into a M2 × 1 column vector, i.e., |̂ρs(θ, t )〉〉 =
[̂ρs(1, :) ρ̂s(2, :) . . . ρ̂s(M, :)]T, where ρ̂s(i, :) repre-
sents the ith row of the density matrix, and the double bracket
notation indicates that we are working in the Hilbert-Schmidt
(Liouville) space of state vectors. The evolution equation that
|̂ρs(θ, t )〉〉 satisfies can be obtained after straightforward
algebra

∂t |̂ρs(θ, t )〉〉 = �L(θ, t )|̂ρs(θ, t )〉〉, (12)
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with

�L(θ, t ) = −i[Ĥ (θ, t ) ⊗ 1M − 1M ⊗ Ĥ (θ, t )
T
]

+
∑

k

γk (θ, t )

[
�̂k ⊗ �̂∗

k − 1

2
(�̂†

k �̂k ⊗ 1M

+ 1M ⊗ �̂T
k �̂∗

k )

]
, (13)

which is a Schrödinger-type equation without superoperator.
Here operator �L(θ, t ) denotes (M2 × M2)-dimensional non-
Hermitian matrix formed by vectorization of Liouvillian su-
peroperator L̂(θ, t ), and 1M represents (M × M)-dimensional
identity matrix. Then the quantum state of the system can

be obtained by the integral |̂ρs(θ, t )〉〉 = T̂ e
∫ t
0 �L(θ,τ )dτ |̂ρs(0)〉〉,

where |̂ρs(0)〉〉 is the initial state of the system in the Li-
ouville space. This is the advantage of dealing with open
systems through vectorization technology, which circumvents
the complexity caused by the abstract superoperator. Notice
that |̂ρs(θ, t )〉〉 is not necessarily normalized owing to nonuni-
tary dynamics, and its corresponding normalized pure state
can be defined as [59]

|̂ρs(θ, t )〉〉N = |̂ρs(θ, t )〉〉/
√

〈〈̂ρs(θ, t )|̂ρs(θ, t )〉〉. (14)

Here and hereinafter, the right subscript “N” of the state refers
to the normalized mark.

We are now ready to derive the dissipative generator
for general Liouvillian parametrized processes in the Liou-
ville space. According to Eq. (12), one obtains ρ̃s(θ, t ) =
Ũθ ρ̃s(0)Ũ †

θ , where ρ̃s(θ, t ) = |̂ρs(θ, t )〉〉〈〈̂ρs(θ, t )| and Ũθ =
T̂ e

∫ t
0 �L(θ,τ )dτ

denotes the nonunitary evolution operator in the
Liouville space. ρ̃s(θ, t ) is not normalized, which can be pro-
cessed in the latter calculation of DQFI. Hence, the response
of ρ̃s(θ, t ) to small deviations around a given estimated pa-
rameter θ can be represented by the dissipative generator of
the local parameter translation from ρ̃s(θ, t ) to ρ̃s(θ + dθ , t ),
where dθ denotes an infinitesimal quantity (dθ /θ → 0). On
the other hand,

ρ̃s(θ + dθ , t ) = Ũθ+dθ
ρ̃s(0)Ũ †

θ+dθ

≈ [Ũθ + (∂θŨθ )dθ ]̃ρs(0)[Ũ †
θ + (∂θŨ †

θ )dθ ]

= [1M2 + (∂θŨθ )Ũ −1
θ dθ ]Ũθ ρ̃s(0)Ũ †

θ

× [1M2 + (Ũ †
θ )−1(∂θŨ †

θ )dθ ]

≈ e−i�̃θ dθ ρ̃s(θ, t )ei�̃†
θ dθ , (15)

where

�̃θ = i(∂θŨθ )Ũ −1
θ , �̃

†
θ = −i(Ũ †

θ )−1(∂θŨ †
θ ). (16)

In Eq. (15), we assumed that Ũθ+dθ
≈ Ũθ + (∂θŨθ )dθ by Tay-

lor expansion under the condition dθ /θ → 0. �̃θ denotes the
dissipative generator of the dynamical map Ũθ along parame-
ter θ in the Liouville space, which is generally non-Hermitian
owing to the existence of dissipation, unlike the conventional
generator ĥθ in the closed system. This is the first core formula
of our current work. When the noise does not exist, �̃θ returns
to a Hermitian operator. This is because �L†(θ, t ) = −�L(θ, t )
holds in the absence of noise, resulting in ŨθŨ †

θ = 1M2 . Then
combined with ∂θ (ŨθŨ †

θ ) = 0, it can be proven that �̃θ = �̃
†
θ

by Eq. (16). In particular, Ũθ may not be invertible in some
special cases, such as when some eigenvalues of �L(θ, t ) go to
minus infinity. In these cases, one can introduce the Moore-
Penrose pseudoinverse of Ũθ [89], i.e.,

Ũ −1
θ = lim

δ→0
[Ũ †

θ (ŨθŨ †
θ + δ1M2 )−1], (17)

which always exists.
Therefore, with similar mathematical techniques, the defi-

nition of CQFI and CSLD in the closed systems can also be
directly extended to the Liouville space, that is [59]

F̃ (θ, t ) = Tr
[̃
ρs(θ, t )NM̃

2
θ

]
, (18)

with

ρ̃s(θ, t )N = |̂ρs(θ, t )〉〉〈〈̂ρs(θ, t )|/Tr[̂ρs(θ, t )2], (19)

and

∂θ ρ̃s(θ, t )N = 1
2

[̃
ρs(θ, t )NM̃θ + M̃θ ρ̃s(θ, t )N

]
. (20)

Here F̃ (θ, t ) and M̃θ are, respectively, DQFI and DSLD under
the extended description. In particular, the density matrix of
the system can always be regarded as a pure state in the
Liouville space, hence,

M̃θ ≡ 2∂θ ρ̃s(θ, t )N

= 2[∂θ |̂ρs(θ, t )〉〉N 〈〈̂ρs(θ, t )|
+ |̂ρs(θ, t )〉〉N∂θN 〈〈̂ρs(θ, t )|]. (21)

In order to calculate DQFI, ∂θ ρ̃s(θ, t )N needs to be evaluated.
After simple algebraic calculation, one can get

∂θ |̂ρs(θ, t )〉〉N = {
�̃θ − 1

2∂θ ln
(
Tr

[̂
ρs(θ, t )2

])}|̂ρs(θ, t )〉〉N .

(22)
Finally, substituting Eqs. (21) and (22) into (18) one can

obtain

F̃ (θ, t ) = 4(N 〈〈∂θ ρ̂s(θ, t )|∂θ ρ̂s(θ, t )〉〉N − |N 〈〈̂ρs(θ, t )|∂θ ρ̂s(θ, t )〉〉N |2)

= 4(N 〈〈̂ρs(θ, t )|�̃†
θ �̃θ |̂ρs(θ, t )〉〉N − N 〈〈̂ρs(θ, t )|�̃†

θ
|̂ρs(θ, t )〉〉N 〈〈̂ρs(θ, t )|�̃θ |̂ρs(θ, t )〉〉N )

= 4 Cov|̂ρs (θ,t )〉〉N
(�̃†

θ , �̃θ ), (23)

where Cov|̂ρs〉〉(A, B) = 〈AB〉|̂ρs〉〉 − 〈A〉|̂ρs〉〉〈B〉|̂ρs〉〉, represent-
ing the covariance between variables A and B under state |̂ρs〉〉.

It is easy to verify that F̃ (θ, t ) is a real number. This is the
second core formula in this work.
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One can then construct the dissipative quantum Cramér-
Rao bound (DQCRB) to quantify estimation precision in
Liouville space by analogy with the conventional parameter
estimation framework, that is,

Var(̂θ ) � 1

nF̃ (θ, t )
, (24)

where n is the number of metrology protocols. Further, the
“uncertainty relation”

〈�θ̂2〉Cov
(
�̃

†
θ , �̃θ

)
� 1/4 (25)

is constructed for a single metrology protocol. For a closed
system, �̃θ degenerates into a Hermitian operator, the above
formula is transformed into the form 〈�θ̂2〉〈��̃2

θ 〉 � 1
4 , which

is completely consistent with the form of Eq. (6). More-
over, for this special case, the condition for DQFI to get
its maximum value and the expression for the corresponding
maximum value are similar to Eqs. (7) and (8), respectively,
as long as the conventional generator ĥθ is replaced with
�̃θ . Note, however, that for pure states (in lossless case),
the maximum values of DQFI are twice that of CQFI, i.e.,
F̃ max = 2F max

q , because there are more potential metrology
resources in the extended state space (Liouville space).

For general scenarios, the DQCRB conveys an intuition
that the greater correlation between �̃

†
θ and �̃θ , the higher

estimation precision of unknown parameters. In addition, al-
though Eqs. (5) and (23) are very similar in form, they are
essentially different because the CQFI is proportional to the
self-variance of the conventional generator ĥθ . This difference
stems from the fact that the generator in the closed system
is Hermitian, but not in the open system. More importantly,
Eq. (23) directly links the ultimate precision limit with the
general underlying dynamics of the dissipative system in the
Liouville space. This is difficult to achieve under the CQFI
framework owing to the abstract superoperator.

Particularly, supposing θ is an overall factor, i.e.,
�L(θ, t ) = θ (t )�L and using the derivative chain rule

∂θŨθ = (∂tŨθ )(∂t/∂θ ), Eq. (23) can be simplified as

F̃ (θ, t ) = 4

[∂t ln θ (t )]2 Cov|̂ρs (θ,t )〉〉N
(�L†, �L), (26)

which is consistent with Eq. (5) of Ref. [59]. This justifies the
universality of our formula. Additionally, if θ does not change
with time, one can further obtain

F̃ (θ, t ) = 4t2Cov|̂ρs (θ,t )〉〉N
(�L†, �L). (27)

In contrast to the CQFI in Eq. (9), although the DQFI also
has a time-squared factor in this case, the covariance is time
dependent and therefore does not reach the Heisenberg preci-
sion unless there is no dissipation and Hamiltonian Ĥ is time
independent, in which case �L is only a replicative extension
of Ĥ . In the presence of dissipation, the scaling of estimation
error given by the DQFI is approximately Heisenberg-scale-
like in a very short time. As time increases, however, the
variation of scaling of estimation error cannot be judged due
to the complexity of open system dynamics, which strongly
relies on the feature and intensity of the noise suffered. We
will illustrate this with a specific system in Sec. IV.

According to Eq. (23), in order to maximize F̃ (θ, t ), it
is necessary to maximize the covariance between �̃

†
θ and

�̃θ with respect to the coherence vector |̂ρs(θ, t )〉〉N . Un-
fortunately, due to the mathematical difficulties, one cannot
directly obtain, as in a closed system, the maximum value of
F̃ (θ, t ) as well as the condition under which F̃ (θ, t ) gets the
maximum value. But if we define two Hermitian generator
operators in the Liouville space, i.e.,

�̃θ = �̃θ + �̃
†
θ

2
, �̃θ = i(�̃θ − �̃

†
θ )

2
, (28)

and substitute them into Eq. (23), then using the Heisenberg
uncertainty relation 〈��̃2

θ 〉〈��̃2
θ 〉 � |i[�̃θ , �̃θ ]|2/4 [90] and

the basic inequality 〈�ℵ2〉 � (λℵ
max − λℵ

min)2/4 [79] where
λℵ

max and λℵ
min refer to the maximum and minimum eigenvalues

of operator ℵ ∈ {�̃θ , �̃θ }, respectively, can help us obtain an
inequality of DQFI:

F̃ (θ, t ) = 4
[〈
��̃2

θ

〉
|̂ρs (θ,t )〉〉N

+ 〈
��̃2

θ

〉
|̂ρs (θ,t )〉〉N

+ 〈i[�̃θ , �̃θ ]〉|̂ρs (θ,t )〉〉N

]
�

[(
λ�̃θ

max + λ�̃θ

max

) − (
λ

�̃θ

min + λ
�̃θ

min

)]2
. (29)

This inequality indicates that the upper bound of DQFI is
determined by the maximum (minimum) eigenvalues of gen-
erators �̃θ and �̃θ , namely, the highest estimation precision
under the extended description is limited by the underlying
dynamics of the open system, which is very similar to that
of the closed system [see Eq. (8)]. It should be noted that
this bound does not necessarily give the tightest upper bound,
as an optimal state |̂ρs(θ, t )〉〉N in which “�” in Eq. (29)
takes the equal sign may not be found. More importantly,
we should recognize that Eq. (28) is not just a mathematical
transformation on the dissipative generator �̃θ to estimate
the upper bound, but has a clear physical meaning, that is,
it transforms a nonunitary encoding process into two unitary
encoding processes. In exchange, a part of DQFI comes from
their noncommutability, namely, the commutator of �̃θ and
�̃θ .

In Ref. [36], the authors utilized a conventional generator
to reveal how the estimated parameters are encoded into the
closed system. Naturally, we expect the dissipative generator
to also reveal the encoding process of the estimated param-
eters and the time-dependent form of this process in open
systems. Next, we turn the target to the calculation of �̃θ and
�̃

†
θ in the Liouville space. Here, for simplicity, we focus on

the case that the Liouvillian superoperator L̂(θ, t ) is indepen-
dent of time, so supermatrix �L(θ, t ) → �L(θ ) and Ũθ = e�L(θ )t .
Generally speaking, [�L(θ ), ∂θ �L(θ )] = 0 does not hold, which
is an important difference from Ref. [59]. For this purpose,
we need to utilize a famous exponential operator integration
formula [91]

∂eG

∂λ
=

∫ 1

0
esG ∂G

∂λ
e(1−s)Gds, (30)
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where G refers to an operator. With the above formula, one
can get

∂Ũθ

∂θ
=

∫ 1

0
es�L(θ )t t∂ �L(θ )

∂θ
e(1−s)�L(θ )t ds

=
∫ t

0
eμ�L(θ ) ∂ �L(θ )

∂θ
e(t−μ)�L(θ )dμ, (31)

where μ = ts. Then, based on the definition of �̃θ in Eq. (16),
one has

�̃θ = i
∫ t

0
eμ�L(θ ) ∂ �L(θ )

∂θ
e−μ�L(θ )dμ, (32)

�̃
†
θ = −i

∫ t

0
e−μ�L†(θ ) ∂ �L†(θ )

∂θ
eμ�L†(θ )dμ. (33)

In the short-time limit t � 1, �̃θ and �̃
†
θ can be approxi-

mately written as

�̃θ � it
∂ �L(θ )

∂θ
, �̃

†
θ � −it

∂ �L†(θ )

∂θ
. (34)

It therefore can be predicted that when the time is very short,
DQFI is approximately proportional to t2, which is consistent
with our previous analysis below Eq. (27).

In order to find the spectral decomposition form of �̃θ

and �̃
†
θ in the whole time domain, we need to consider the

eigenequations of the Liouvillian supermatrix �L(θ ). Since
�L(θ ) is a non-Hermitian matrix, its left and right eigenvectors
need to be considered. The eigenequations of �L(θ ) satisfy the
following relationship:

�L(θ )|φn〉〉 = Ln|φn〉〉, (35)

�L†(θ )|χn〉〉 = L∗
n |χn〉〉, (36)

where Ln (L∗
n ) and |φn〉〉 (|χn〉〉) denote the eigenvalues and

corresponding right (left) eigenvectors of �L(θ ), respectively.
For simplicity, we first do not consider the case of Ln de-
generacy (the situation of degeneracy will be considered
later). The eigenvalues can be sorted as 0 = L1 > Re(L2) �
Re(L3) . . . � Re (LM2 ) because Liouvillian supermatrix �L(θ )
is negative semidefinite, here M being the original Hilbert-
space dimension. This is an inexorable requirement for the
open system to be stable in the long-term limit, otherwise,
the system tends to diverge [if Re(Lk ) > 0 exists]. Notice also
that {|φn〉〉} and {|χn〉〉} can form a complete biorthogonal ba-
sis [92–94], i.e.,

∑M2

n=1 |φn〉〉〈〈χn| = ∑M2

n=1 |χn〉〉〈〈φn| = 1M2 .
After tedious algebraic calculation, the spectral decomposi-
tion form of �̃θ and �̃

†
θ can be written as

�̃θ = it
M2∑
n=1

∂θLn|φn〉〉〈〈χn| +
M2∑

n,m=1,n �=m

i[e(Ln−Lm )t − 1]〈〈∂θχn|φm〉〉|φn〉〉〈〈χm|, (37)

�̃
†
θ = −it

M2∑
n=1

∂θL∗
n |χn〉〉〈〈φn| −

M2∑
n,m=1,n �=m

i[e(L∗
n−L∗

m )t − 1]〈〈φm|∂θχn〉〉|χm〉〉〈〈φn|. (38)

The detailed derivation of Eqs. (37) and (38) can be found in
Appendix A. Particularly, one can see that at this point the
expressions of �̃θ and �̃

†
θ consist entirely of the eigenvalues

and eigenvectors of the Liouvillian supermatrix �L(θ ) that de-
termine the dynamics of the open system. This is the third core
formula of this work, and their forms contain rich implications
in physics.

Considering that DQFI is proportional to the covariance
between �̃θ and �̃

†
θ [see Eq. (23)], Eqs. (37) and (38) indicate

that the DQFI originates from the following two parts. Part I:
the dependence of the eigenvalues (real or complex numbers)
on θ , and this part is proportional to the time t . Part II: the
change of eigenvectors with θ , and the relation between this
part and time t is closely related to the gap in the spectrum
of the corresponding Liouville. Specifically, it can be divided
into the following three situations: (i) In the case that both Ln

and Lm are real numbers, part II exponentially gains over time
t when Ln > Lm and exponentially decays when Ln < Lm. (ii)
In the case that both Ln and Lm are pure imaginary numbers,
part II harmonically oscillates with time t , which is similar
to the closed system. (iii) In the case that at least one of
Ln and Lm is a complex number but not a pure imaginary
number, part II shows exponentially gained oscillations over
time t when Re(Ln) > Re(Lm) and exponentially decayed

oscillations when Re(Ln) < Re(Lm). By comparison, from the
decomposed form of generator ĥθ [see Eq. (28) of Ref. [36]],
only the dependence of the real eigenvalues on θ and harmonic
oscillations with time are presented.

Therefore, in the DQFI framework based on the Liouville
space, we have well characterized the possible impact of
the external environment on estimation precision through the
complex eigenvalues and eigenvectors of Liouvillian super-
matrix �L(θ ). It is very difficult to attain this in the CQFI
framework based on the Hilbert space owing to the abstract
superoperator. In particular, we point out that although the
evolution of DQFI with time is closely related to the depen-
dence of �̃θ and �̃

†
θ on time, the final DQFI is determined

by the covariance of �̃θ and �̃
†
θ concerning the output state.

Accordingly, even if the dissipative generator contains the
term of exponential gain over time, it may be offset by the
exponential decay factor contained in the output state. As a
result, DQFI does not exhibit the nonphysical phenomenon of
exponential divergence over time under the influence of noise.

Next, we analyze the DQFI in the long-time limit with
the help of Eqs. (37) and (38). It is well known that the
intrinsically irreversible dynamics of an open system leads the
system to the ultimate steady state in a unidirectional time di-
rection. Here, according to the Schrödinger-type equation (12)
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the steady state of the open system in the Liouville space is
|̂ρs(g, t → +∞)〉〉N = |φ1〉〉 whose eigenvalue L1 = 0 imply-
ing the slowest decay rate [84,85] because the eigenvectors

corresponding to eigenvalues with real parts less than zero
will be attenuated. To explore the behavior of F̃θ (t ) at the
long-term limit, we assume that

Ln = xn + iyn, Lm = xm + iym, (39a)

υnm = xn − xm, βnm = yn − ym, (39b)

where xn(m) and yn(m) are real and imaginary parts of eigenvalues Ln(m), respectively, and υnm and βnm are their difference.
Substituting Eq. (39) into (37) and (38), �̃θ and �̃

†
θ can be rewritten as

�̃θ = t
M2∑
n=1

∂θ (ixn − yn)|φn〉〉〈〈χn| +
M2∑

n,m=1,n �=m

i[e(υnm+iβnm )t − 1]〈〈∂θχn|φm〉〉|φn〉〉〈〈χm|, (40)

�̃
†
θ = t

M2∑
n=1

∂θ (−ixn − yn)|χn〉〉〈〈φn| −
M2∑

n,m=1,n �=m

i[e(υnm−iβnm )t − 1]〈〈φm|∂θχn〉〉|χm〉〉〈〈φn|. (41)

Based on Eqs. (23), (40), and (41), after tedious algebraic calculation, we finally have

F̃θ (t ) = 4[
〈
�̃

†
θ �̃θ

〉
|φ1〉〉 − 〈

�̃
†
θ

〉
|φ1〉〉

〈
�̃θ

〉
|φ1〉〉]

= 4
M2∑

n,k=2

[e(υn1−iβn1 )t − 1][e(υk1+iβk1 )t − 1]〈〈φ1|∂θχn〉〉〈〈∂θχk|φ1〉〉[〈〈φn|φk〉〉 − 〈〈φn|φ1〉〉〈〈φ1|φk〉〉]. (42)

Considering that υn1, υk1 < 0 due to L1 = 0 and Re[Ln>1] < 0, in the limit case that t → +∞, Eq. (42) becomes

F̃θ (t → +∞) � 4
M2∑

n,k=2

〈〈φ1|∂θχn〉〉〈〈∂θχk|φ1〉〉[〈〈φn|φk〉〉 − 〈〈φn|φ1〉〉〈〈φ1|φk〉〉], (43)

which gives the value of DQFI when the system tends to a steady state, which depends on the Hilbert-Schmidt inner product
between the eigenvectors as well as the inner product between the eigenvectors and the derivative of the eigenvectors with respect
to θ . What is more, it is easy to see that DQFI is not necessarily zero at the end under the influence of noise. For example, for a
two-level system affected by dephasing noise, when estimating the parameter only embedded in the probability amplitude of its
quantum state, DQFI is not eventually towards zero. This is because dephasing noise only destroys the phase information of the
quantum state. In contrast, if the system is affected by spin-flip noise and the state eventually becomes a maximally mixed state,
one can derive F̃θ (t → +∞) = 0 from the equations ∂θ |̂ρs(g, t → +∞)〉〉N = ∂θ |φ1〉〉 = 0, 〈〈φ1|χn〉〉 = 0, and 〈〈φ1|∂θχn〉〉 = 0
for (n > 1), which is within our expectation.

It is worth mentioning that in some open systems when the characteristic frequency of the system and decay rate meet
certain conditions, leading to the possible appearance of LEP [87,95,96], namely, at least two eigenvalues are identical and the
corresponding eigenvectors coalesce for the supermatrix �L(θ ). In this exotic case, the left and right eigenvectors of supermatrix
�L(θ ) can no longer form a set of complete biorthogonal basis due to the reduction of independent eigenvectors.

The method of constructing complete biorthogonal bases in the presence of LEP was proposed in Ref. [61]. The specific
steps are as follows: (i) Perform Jordan decomposition of �L(θ ) through a transformation S , i.e., �LJ (θ ) = S−1 �L(θ )S , where
�LJ (θ ) satisfies the Jordan canonical form [97]. (ii) In order to construct a complete biorthogonal basis, some new left and right
eigenvectors of �LJ (θ ) (e.g., |φn,i〉〉J ) are defined. Their selection must ensure the elegant block structure of �LJ (θ ). (iii) These
new eigenvectors are inversely transformed by S (e.g., |φn,i〉〉 = S|φn,i〉〉J ) and then combined with original independent left and
right eigenvectors of �L(θ ) to form a complete biorthogonal basis (see Ref. [61] for details). Next, following the same steps as in
the derivation of Eqs. (37) and (38) (see Appendix A), one can get the dissipative generator in the presence of LEPs, reads as

�̃θ = it
M2∑
n=1

∂θLn

ξn∑
k=1

|φn,k〉〉〈〈χn,k| +
M2∑

n �=m

ξn∑
i=1

ξm∑
j=1

i[e(Ln−Lm )t − 1]〈〈∂θχn,i

∣∣φm, j
〉〉|φn,i〉〉〈

〈
χm, j

∣∣, (44)

�̃
†
θ = −it

M2∑
n=1

∂θL∗
n

ξn∑
k=1

|χn,k〉〉〈〈φn,k| −
M2∑

n �=m

ξn∑
i=1

ξm∑
j=1

i[e(L∗
n−L∗

m )t − 1]〈〈φm, j |∂θχn,i〉〉
∣∣χm, j

〉〉〈〈φn,i|. (45)

Here ξn (ξm) is the degeneracy of the eigenvalue Ln (Lm), cor-
responding to ξn (ξm) order LEP (indicating that the possibility

of multiple LEPs emergence). The definition of other symbols
is consistent with Eqs. (37) and (38). Compared with the case
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without LEP, the existence of �L(θ ) degeneracy only adds the
weighted sum of products of these basis vectors, but there is
no substantial correction to the changes in �̃θ and �̃

†
θ over

time.
As a last remark, let us stress that in order to simplify the

calculation and analysis, we transfer the parameter estimation
problem of open systems from Hilbert space to Liouville
space through the vectorization method for processing, hence
avoiding the difficulties caused by the Liouvillian superop-
erator. However, we argue that this mathematical treatment
does not erase the essence of the physical process so that
the dependence of CQFI and DQFI on time or other system
parameters is similar, although there may be some quantitative
deviations due to the dimensional expansion.

For the case of closed systems, F̃ω(t ) = 2Fω(t ) strictly
holds (see the proof in Appendix D). Due to the variety of
forms of dissipation, we did not obtain the exact relation-
ship between DQFI and CQFI, but Alipour et al. exploited
DQFI to correctly capture the scaling of estimation error for
three different open systems [59]. Benatti et al. also utilized
the DQFI framework to obtain the correct error scale for an
open N-particle two-mode bosonic system and verified that
entanglement is beneficial for parameter estimation [60]. In
principle, one could also define a dissipative generator in
Hilbert space in the form of a superoperator to calculate CQFI,
but due to its abstraction, it is difficult to analyze or even
control the variation of CQFI by studying its eigenvalues and
eigenvectors as in a closed system. In the following example,
one can indeed see that DQFI and CQFI do have similar curve
profiles and features as the dissipation rate or the time of
evolution changes, and DQFI is more advantageous in dissi-
pative parameter estimation in the presence of singularities,
i.e., LEPs.

IV. EXAMPLE: TWO-LEVEL SYSTEM
WITH SPIN-FLIP NOISE

In this section, we apply a concrete model to demonstrate
our theory. In order to be more representative, we consider an
open two-level system subjected to spin-flip noise, its dynam-
ical evolution satisfies the following master equation:

∂t ρ̂s(ω, t ) = L̂(ω)[̂ρs(ω, t )], (46)

with

L̂(ω)[̂ρs(ω, t )] = −i[Ĥ (ω), ρ̂s(ω, t )] + γxD[σ̂x ]̂ρs(ω, t ),

D[σ̂x ]̂ρs(ω, t ) = σ̂xρ̂s(ω, t )σ̂ †
x − ρ̂s(ω, t ),

where the Hamiltonian Ĥ (ω) = ωσ̂z/2 with the transition
frequency ω being the parameter to be estimated. The Lind-
blad superoperator D[σ̂x] describes spin-flip noise with decay
rate γx, σ̂x,y,z are the Pauli operators, and σ̂± = (σ̂x ± iσ̂y)/2
denotes the flip-up (flip-down) operator. After vectorizing
Eq. (46), one can get a Schrödinger-type equation

∂t |̂ρs(ω, t )〉〉 = �L(ω, t )|̂ρs(ω, t )〉〉, (47)

where

�L(ω) =

⎡⎢⎢⎣
−γx 0 0 γx

0 −γx − iω γx 0
0 γx −γx + iω 0
γx 0 0 −γx

⎤⎥⎥⎦ (48)

is Liouvillian supermatrix of L̂(ω) under the σ̂z representa-
tion. [∂ω �L(ω), �L(ω)] �= 0 can be easily verified (non-phase-
covariant dynamic), and this is an essential difference from
the examples in Refs. [59,60]. Solving the eigenequation of
the supermatrix �L(ω), we obtain

L1 = 0, L2 = −2γx, L3(4) = −γx ∓ �, (49a)

|φ1〉〉 = 1√
2

[1, 0, 0, 1]T, (49b)

|φ2〉〉 = 1√
2

[−1, 0, 0, 1]T, (49c)

|φ3〉〉 = α1ω[0,−iω − �, γx, 0]T, (49d)

|φ4〉〉 = α2ω[0,−iω + �, γx, 0]T, (49e)

|χ1〉〉 = 1√
2

[1, 0, 0, 1]T, (49f)

|χ2〉〉 = 1√
2

[−1, 0, 0, 1]T, (49g)

|χ3〉〉 = β1ω[0, iω − �∗, γx, 0]T
, (49h)

|χ4〉〉 = β2ω[0, iω + �∗, γx, 0]T
. (49i)

with

α1ω = 1√
(� + iω)(�∗ − iω) + γ 2

x

,

α2ω = 1√
(� − iω)(�∗ + iω) + γ 2

x

,

β1ω =
√

(� + iω)(�∗ − iω) + γ 2
x

(�∗ − iω)2 + γ 2
x

,

β2ω =
√

(� − iω)(�∗ + iω) + γ 2
x

(�∗ + iω)2 + γ 2
x

,

where � = √
γ 2

x − ω2. Li is the eigenvalue of �L(ω) and
|φi〉〉 (|χi〉〉) denotes the right (left) eigenvector. Note that in
Eq. (49), the right eigenvectors have been normalized, and the
coefficients β1ω and β2ω in front of the left eigenvectors are
to satisfy condition 〈〈χn|φm〉〉 = δmn. Particularly, one can see
that L3 = L4 and |φ3〉〉 = |φ4〉〉 hold when γx = ω (� = 0),
i.e., the system exhibits a second-order LEP.

In Fig. 2, Li are plotted as a function of γx/ω. One can
see that L3 (blue dashed-dotted line) and L4 (pink dotted line)
are complex and have equal real parts and opposite imaginary
parts when γx/ω < 1 (weak damping), while they become
pure real number when γx/ω > 1 (overdamping), especially
they are exactly equal at the LEP where γx/ω = 1 (critical
damping).

If we define the dissipative spectral splitting �ω = L4 −
L3 = 2� = 2

√
γ 2

x − ω2, the susceptibility of the splitting
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FIG. 2. The eigenvalues of superpermatrix �L(ω) as a function of
γx/ω, in which (a) real part of eigenvalues; (b) imaginary part of
eigenvalues. Here, we set ω = 1 as a scale.

with respect to the parameter ω to be estimated, reads as

χω = ∂�ω

∂ω
=

∣∣∣∣∣ 2ω√
γ 2

x − ω2

∣∣∣∣∣. (50)

Obviously, χω diverges around the LEP, which seems to
convey an intuition that if the frequency splitting of the Li-
ouvillian spectrum can be accurately measured, one may get
arbitrarily high measurement precision in the vicinity of the
LEP. Later, we will employ DQFI as a means to illustrate that
this prejudgment is not necessarily accurate.

Based on Eqs. (37) and (49), the dissipative generator �̃ω

is given by

�̃ω =

⎡⎢⎢⎣
0 0 0 0
0 �̃ω(2, 2) �̃ω(2, 3) 0
0 �̃ω(3, 2) �̃ω(3, 3) 0
0 0 0 0

⎤⎥⎥⎦, (51)

in which

�̃ω(2, 2) = 1

�3

[
1

2
sinh(2�t )γ 2

x − tω2�

]
,

�̃ω(2, 3) = γx

2�3
[�(1 − 2itω) − � cosh(2�t )

+ iω sinh(2�t )],

�̃ω(3, 2) = γx

2�3
[−�(1 + 2itω) + � cosh(2�t )

+ iω sinh(2�t )],

�̃ω(3, 3) = 1

2

[
2tω2

�2
− sinh (2�t )γ 2

x

�3

]
.

In the current scenario, we have that

�̃ω = �̃ω + �̃†
ω

2
= �̃ω(2, 2)

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤⎥⎥⎦, (52)

�̃ω = i(�̃ω − �̃†
ω )

2
= i

⎡⎢⎢⎣
0 0 0 0
0 0 �̃ω(2, 3) 0
0 �̃ω(3, 2) 0 0
0 0 0 0

⎤⎥⎥⎦.

(53)

The above equations hold for any �, and the forms of
�̃ω(2, 2), �̃ω(2, 3), and �̃ω(3, 2) at the LEP (� = 0) are
given by Eq. (57). To attempt to clarify the physical meanings
of �̃ω and �̃ω, we introduce the following orthogonal basis in
the Liouville space:

|1〉〉 =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦, |2〉〉 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦,

|3〉〉 =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦, |4〉〉 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦. (54)

Thus, �̃ω and �̃ω can be rewritten as

�̃ω = �̃ω(2, 2)(|2〉〉〈〈2| − |3〉〉〈〈3|), (55)

�̃ω = i�̃ω(2, 3)|2〉〉〈〈3| + i�̃ω(3, 2)|3〉〉〈〈2|, (56)

where �̃ω and �̃ω are both Hermitian, representing the popu-
lation difference and energy level transition between |2〉〉 and
|3〉〉, respectively. This indicates that an abstract nonunitary
encoding process is transformed into two physically explicit
unitary encoding processes. Here, we need to point out that
since �̃ω and �̃ω are Hermitian, introducing the orthogonal
basis mentioned above to represent them is sufficient without
the need for complicated biorthogonal bases.

According to the hyperbolic function in Eq. (51), whether
� is a real or complex number has a significant impact on
the temporal variation of �̃ω. In the case of ω > γx (� is a
complex number), �̃ω tends to show the behavior of simple
harmonic oscillations with time [corresponding to the second
term in Eq. (37)] due to the dominant role of Hamiltonian
in the dynamics. By comparison, in the case of ω < γx (�
is a real number), �̃ω towards the behavior of damped or
gain oscillations with time owing to the dominant role of
dissipation.

At LEP, �̃ω ⇒ �̃LEP
ω reads as

�̃LEP
ω =

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 2t3γ 2
x

3 −γxt2
(
1 − i2ωt

3

)
0

0 γxt2
(
1 + i2ωt

3

) −2t3γ 2
x

3 0
0 0 0 0

⎤⎥⎥⎥⎥⎦. (57)

The process of reducing Eq. (51) to (57) adopts the method of
series expansion, namely, when x → 0, sinh(x) � x + x3/6 +
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o(x3) and cosh(x) � 1 + x2/2 + o(x3) hold. Of course, one
can also use Eqs. (44) and (45) to get the same result.

Assuming that the initial state of the system is the maxi-
mal superposition state in Hilbert space, i.e., |�(0)〉 = (|e〉 +
|g〉)/

√
2, in which |e〉 and |g〉 are eigenstates of σ̂z, satisfying

σ̂z|e〉 = |e〉 and σ̂z|g〉 = −|g〉, then its expression in Liouville
space reads as |̂ρs(0)〉〉 = 1

2 [1, 1, 1, 1]T. The output state at
time t can be obtained by solving Eq. (47), which takes the
form

|̂ρs(ω, t )〉〉N = 1√
1
2 + 2|℘|2

[
1

2
,℘,℘∗,

1

2

]T

, (58)

in which

℘= e−γxt

2
cosh(�t ) + γxe−γxt

2�
sinh(�t ) − iωe−γxt

2�
sinh(�t ).

For LEP, the state |̂ρLEP
s (ω, t )〉〉N can be obtained by replacing

℘ in Eq. (58) with ℘LEP whose expression ℘LEP = e−γxt (1 +
γxt − iωt )/2 is derived with the assist of lim

�→0
sinh(�t )/� = t

and lim
�→0

cosh(�t ) = 1.

Combining Eqs. (23), (51), and (58), we obtain

F̃ω(t ) = 4 Cov|̂ρs (ω,t )〉〉N (�̃†
ω, �̃ω )

= 4
1
2 + 2|℘|2

[
2|∂ω℘|2 − (∂ω|℘|2)2

1
2 + 2|℘|2

]
, (59)

where F̃ω(t ) refers to the DQFI about ω, which can quantify
the estimation precision of ω in this open two-level system.
Note that since Eq. (59) contains the derivative operation of
℘ with respect to ω, one cannot simply replace ℘ in Eq. (59)
with ℘LEP to obtain the DQFI at LEP, but use Eq. (23) with
|̂ρLEP

s (ω, t )〉〉N and �̃LEP
ω , that is,

F̃ LEP
ω (t ) = 4 Cov|̂ρLEP

s (ω,t )〉〉N

(
�̃LEP†

ω , �̃LEP
ω

)
. (60)

We do not give the specific form of F̃ LEP
ω (t ) here since it

is tediously long. Nevertheless, it is still easy to find that
F̃ LEP

ω (t ) does not diverge because ℘LEP (�̃LEP
ω ) is not a sin-

gular function (matrix) at the LEP, and Eq. (60) is only a
simple matrix multiplication operation. This result indicates
that the estimation of ω in the vicinity of LEP cannot obtain
arbitrarily high precision. The physical reasons behind this
are as follows. As mentioned earlier, in order to obtain any
high sensitivity near LEP, it is necessary to accurately measure
the frequency splitting of the Liouville spectrum. However,
the quantum state |̂ρLEP

s (ω, t )〉〉N at LEP does not explicitly
contain �, which eventually leads to F̃ LEP

ω (t ) is a smooth
function around the LEP. One can also argue that this result
is because the coalescence of the eigenvectors counteracts the
susceptibility divergence at the LEP, making the measure-
ment precision a smooth function of the parameters to be
estimated [75]. Physically, the correlation between different
nonorthogonal eigenvectors can cause excess noise [98], lead-
ing to the divergence in linewidth because the eigenvectors
become maximally nonorthogonal (completely indistinguish-
able) at the LEP. Obviously, under the current model, the
conclusion that LEP cannot enhance the estimation precision
is also held for CQFI F LEP

ω (t ). We will see this later.

0 3 6 9 12 15
0

1
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3

4

5

6

7
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FIG. 3. The DQFI F̃ω(t ) versus the evolution time for the differ-
ent decay rates, where the pink solid line with five-pointed star is
drawn by Eq. (60), while others are drawn through Eq. (59). Here we
take ω = 1 as a scale.

As a remark, one reason exceptional-point-based sensors
have been of recent interest is owing to the sensitivity of the
spectral gap between the eigenvectors diverge at the excep-
tional point, which has been confirmed theoretically [72,73]
and experimentally [99,100]. This has inspired researchers to
explore whether the exceptional point can enhance measure-
ment precision. Note also that pure sensitivity enhancement
is not sufficient to enhance measurement precision [74–77].
This is because the introduction of noise would also en-
hance the linewidth, and the final signal-to-noise ratio was not
necessarily enhanced. Chen et al. utilized CQFI to confirm
that HEP does not offer a significant improvement in the
estimation precision [75], which serves as a typical counterex-
ample. Nevertheless, we also point out that in some cases,
the enhanced excess noise can be surpassed by the improved
response, ultimately resulting in enhanced measurement pre-
cision at the HEP [78,101,102]. At present, we have obtained
similar results to the work of Chen et al. at the LEP. More
importantly, our results are more convincing in explaining
that exceptional point does not always improve measurement
precision. Because the non-Hermitian Hamiltonian and its
HEP involve only the coherent nonunitary evolution (i.e.,
energy loss or gain) without considering quantum jumps (i.e.,
decoherence), but the Liouvillian superoperator and its LEP
include all dissipative effects. Hence, the LEP more accurately
describes the singularity of open systems compared to the
HEP. In fact, the HEP can be interpreted as a semiclassical
limit of the LEP [87], but they two have fundamental dif-
ferences at the quantum level. In addition, it is more natural
and convenient to use DQFI to verify the singularity at LEP
than CQFI in the Liouville space. However, it is still an open
question under what physical mechanism the measurement
precision near the exceptional point (HEP or LEP) can be
improved, but this is beyond the scope of this paper.

Figure 3 shows the variation of F̃ω(t ) with the evolution
time for different decay rates γx. One can see that, whatever
γx is, as time goes on F̃ω(t ) gradually increases from its initial
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value of zero but finally decreases back to zero. In other
words, the estimation error first decreases and finally tends
to diverge with time. This is because two physical processes
are involved here: (i) internal Hamiltonian encoding quantum
state and (ii) noise weakening the information of parameters
to be estimated. The former makes F̃ω(t ) increase, while the
latter has the opposite effect. The competition between them
determines the evolution of the estimation precision about ω

with time. Under the long-term limit, the steady state of the
system becomes a fully mixed state, which does not carry
any information about ω, i.e., F̃ω(t ) = 0. In other words, the
estimation error is infinite.

More specifically, one can see that the growth rate and
the maximum value of F̃ω(t ) depend strongly on the decay
rate, that is, the smaller γx leads to a larger growth rate and
a larger maximum value owing to the dominance of Hamil-
tonian coding process over a longer time, and vice versa.
Particularly, we also proved numerically that F̃ω(t ) does not
diverge at LEP (see the pink solid line with five-pointed star).
Moreover, one finds that with the increase of γx, the atten-
uation behavior of F̃ω(t ) changes from oscillatory decay to
quasiexponential attenuation. This may be explained in the
following ways. In the case of γx � ω, � is a pure imaginary
number with a large modulus. Based on the above discussion
about Eqs. (23), (37), and (38), one can predict F̃ω(t ) presents
a grow with quasipolynomial behavior of t in a short time [see
the first term in Eqs. (37) and (38)], then tends to oscillatory
behavior over time [see the second term in Eqs. (37) and (38)],
finally the oscillation attenuates to zero as the exponential
decay factor of system state |̂ρs(ω, t )〉〉N begins to dominate.
When γx is close to or greater than ω, � is a pure imaginary
number with a small modulus or a real number. Similarly,
we can predict F̃ω(t ) shows an increase with quasipolynomial
behavior of t and then quickly towards a quasiexponential
decay behavior. Note also that the weak oscillations with time
caused by a pure imaginary number with a small modulus may
be covered by the exponential decay factor of the output state.

Another interesting phenomenon is that in the range of
γx < ω, the increase of γx leads to the reduction of the ro-
bustness of F̃ω(t ) to noise, namely, F̃ω(t ) decays to zero faster,
while in the γx � ω region, improving γx can strengthen the
ability of F̃ω(t ) to resist noise [although the maximum F̃ω(t )
decreases], i.e., F̃ω(t ) be able to last longer. The former is what
we expect and is easy to understand. The latter is because
under the strong-coupling regime between the system and the
environment, the counter-rotating wave [e.g., σ̂+ρ̂s(ω, t )σ̂+]
caused by flip noise being able to enhance the robustness
of F̃ω(t ) resists the environment, thereby boosting the noisy
quantum metrological performance [103].

One may be curious about the relationship between DQFI
and CQFI in the current model. In fact, in Ref. [59], the
inequality relationship between DQFI and CQFI has been
given, but that is abstract, especially for mixed states. Here we
will show them numerically, and then make some physically
reasonable inferences.

First, one can get the form of the evolution state of the
system in Hilbert space by |̂ρs(ω, t )〉〉N as follows [86–88]:

ρ̂s(ω, t ) =
[

1
2 ℘

℘∗ 1
2

]
. (61)

FIG. 4. The DQFI F̃ω(t ) and CQFI Fω(t ) as functions of the
evolution time (scaled by ω−1) for different decay rates, in which
the sky blue dotted line and the pink solid line represent F̃ω(t ) and
Fω(t ), respectively.

The basis-independent expression of CQFI for a single-qubit
mixed state reads as [3]

Fθ [̂ρs(t )] = Tr[[∂θ ρ̂s(t )]2] + 1

det[̂ρs(t )]

× Tr[[̂ρs(t )∂θ ρ̂s(t )]2], (62)

based on which, we obtain CQFI about ω, the parameter to be
estimated, i.e.,

Fω(t ) = 2|∂ω℘|2 + 4(℘∂ω℘
∗)2 + 4(℘∗∂ω℘)2 + 2|∂ω℘|2

1 − 4|℘|2 . (63)

Note that F LEP
ω (t ) at LEP is the limit result of taking � → 0

after the derivation of ω is completed by Eq. (63). Following
we show the numerical results directly.

Figure 4 presents the dynamics of the DQFI and CQFI
versus evolution time for different decay rates, here the sky
blue dotted and the pink solid lines denote F̃ω(t ) and Fω(t ),
respectively. One can see that F̃ω(t ) is greater than Fω(t )
in the displayed parameter area (excluding the initial time
and the final steady state). This can be understood from the
definition of QFI. CQFI is defined over all possible quantum
measurements on the original system, while DQFI is obtained
over all possible quantum measurements on the “extended
system.” The higher the dimensionality of the system, the
more measurement options are available. Note that the vector
extension of the POVM measurements in Hilbert space to
Liouville space does not necessarily convert to most general
measurements there [59]. This is because directly vectoriz-
ing the POVM projection operator in Hilbert space may not
necessarily be complete. More importantly, one finds that the
overall line-type profiles of F̃ω(t ) and Fω(t ) are very similar
and have the same total number of extreme points. Note that
the profile similarity here refers to the variation trend over
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time and the number of extreme points, not the values. This
also indirectly confirms the comments in the last paragraph of
Sec. III.

In particular, when γx is small, the difference in the location
of their extreme points is very small [see Fig. 4(a)]. This is be-
cause for a pure state F̃ω(t ) = 2Fω(t ) strictly holds. After the
introduction of dissipation, the quantum state of the system
will no longer be pure, which has a destructive effect on the
similarity of the two line-type profiles, and the stronger the
noise the more significant the destruction (mainly reflected in
the position difference of extreme points). The significance
of this result is that when the noise is weak, we can replace
the ideal metrology time of CQFI with that of DQFI. The
latter may be much easier to solve than the former. This is
because when the system dimension is large, the calculation
of CSLD is very complex (requiring spectral decomposition
of the density matrix, which faces the problem of solving
higher-order univariate equations with iterative algorithms),
while the DSLD can be directly obtained through Eq. (21).

V. CQFI VS DQFI

Finally, we would like to point out the usage scenarios,
advantages, and disadvantages of CQFI and DQFI frame-
works, respectively. The theoretical foundation of the CQFI
framework has been developed for decades and is well es-
tablished. In closed systems, the CQFI framework can not
only effectively solve various parameter estimation tasks, but
also reveal the influence of various system parameters on the
estimation precision. As we show in Sec. II, its calculations
are based on a quantum pure state evolving according to the
Schrödinger equation, and are therefore simple and straight-
forward both analytically and numerically. However, for open
systems, the quantum state of the system is a mixed state
evolving according to the master equation. Calculating the
CQFI would involve the spectral decomposition of density
matrix and the action of the Liouvillian superoperator, which
makes it hardly possible to derive a direct relation based on
the CQFI that explicitly shows how the precision is dictated
by system interactions or system-environment interactions.

Therefore, it is necessary to develop the DQFI framework
for open systems. One important reason is that in the Liouville
space, the density matrix and superoperator in Hilbert space
are transformed into column vector and matrix, respectively.
This means that the mathematics of the parameter estimation
problem for an open system can be handled as conveniently
with DQFI as with CQFI for closed systems. As a result, the
calculation of DQFI may be simpler than that of CQFI for
an open system. Then one can easily track how the estimated
parameters are encoded into open systems and how the envi-
ronment affects the estimation precision through the Liouville
spectrum. In some open-system models, compared to other
methods based on CQFI, the DQFI gives the correct scaling
of error with unprecedented simplicity and the constant factor
for capturing precision scales is more accurate [52,53,59].
Moreover, it is more convenient and natural to exploit DQFI
to identify the estimation precision around the LEP since they
are all defined in Liouville space.

Despite the above advantages, DQFI has the following
drawbacks: (i) The measurements in Hilbert space are usually

physically feasible, while whether all measurements in Liou-
ville space are physically feasible remains an open question,
which means that the ultimate precision limit decided by
DQFI may be unattainable. This may limit the experimental
progress of the DQFI framework. (ii) CQFI has been well
integrated with other quantum effects, such as witnessing
quantum coherence and correlation [10–13], but DQFI has
not yet achieved this. These defects provide directions for the
further development of DQFI framework.

VI. CONCLUSION

In summary, beyond the framework for estimating the
overall multiplicative factor of a Liouvillian superopera-
tor, we have investigated the DQFI for general Liouvillian
parametrized processes. By using the vectorization method,
we circumvent the difficulty brought through the superopera-
tor and derive the dissipative generator of the open system in
the Liouville space. More importantly, we traced the origin of
DQFI based on the dissipative generator. The result showed
that the dependence of eigenvalues and eigenvectors of Li-
ouvillian supermatrix on estimation parameters is the key to
the existence of DQFI. Remarkably, we also revealed that the
nonunitary parameter encoding process induced by the dissi-
pative generator can be transformed into two unitary encoding
processes plus the contribution of the commutator between
the two. We considered estimating the transition frequency by
measuring a two-level system with spin-flip noise as an exam-
ple to illustrate our theory. In particular, we employed DQFI to
verify that the estimation precision near the LEP has not been
significantly improved in this model. Further, we also found
that DQFI and CQFI possess many similar features. Although
our current theory focuses on single-parameter estimation,
generalization of our theory to the multiparameter scenario
is also straightforward. Not limited to quantum metrology,
DQFI may be similar to CQFI and will be connected with
other aspects of the open quantum mechanics in the future,
such as witness of entanglement and non-Markovianity, quan-
tum thermodynamics, etc. Finally, as a remark, we point out
that the DQFI has achieved some advantages in dealing with
parameter estimation problems of open systems. However, the
quantitative relationship between DQFI and CQFI has not yet
been discovered for mixed-state situations. In addition, the
practical measurement in the Liouville space is still an open
question. This means that parameter estimation in Liouville
space may not always be a physical process. Therefore, find-
ings and results that differ from those in the Hilbert space
should be treated with caution. Our study provides a different
perspective on establishing connections between parameter
estimation theory and other quantum effects for open systems
from the vantage of vectorization. We also hope that this work
can provide certain theoretical guidance for those researchers
who deeply study the properties and other potential applica-
tions of DQFI.
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APPENDIX A: DERIVATION OF THE SPECTRAL
DECOMPOSITION FORM FOR GENERAL

DISSIPATIVE GENERATOR

Here, we present a derivation of the spectral decomposition
form for a general dissipative generator in detail to readers. In
order to find the specific forms of �̃θ and �̃

†
θ in the whole time

domain, we define the operator

Re(μ) = −i
∂�̃θ

∂t

∣∣∣∣∣
t=μ

= eμ�L(θ ) ∂ �L(θ )

∂θ
e−μ�L(θ ), (A1)

with Re(0) = ∂θ �L(θ ). The derivative of Re(μ) with respect to
μ satisfies the following relationship:

d Re(μ)

dμ
= �L(θ )Re(μ) − Re(μ)�L(θ )

= [�L(θ ), Re(μ)]. (A2)

In addition, imitating the Liouvillian superoperator L̂ in-
troduced in Hilbert space which admits both left and right
eigenmatrices [87], we introduce the following superoperators
in the Liouville space:

�̂θ [•] = [�L(θ ), •], �̂†
θ [•] = [�L†(θ ), •]. (A3)

In general, �̂θ and �̂†
θ are non-Hermitian superoperators,

which satisfy the following eigenequations:

�̂θ ϒ̃k = λkϒ̃k, (A4)

�̂†
θ �̃k = λ∗

k�̃k, (A5)

where λk (λ∗
k ) and ϒ̃k (�̃k ) refer to the eigenvalues and

corresponding right (left) eigenmatrices of �̂θ , respectively.
Here, we do not consider the case that ϒ̃k (�̃k) coalesce
[namely, all ϒ̃k (�̃k) are independent]; such a situation is
believed to be rare [104]. Note also that the degeneracy of λk

does not necessarily lead to the coalescence of ϒ̃k (�̃k). We
will see this later. One can normalize the right eigenmatrices
||ϒ̃k||2 = Tr[ϒ̃

†

k ϒ̃k] = 1 by using the Hilbert-Schmidt inner
product [75,87], and different eigenmatrices may be not or-
thogonal due to the non-Hermitian property of �̂θ , namely,
Tr[ϒ̃

†

mϒ̃n] �= δmn and Tr[�̃
†

m�̃n] �= δmn, in which δmn is the
Kronecker delta function. Importantly, ||�̃k||2 = Tr [�̃

†

k�̃k] �=
1 is determined by the mutually orthonormal condition of
the right and left eigenmatrices that Tr[�̃†

mϒ̃n] = δmn [75]. In
particular, although different right eigenmatrices ϒ̃k are not
orthogonal to each other, they can still form a complete basis
{ϒ̃k} [87,104,105]. Thus, one can expand the operator Re(μ)
as follows:

Re(μ) =
d∑

k=1

ck (μ)ϒ̃k, (A6)

where ck (μ) = Tr[�̃
†

k∂θ �L(θ )]eλkμ, and Re(0) = ∂θ �L(θ ) has
been utilized, and d is the number of λk (perhaps there are
eigenvalues degeneracy). It is easy to verify that Eq. (A6)
is the solution of Eq. (A2). Without losing generality, we
suppose that λk = 0 (k = 1, 2, . . . , r), other λk �= 0 (k = r +
1, r + 2, . . . , d ), hence, Eq. (A6) can be rewritten as

Re(μ) =
r∑

k=1

Tr[�̃
†

k∂θ �L(θ )]ϒ̃k

+
d∑

k=r+1

Tr[�̃
†

k∂θ �L(θ )]eλkμϒ̃k . (A7)

Substituting Eq. (A7) into Eqs. (32) and (33), we obtain

�̃θ = it
r∑

k=1

Tr[�̃
†

k∂θ �L(θ )]ϒ̃k

+
d∑

k=r+1

i(eλkt − 1)

λk
Tr[�̃

†

k∂θ �L(θ )]ϒ̃k, (A8)

�̃
†
θ = −it

r∑
k=1

Tr[�̃k∂θ �L†(θ )]ϒ̃
†

k

−
d∑

k=r+1

i(eλ∗
k t − 1)

λ∗
k

Tr[�̃k∂θ �L†(θ )]ϒ̃
†

k . (A9)

Here, the first term is the contribution of λk = 0 (k =
1, 2, . . . , r), while the second term originates from λk �=
0 (k = r + 1, r + 2, . . . , d ). Currently, the forms of �̃θ and
�̃

†
θ are still not conducive to our analysis of the origin of

DQFI. In particular, if one knows the eigenvalues and the right
(left) eigenmatrices of �̂θ , Eqs. (A8) and (A9) can be further
simplified. Later we will see that the reduced form is very
useful for us to track the imprint of the estimated parameter,
i.e., how the parameter to be estimated is encoded into the
open system. Next, we start performing the simplification of
�̃θ and �̃

†
θ .

Since the Liouvillian supermatrix �L(θ ) is also non-
Hermitian, its left and right eigenvectors need to be con-
sidered. The eigenequations of �L(θ ) satisfy the following
relationship:

�L(θ )|φn〉〉 = Ln|φn〉〉, (A10)

�L†(θ )|χn〉〉 = L∗
n |χn〉〉, (A11)

where Ln (L∗
n ) and |φn〉〉 (|χn〉〉) denote the eigenvalues and

corresponding right (left) eigenvectors of �L(θ ), respectively.
We first do not consider the case of Ln degeneracy. The eigen-
values can be sorted as 0 = L1 > Re(L2) � Re(L3) . . . �
Re (LM2 ) because Liouvillian supermatrix �L(θ ) is negative
semidefinite, here M being the original Hilbert-space di-
mension. This is an inexorable requirement for the open
system to be stable in the long-term limit, otherwise, the
system tends to diverge [if Re(Lk ) > 0 exists]. Similar to
the case of eigenmatrices ϒ̃k and �̃k of the superoperator
�̂θ , the Hilbert-Schmidt inner product of the eigenvectors
satisfies 〈〈φn|φm〉〉 �= δmn and 〈〈χn|χm〉〉 �= δmn, that is, dif-
ferent eigenvectors do not satisfy orthogonality with each
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other [92–94]. One assumed that the right eigenvectors sat-
isfy normalization 〈〈φn|φn〉〉 = 1, while the corresponding left
eigenvectors satisfy 〈〈χn|χn〉〉 � 1 [92] and is determined by
the conditions that 〈〈χn|φm〉〉 = δmn. Therefore, left and right
eigenvectors satisfy orthogonality. Notice also that {|φn〉〉} and
{|χn〉〉} can form a complete biorthogonal basis [92–94], i.e.,∑M2

n=1 |φn〉〉〈〈χn| = ∑M2

n=1 |χn〉〉〈〈φn| = 1M2 .
Interestingly, we find that the eigenmatrices of superop-

erator �̂θ can be built by the eigenvectors of operator �L(θ ),
that is, ϒ̃n,m

k = |φn〉〉〈〈χm| and �̃n,m
k = |χn〉〉〈〈φm| so that the

eigenequations (A4) and (A5) become

�̂θ ϒ̃
n,m
k = [�L(θ ), ϒ̃n,m

k

] = (Ln − Lm)ϒ̃n,m
k , (A12)

�̂†
θ �̃

n,m
k = [�L†(θ ), �̃n,m

k

] = (L∗
n − L∗

m)�̃n,m
k , (A13)

where the eigenvalues corresponding to eigenmatrices ϒ̃n,m
k

and �̃n,m
k are (Ln − Lm) and (L∗

n − L∗
m), respectively. Particu-

larly, in the case of n = m, i.e., the eigenvalue of �̂θ is 0, one

can obtain

Tr
[
�̃n,n†

k ∂θ �L(θ )
] =

M2∑
i=1

〈〈χi||φn〉〉〈〈χn|∂θ �L(θ )|φi〉〉

= 〈〈χn|∂θ �L(θ )|φn〉〉 = ∂θLn, (A14)

where we have used the completeness of biorthogonal basis
and ∂θ 〈〈χn|φn〉〉 = 0. In this case, one can see that the eigen-
values corresponding to ϒ̃n,n

k (n = 1, 2, . . . , M2) are all 0,
but ϒ̃n,n

k are independent of each other for different n. By
comparison, in the case of n �= m, i.e., the eigenvalue of �̂θ is
not 0, one can get

Tr
[
�̃n,m†

k ∂θ �L(θ )
] =

M2∑
i=1

〈〈χi||φm〉〉〈〈χn|∂θ �L(θ )|φi〉〉

= 〈〈χn|∂θ �L(θ )|φm〉〉
= (Ln − Lm)〈〈∂θχn|φm〉〉, (A15)

in which 〈〈∂θχn|φm〉〉 = −〈〈χn|∂θφm〉〉 is used. Substituting
Eqs. (A14) and (A15) into (A8) and (A9), we finally obtain

�̃θ = it
M2∑
n=1

∂θLn|φn〉〉〈〈χn| +
M2∑

n,m=1,n �=m

i[e(Ln−Lm )t − 1]〈〈∂θχn|φm〉〉|φn〉〉〈〈χm|, (A16)

�̃
†
θ = −it

M2∑
n=1

∂θL∗
n |χn〉〉〈〈φn| −

M2∑
n,m=1,n �=m

i[e(L∗
n−L∗

m )t − 1]〈〈φm|∂θχn〉〉|χm〉〉〈〈φn|. (A17)

So, Eqs. (37) and (38) in the main text have been verified.

APPENDIX B: PROPERTIES AND USEFUL FORMULAS
OF SUPEROPERATOR AND VECTORIZATION

Here, we lead readers to review the basic properties of
superoperators and vectorization, which help to understand
some of the derivations and calculations of this paper. Below,
we use the following notation: the capital letters with a “∧” are
operator, while the floral capital letters with a “∧” represent
superoperator, as well as the double bracket “| 〉〉” denotes a
column vector in the Liouville space.

Superoperator. Mapping an operator to a linear mapping
of a new operator, similar to the operator acting on a vec-
tor to generate a new vector. The two typical superoperators
in quantum mechanics are commutator Â := [Â, •] and an-
ticommutator B̂ := {B̂, •} (“•” refers to the operator being
acted on), whose functions are ÂĜ = [Â, Ĝ] = ÂĜ − ĜÂ and
B̂Ĝ = {B̂, Ĝ} = B̂Ĝ + ĜB̂, respectively. Here we adopt the
traditional convention of always acting on the operator closest
to the right of the •. In addition, we also meet this super-
operator in the master equation, namely, Ĉ := Â • B̂ is such
that ĈĜ = ÂĜB̂. With these examples, we clearly see that the
action of the superoperator is closed, i.e., the operator remains
an operator after it is acted upon. Of course, there are also
other types of superoperators, which can be uniformly written
as the right-hand side action superoperator R[Â]• := •Â and
the left-hand side action superoperator L[Â]• := Â•.

Vectorization. Mapping an operator (superoperator) to
a column vector (operator or matrix). This is similar to

“reshape” operations in MATLAB and PYTHON. This work
expands Hilbert space to Liouville space by the vec-
torization method. For example, the operator Â ∈ H in
N-dimensional Hilbert space is mapped to the vector |Â〉〉 =
[Â(1, :) Â(2, :) . . . Â(N, :)]T ∈ H⊗2 in the Liouville
space [59,87], in which the superscript “T” denotes the trans-
pose and A(N, :) represents the N th row of matrix Â. This
means that the space dimension is enlarged by N times. Note
that, in some literatures [3,106], the vectorization of operator
is defined as |Â〉〉 = [Â(:, 1)T Â(:, 2)T . . . Â(:, N )T]T,
where Â(:, N ) refers to the N th column of matrix Â. Both
definitions do not affect the final physical result. Here, we
adopt the first definition. A simple example, when N = 2,

we can get

Â =
[

a b
c d

]
vectorization−−−−−−−−→ |Â〉〉 =

⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦. (B1)

More generally, for an arbitrary linear operator ξ̂ , we have that

ξ̂ =
∑
i, j

〈i|̂ξ | j〉|i〉〈 j vectorization−−−−−−−−→ |̂ξ〉〉 =
∑
i, j

〈i|̂ξ | j〉|i〉| j〉,

(B2)
where |i〉 being the orthonormal basis in the Hilbert space H.
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The properties of vectorization have been well organized
by Alipour [59], i.e.,

〈〈Â|B̂〉〉 = Tr[Â†B̂], (B3a)

|ÂB̂Ĉ〉〉 = (Â ⊗ ĈT)|B̂〉〉, (B3b)

|Â ⊗ B̂ ⊗ Ĉ〉〉 = |Â〉〉 ⊗ |B̂〉〉 ⊗ |Ĉ〉〉, (B3c)

|[Â, B̂]〉〉 = (Â ⊗ 1 − 1 ⊗ ÂT)|B̂〉〉, (B3d)

where 〈〈Â| := (|Â〉〉)†; 1 represents the identity matrix with
the same dimension as Â. Please refer to Ref. [59] for detailed
proof of the above formulas. By utilizing these properties,
Eq. (13) is easily obtained. In particular, based on Eq. (B3a)
(Hilbert-Schmidt inner product), similar to the Hermitian ad-
joint of operators, one can also define the Hermitian adjoint of
superoperators, namely [87,107,108]

〈〈Â|D̂B̂〉〉 = 〈〈D̂†Â|B̂〉〉, (B4)

where D̂ is any superoperator. According to Eq. (B4), the
following formulas can be verified:

〈〈Ĉ|ÂB̂〉〉 = Tr[Ĉ†[Â, B̂]]

= Tr[
(
Â†Ĉ − ĈÂ†

)†
B̂]

= 〈〈Â†Ĉ|B̂〉〉, (B5a)

〈〈Ĉ|B̂Â〉〉 = Tr[Ĉ†
{
B̂, Â

}
]

= Tr[
(
B̂†Ĉ + B̂†Ĉ

)†
Â]

= 〈〈B̂†Ĉ|Â〉〉, (B5b)

〈〈Ĉ|ĈĜ〉〉 = Tr[Ĉ†ÂĜB̂]

= Tr[
(
Â†ĈB̂†

)†
Ĝ]

= 〈〈Ĉ†Ĉ|Ĝ〉〉, (B5c)

where the matrix trace in which the order of commutative
matrix multiplication does not change has been used, i.e.,
Tr[ÂB̂Ĉ] = Tr[ĈÂB̂] = Tr[B̂ĈÂ]. One thus concludes that
Â† := [Â†, •], B̂† := {B̂†, •}, and Ĉ† := Â† • B̂†.

On the other hand, operators and superoperators can be
defined in Hilbert space or Liouville space. But we should
notice that the operators and superoperators in Hilbert space
correspond to the column vectors and operators in the Liou-
ville space, respectively. This is the fundamental reason why
this paper introduces vectorization technology to simplify the
processing of dissipative systems.

APPENDIX C: BASIC PROPERTIES OF NON-HERMITIAN
MATRIX AND ITS ADJOINT

Some readers are not familiar with the relevant contents
of non-Hermitian quantum mechanics. For pedagogical rea-
sons, let us also review the main aspects of non-Hermitian
matrix and its adjoint. In order to be more in line with the
theme of this paper, the following discussion about this part is
conducted in Liouville space. Suppose that a non-Hermitian
matrix in the Liouville space reads as

�Leff = �K − i��, (C1)

where �K and �� are Hermitian matrices that satisfy �K† = �K
and ��† = ��, respectively. What one needs to point out here is

that the use of “→” is to be consistent with the main text. In
fact, it represents the operator in Liouville space. Obviously,
�L†

eff �= �Leff , hence, �Leff is a non-Hermitian. Note that Eq. (C1)
is general, as any non-Hermitian matrix can always be split
into a combination of two Hermitian matrices. For instance,
for the non-Hermitian matrix �Leff = �Q, the corresponding
ones are �K = ( �Q + �Q†)/2 and �� = i( �Q − �Q†)/2.

Let {|En〉〉} and {En} be the right eigenvectors and eigenval-
ues of �L eff, respectively, satisfying the eigenequations

�Leff|En〉〉 = En|En〉〉, (C2a)

〈〈En|�L†
eff = 〈〈En|E∗

n , (C2b)

where En is not necessarily a real number owing to �Leff is non-
Hermitian. Unless stated otherwise, we first assume that {En}
does not degenerate. Based on Eqs. (C2), for m �= n one can
easily obtain

〈〈Em|�Leff|En〉〉 = En〈〈Em|En〉〉, (C3a)

〈〈Em|�L†
eff|En〉〉 = E∗

m〈〈Em|En〉〉. (C3b)

Further, we can get by Eqs. (C3)

〈〈Em|En〉〉 = 2
〈〈Em| �K|En〉〉

En + E∗
m

= 2i
〈〈Em| ��|En〉〉

E∗
m − En

. (C4)

Therefore, |En〉〉 and |Em〉〉 may not necessarily be orthogonal
to each other.

Particularly, the nonorthogonality of eigenvectors leads to
imperfect projection techniques [92]. To this end, one can
introduce the eigenvectors {|Hn〉〉} of Hermitian adjoint �L†

eff

(they can also be called the left eigenvectors of �Leff), i.e.,

�L†
eff|Hn〉〉 = Hn|Hn〉〉, (C5a)

〈〈Hn|�Leff = 〈〈Hn|H∗
n . (C5b)

Similarly, one can also obtain

〈〈Hm|Hn〉〉 = 2
〈〈Hm| �K|Hn〉〉

Hn + H∗
m

= 2i
〈〈Hm| ��|Hn〉〉

Hn − H∗
m

. (C6)

According to Eqs. (C2) and (C5), the following result holds:

〈〈Hm|�Leff|En〉〉 = En〈〈Hm|En〉〉, (C7a)

〈〈Hm|�Leff|En〉〉 = H∗
m〈〈Hm|En〉〉. (C7b)

Equation (C7a) minus Eq. (C7b) to obtain 〈〈Hm|En〉〉 =
δmn〈〈Hm|En〉〉 owing to En �= H∗

m (n �= m) and En = H∗
n (note

that En must be equal to an element in {H∗
m}). Without loss of

generality, here we have labeled the states such that En = H∗
n ,

which means space {|En〉〉} and its dual space {|Hn〉〉} show
biorthogonality [92–94].

On the other hand, although {|En〉〉} are not orthogo-
nal, they are independent of each other. It is easy to prove
that Cn = 0 (for ∀ n) in

∑
n Cn|En〉 = 0 through 〈〈Hm|En〉〉 =

δmn〈〈Hm|En〉〉, that is {|En〉〉} are linearly independent [92–94].
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As a result, {|En〉〉} can form a complete nonorthogonal basis.
Therefore, an arbitrary matrix �O can be represented as

�O =
∑
n,m

Omn|Em〉〉〈〈En|, (C8)

where Omn = 〈〈Em| �O|En〉〉 and {|En〉〉} has been normalized
(a familiar example is the coherent state representation). The
similar results hold true for {|Hn〉〉}.

More interesting, one can find that the following formula
holds: ∑

n

�Tn =
∑

n

�Jn = 1n, (C9)

with

�Tn = |En〉〉〈〈Hn|
〈〈Hn|En〉〉 , �Jn = |Hn〉〉〈〈En|

〈〈En|Hn〉〉 , (C10)

where { �Tn} and { �Jn} can be regarded as complex projection
operators in Liouville space. Equation (C9) is similar in form
to a subcompleteness relationship, which can be considered as
a biorthogonal basis composed of {|En〉〉} and {|Hn〉〉} in non-
Hermitian physics. In practice, to ensure that the probabilistic
interpretation of measurement output under biorthogonal ba-
sis is consistent with traditional quantum mechanics, one can
use the following convention [92,93]:

〈〈Hn|En〉〉 = 〈〈En|Hn〉〉 = 1. (C11)

This convention has been widely used in the field of quan-
tum chemistry and it brings great convenience. In this case,
Eq. (C10) is rewritten as

�Tn = |En〉〉〈〈Hn|, �Jn = |Hn〉〉〈〈En|. (C12)

Moreover, for simplicity, one can assume that 〈〈En|En〉〉 = 1
for all n, the corresponding 〈〈Hn|Hn〉〉, are determined by
Eq. (C11). Under biorthogonal basis {|En〉〉, |Hn〉〉}, an arbi-
trary matrix �O can be expressed as

�O =
∑
n,m

O1,nm|En〉〉〈〈Hm|

=
∑
n,m

O2,nm|Hn〉〉〈〈Em|, (C13)

where matrix elements O1,nm = 〈〈Hn| �O|Em〉〉 and O2,nm =
〈〈En| �O|Hm〉〉, they are the results of using projection operators
�Tn and �Jn, respectively.

In the case of {En} degeneracy, some of the above
results need special treatment. A typical situation is the
occurrence of exceptional points, where at least two of the
eigenvalues and corresponding eigenvectors are merged si-
multaneously [72–77]. In this case, Eqs. (C4) and (C6) may
have a denominator of 0 under certain n, leading to the
calculation of 〈〈Em|En〉〉 and 〈〈Hm|Hn〉〉 needs to be careful.
Moreover, {|En〉〉} and {|Hn〉〉} are no longer complete due to
the combination of eigenvectors. At this time, the construction
of biorthogonal basis needs to use the method provided by
Ref. [61].

APPENDIX D: SPECTRAL DECOMPOSITION
FORMULAS OF DQFI AND DSLD

In order to complete this paper, here we present the for-
mula for calculating the spectral decomposition of DQFI and
DSLD based on the density matrix. Assuming that the spectral
decomposition of density matrix ρ̂θ takes the form

ρ̂θ =
m∑

k=1

pk|ψk〉〈ψk|, (D1)

where pk > 0 (|ψk〉) is the kth eigenvalue (eigenstate) of ρ̂θ ;
m denotes the support dimension of ρ̂θ . As ρ̂θ is a Hermitian
operator, hence {|ψk〉} satisfying completeness

d∑
k=1

|ψk〉〈ψk| = 1d , (D2)

where d = dim(̂ρθ ) is dimension of ρ̂θ and m � d (the equal
sign indicates that ρ̂θ is full-rank matrix). Known CSLD M̂θ

about estimated parameter θ is defined in a way that

∂ρ̂θ

∂θ
= 1

2

(̂
ρθM̂θ + M̂θ ρ̂θ

)
. (D3)

Under the {|ψk〉} basis, one can obtain

(M̂θ )k j = ∂θ pk

pk
δk j − 2(pk − p j )

pk + p j
〈ψk|∂θψ j〉, (D4)

where matrix element (M̂θ )k j = 〈ψk|M̂θ |ψ j〉; pk �= 0 and
pk + p j �= 0. Note that the form of M̂θ is not unique for non-
full-rank density matrix ρ̂θ , but this does not affect the value
of CQFI [3]. This is because when calculating CQFI, there
is no case in which the indices k and j are greater than m at
the same time in (M̂θ )k j . For convenience, it can be assumed
that (M̂θ )k j = 0 for i, j > m. Substituting Eqs. (D1)–(D4)
into Eq. (2c), the spectral decomposition formula for CQFI
is obtained, i.e.,

Fθ =
m∑

k=1

[∂θ pk]2

pk
+ 4

m∑
k=1

pk〈∂θψk|∂θψk〉 −
m∑

k=1

m∑
j=1

8pk p j

pk + p j

∣∣〈ψk|∂θψ j〉
∣∣2

. (D5)

This expression is applicable to the calculation of QFI of density matrix with arbitrary rank.
According to Ref. [59], one knows that

F̃θ = 2

Tr
[̂
ρ2

θ

] [Tr

⎡⎣ρ̂θM̂θ ρ̂θM̂θ ] + Tr
[̂
ρ2

θM̂
2
θ

] − 2

(
Tr

[̂
ρ2

θM̂θ

])2

Tr
[̂
ρ2

θ

]
⎤⎦. (D6)
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Obviously, in order to calculate the spectral decomposition form of DQFI F̃θ , one needs to further evaluate Tr[̂ρ2
θ ],

Tr[̂ρθM̂θ ρ̂θM̂θ ], Tr[̂ρ2
θM̂

2
θ ], and Tr[̂ρ2

θM̂θ ], i.e.,

Tr
[̂
ρ2

θ

] =
m∑

k=1

p2
k, Tr

[̂
ρ2

θM̂θ

] =
m∑

k=1

pk[∂θ pk], (D7a)

Tr
[̂
ρθM̂θ ρ̂θM̂θ

] =
m∑

k=1

[∂θ pk]2 +
m∑

k=1

m∑
j=1

pk p j
4(pk − p j )2

(pk + p j )2
|〈ψk|∂θψ j〉|2, (D7b)

Tr
[̂
ρ2

θM̂
2
θ

] =
m∑

k=1

[∂θ pk]2 +
m∑

k=1

d∑
j=1

4p2
k (pk − p j )2

(pk + p j )2
|〈ψk|∂θψ j〉|2. (D7c)

In the derivation of the above formulas, we have used Eqs. (D1), (D2), and (D4). Moreover, (M̂θ )k j with both k and j greater
than m does not contribute to the calculation of Eqs. (D7). Therefore, using Eq. (D4) to calculate F̃θ is convincing. In addition,

m∑
k=1

d∑
j=1

4p2
k (pk − p j )2

(pk + p j )2
|〈ψk|∂θψ j〉|2 =

m∑
k=1

m∑
j=1

4p2
k (pk − p j )2

(pk + p j )2
|〈ψk|∂θψ j〉|2 +

m∑
k=1

d∑
j=m+1

4p2
k|〈ψk|∂θψ j〉|2

=
m∑

k=1

m∑
j=1

4p2
k (pk − p j )2

(pk + p j )2
|〈ψk|∂θψ j〉|2 +

m∑
k=1

4p2
k〈∂θψk|∂θψk〉 −

m∑
k=1

m∑
j=1

4p2
k|〈ψk|∂θψ j〉|2

=
m∑

k=1

4p2
k〈∂θψk|∂θψk〉 −

m∑
k=1

m∑
j=1

8pk p j
(
p2

k + p2
j

)
(pk + p j )2

|〈ψk|∂θψ j〉|2, (D8)

where we have used

d∑
j=m+1

|ψ j〉〈ψ j | = 1d −
m∑

j=1

|ψ j〉〈ψ j |, 〈ψk|∂θψ j〉 = −〈∂θψk|ψ j〉, (D9a)

m∑
k=1

m∑
j=1

4p2
k

[
(pk − p j )2

(pk + p j )2
− 1

]∣∣〈ψk|∂θψ j〉
∣∣2 =

m∑
k=1

m∑
j=1

4p2
j

[
(pk − p j )2

(pk + p j )2
− 1

]∣∣〈ψk|∂θψ j〉
∣∣2

. (D9b)

Substituting Eqs. (D7) and (D8) into (D6), we finally obtain

F̃θ = 4
m∑

k=1

[∂θ pk]2∑m
k=1 p2

k

+
m∑

k=1

8p2
k∑m

k=1 p2
k

〈∂θψk|∂θψk〉 −
m∑

k=1

m∑
j=1

8pk p j∑m
k=1 p2

k

|〈ψk|∂θψ j〉|2 − 4

∑m
k=1

∑m
j=1 pk p j[∂θ pk][∂θ p j]∑m
k=1 p2

k

∑m
j=1 p2

j

. (D10)

For the pure state, namely, ρ̂θ ⇒ |ψ〉〈ψ |, it is easy to get

Fθ = 4(〈∂θψ |∂θψ〉 − |〈ψ |∂θψ〉|2), F̃θ = 8(〈∂θψ |∂θψ〉 − |〈ψ |∂θψ〉|2). (D11)

Hence, F̃θ = 2Fθ holds for the pure state, which originates from the increase of the spatial dimension.
Next, we derive the spectral decomposition form of DSLD M̃θ . The known formula [59]

M̃θ = M̂θ ⊗ 1d + 1d ⊗ M̂T
θ − 2

Tr
[̂
ρ2

θM̂θ

]
Tr

[̂
ρ2

θ

] . (D12)

Similarly, by utilizing Eqs. (D7), one can obtain

M̃θ =
d∑

k=1

d∑
j=1

[M̂θ ]k j |ψk〉〈ψ j | ⊗ 1d + 1d ⊗
d∑

k=1

d∑
j=1

[M̂θ ] jk|ψ j〉〈ψk| − 2

∑m
k=1 pm[∂θ pm]∑m

k=1 p2
k

. (D13)

Note that when k > m and j > m are satisfied simultaneously, [M̂θ ]k j can take any value (for convenience, they can be selected
as 0), otherwise, [M̂θ ]k j is determined by Eq. (D4). Therefore, for a non-full-rank density matrix ρ̂θ , the form of M̃θ is also not
unique, but this does not affect the value of DQFI.
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[48] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński,
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for quantum metrology with uncorrelated noise, New J. Phys.
15, 073043 (2013).

[55] S. I. Knysh, E. H. Chen, and G. A. Durkin, True limits to
precision via unique quantum probe, arXiv:1402.0495.

[56] S. Gammelmark and K. Mølmer, Fisher information and the
quantum Cramér-Rao sensitivity limit of continuous measure-
ments, Phys. Rev. Lett. 112, 170401 (2014).

[57] S. Gammelmark and K. Mølmer, Bayesian parameter in-
ference from continuously monitored quantum systems,
Phys. Rev. A 87, 032115 (2013).

[58] R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and
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