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Limitations of probabilistic error cancellation for open dynamics beyond sampling overhead
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Quantum simulation of dynamics is an important goal in the noisy intermediate-scale quantum era, within
which quantum error mitigation may be a viable path towards modifying or eliminating the effects of noise.
Most studies on quantum error mitigation have focused on the resource cost due to its exponential scaling
in the circuit depth. Methods such as probabilistic error cancellation rely on discretizing the evolution into
finite time steps and applying the mitigation layer after each time step, modifying only the noise part without
any Hamiltonian dependence. This may lead to Trotter-like errors in the simulation results even if the error
mitigation is implemented ideally, which means that the number of samples is taken as infinite. Here we analyze
the aforementioned errors which have been largely neglected before. We show that they are determined by the
commutating relations between the superoperators of the unitary part, the device noise part, and the noise part of
the open dynamics to be simulated. We include both digital quantum simulation and analog quantum simulation
setups and consider defining the ideal error mitigation map both by exactly inverting the noise channel and by
approximating it to first order in the time step. We use single-qubit toy models to numerically demonstrate our
findings. Our results illustrate fundamental limitations of applying probabilistic error cancellation in a stepwise
manner to continuous dynamics, thus motivating the investigations of truly time-continuous error cancellation
methods.

DOI: 10.1103/PhysRevA.109.012431

I. INTRODUCTION

Dynamics of quantum systems are unavoidably noisy due
to the interaction with the environment. Elements of quantum
computers, therefore, are also subject to a variety of noises.
The main techniques of reducing the effects of noise belong
to two categories, quantum error correction [1] and quantum
error mitigation [2]. Quantum error correction encodes the
quantum information in a much larger Hilbert space in order
to achieve fault tolerance. Quantum error mitigation, in con-
trast, makes use of a large number of copies of the quantum
system and some knowledge of the noise structures in order
to achieve a noise-free ensemble average result via statistical
postprocessing. Given the current and near-future error rates
for a single quantum register [3], the implementations of
various quantum error mitigation methods on actual quantum
hardware [2] are considered to be an important milestone
on the way to the long-term goal of fault-tolerant quantum
computing.

One important application of quantum computing before
full fault tolerance can be achieved is quantum simulation,
especially the simulation of quantum dynamics [4]. Indeed,
different quantum error mitigation methods have been ap-
plied to different implementations of quantum computers to
simulate unitary dynamics [5–9], with the possible potential
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of showing quantum advantages over classical computers.
Recently, it has been proposed that quantum error mitigation
can be applied to partially mitigate the noise of the quantum
computer so that open dynamics can be simulated, which
have applications in many aspects in quantum chemistry and
quantum biology [10].

Although widely used, methods of quantum error mitiga-
tion are known to suffer from an exponential scaling of the
sampling overhead [11–13], and to what extent this can be
optimized remains an open question. On the other hand, as
quantum error mitigation aims at removing noise, how its
effects change with different unitary parts of the dynamics is
rarely explored, partially due to the exponential sampling cost
mentioned above that poses significant numerical challenge.
This is especially important for simulating the dynamics, as,
according to the theory of open dynamics [14,15], in general
it is impossible to find a Hamiltonian-independent map that
precisely converts a noisy time evolution to a noiseless one.

In this paper we focus on the simulation errors of open and
closed dynamics when probabilistic error cancellation, which
is one of the quantum error mitigation methods, is applied to
reshape the noise distribution of a noisy quantum simulation
process. In particular, we assume that the number of samples
is infinitely large such that the probabilistic error cancella-
tion is implemented in an ideal way. We describe a general
framework to show that the simulation errors depend on the
commutators between different superoperators governing the
dynamics and the contributing commutators are different de-
pending on whether the simulation setup is digital or analog.
We then illustrate our results numerically by taking a single-
qubit toy model as an example, where analytical expressions
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are possible and the large sampling overhead for quantum er-
ror mitigation is not a limiting factor. Although the simulation
errors we investigate here are unlikely to dominate over the
numerical errors introduced by the sampling overhead for re-
alistic models, our work points out the intrinsic limitations of
combining stepwise protocols to continuous dynamics, which
can only be overcome by applying time-continuous protocols
instead.

II. GENERAL FRAMEWORK

We consider the simulation of a Lindblad master equa-
tion that describes weak couplings between the system and
a Markovian environment [14,16],

dρ(t )

dt
= −i[Ĥ, ρ(t )] +

∑
k

γk (L̂kρ(t )L̂†
k

− 1

2
(L̂†

k L̂kρ(t ) + ρ(t )L̂†
k L̂k )), (1)

where Ĥ is the Hamiltonian corresponding to the unitary dy-
namics of the system and L̂k are Lindblad operators with error
rate γk . For simplicity, we take h̄ = 1 and assume that Ĥ and
L̂k are time independent. We rewrite the master equation into
the superoperator form by vectorizing the d × d density ma-
trix ρ into the column-ordered d2 × 1 vector ρ [17],

dρ(t )

dt
= (Lh + Ld )ρ(t ), (2)

Lh = −i(1 ⊗ Ĥ − ĤT ⊗ 1), (3)

Ld =
∑

k

γk

(
L̂∗

k ⊗ L̂k − 1

2

(
1 ⊗ L̂†

k L̂k + L̂T
k L̂∗

k ⊗ 1
))

, (4)

where Lh is the superoperator describing the unitary part of
the dynamics governed by the Hamiltonian and Ld is the
superoperator describing the noise part of the open dynamics
to be simulated. Both Lh and Ld are d2 × d2 matrices acting
on the vectorized density matrix ρ from the left. As we assume
that Ĥ and L̂k are time independent, Lh and Ld are time
independent as well. The solution of Eq. (2) is therefore

ρ(t ) = eLht+Ld tρ(0). (5)

Note that, according to the Baker-Campbell-Hausdorff for-
mula [18], exp(Lht + Ldt ) = exp(Ldt ) exp(Lht ) works only
if Ld and Lh commute. Also note that the case of simulating
closed dynamics can be included by simply taking Ld = 0.

Typically, a quantum computer aims at simulating the
unitary dynamics Lh, but unavoidable sources of noise im-
ply that the quantum computer is in fact simulating some
sort of open dynamics. We consider applying quantum error
mitigation to attenuate the noise of the quantum computer
such that effectively we can simulate the dynamics governed
by Lh + Ld rather than the intrinsic noise of the quantum
computer. Specifically, we choose the method of probabilistic
error cancellation [19]. It aims at implementing a map that
cancels the effect of the noise channel. As this map is not
physical, it can only be realized statistically. A large number
of trials is required. Within each trial, some unitary operators
are sampled and applied to the state. Taking the statistical

average over all the trials, together with classical postprocess-
ing, will effectively implement the desired nonphysical map.
We will explicitly illustrate these steps in Sec. III A with the
example of a single qubit. As probabilistic error cancellation
is designed to act in discrete time steps [6,10,20], we con-
sider the time interval �t such that the state of the system
at time t + �t is given by MCρ(t ), where M is the super-
operator corresponding to the nonphysical map to be realized
by probabilistic error cancellation and C is the superoperator
describing the noisy implementation of the unitary dynamics
during the time step �t . The form of C depends on whether the
quantum computer is digital or analog and will be discussed
in the following sections. The error mitigation superoperator
M should be designed such that

MC = eLh�t+Ld �t . (6)

More specifically, we want to simulate open dynamics on a
noisy quantum computer, which can be executed by mitigating
the noisy unitary evolution such that effectively the remaining
noise matches the noise coming from the interactions with the
environment that are to be simulated. As a special case, this
also includes the simulation of closed quantum systems. We
are going to show that, if we require M to be independent
of Lh, which is a standard assumption as error mitigation
protocols only aim at canceling the noise, unless special con-
ditions are satisfied, in general Eq. (6) cannot hold precisely.
The errors resemble Trotter errors [18], but are in terms of
the superoperators corresponding to the unitary part and noisy
part of the dynamics.

A. Digital quantum simulation

For a digital quantum computer, the noisy implementation
of a unitary gate is usually modeled as a unitary layer followed
by a layer of the noise channel [6,10]. Specifically,

C = eLn�t eLh�t , (7)

where Ln is the superoperator describing the device noise
channel.

In some cases the device noise channel is defined by pa-
rameters that have already taken into account the exponential
over �t . This will be discussed in detail with the numerical
examples in Sec. III B 1. Assuming that exp(Ln�t ) is invert-
ible, the error mitigation superoperator M should satisfy

M = eLd �t+Lh�t e−Lh�t e−Ln�t . (8)

For the simulation of closed dynamics, Ld = 0. We therefore
require

M = e−Ln�t . (9)

This is independent of the unitary part Lh and only cancels
the device noise. On the other hand, for the simulation of
open dynamics [10], Ld �= 0. Different forms of M result,
depending on the commutator between the superoperators Ld

and Lh. If [Ld ,Lh] = 0, we have

M = e(Ld −Ln )�t . (10)

The error mitigation superoperator M is still independent
of Lh. Note that satisfying the relation [Ld ,Lh] = 0 may pose
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a requirement on the form of Lh, but for special Ld such as de-
polarizing noise [6], [Ld ,Lh] = 0 holds for any Hamiltonian.
Finally, if [Ld ,Lh] �= 0, according to the Zassenhaus formula
[17],

M = e−(�t )2[Ld ,Lh]/2e(Ld −Ln )�t · · · , (11)

where we have neglected terms that contain high orders of
�t in the exponential. The first term on the right-hand side
of Eq. (11) implies that M has to depend on the Hamiltonian
Ĥ . Ignoring this term and the higher-order terms will lead to
Trotter errors, which depend on the superoperator commutator
[Ld ,Lh] and can be reduced by decreasing the time step �t .
However, the large sampling overhead of probabilistic error
cancellation may put a lower bound on the implementable
values of �t .

B. Analog quantum simulation

For an analog quantum computer, it is no longer possible to
separate the unitary dynamics from the device noise. Instead,
both of them act on the system simultaneously [20], namely,
we now have

C = eLn�t+Lh�t . (12)

The error mitigation superoperator M is thus required to be

M = eLd �t+Lh�t e−Ln�t−Lh�t . (13)

Using the Baker-Campbell-Hausdorff formula, we can rewrite
M as

M = e−(�t )2[Ld −Ln,Lh]/2e(Ld −Ln )�t · · · , (14)

where the ellipsis represents the terms coming from com-
mutating relations that have higher orders of �t in the
exponential. Note that, in this case, only if Ld − Ln commutes
with Lh will M be Hamiltonian independent without Trotter
error, i.e., M is given by Eq. (10). This is different from the
case of a digital quantum computer where the device noise Ln

does not contribute to the commutating relation. Thus one im-
portant consequence for an analog quantum computer is that,
for simulations of closed dynamics Ld = 0, if [Ln,Lh] �= 0, it
is impossible to precisely recover the unitary dynamics in a
Hamiltonian-independent way. This no-go theorem applies to
any protocol aiming at canceling the noise in a dynamical pro-
cess, including different methods of quantum error mitigation,
such as the method described in Ref. [20].

III. TOY MODELS

In this section we use single-qubit toy models to demon-
strate the various simulation errors we have discussed in
Sec. II. Although oversimplified, single-qubit models have
certain advantages, a few of which are the following. The
unitary dynamics can be expressed exactly as exp(−iĤt )
without Trotter errors so that we can focus on the Trotter
errors related to the noise superoperators. Due to the small
Hilbert space dimension, analytical solutions can be kept track
of. The number of samples for realizing probabilistic error
cancellation can be very large as the numerical cost per sample
is very low.

We consider the Hamiltonian to be

Ĥ = ω(sin βX̂ − cos βŶ ), (15)

where the Pauli operators are X̂ = |0〉〈1| + |1〉〈0|, Ŷ =
i|0〉〈1| − i|1〉〈0|, and Ẑ = |1〉〈1| − |0〉〈0| and we have as-
sumed |1〉 = (1, 0)T and |0〉 = (0, 1)T . The initial state is
chosen to be ρ(0) = |1〉〈1|. Physically, this describes the Rabi
oscillation of a two-level quantum system initialized to its
excited state, as will be described in detail later. The parameter
β can be changed to obtain different commutators between the
superoperators. In the following sections we consider the sim-
ulations of closed dynamics and open dynamics separately.
Within each category, we discuss both the digital simulation
setup and the analog simulation setup, including different
device noise models. For simplicity, we focus on Pauli noise
models for both the device noise and the noise part of the
open dynamics so that the error mitigation superoperator (10)
has a closed-form expression [6]. Specifically, the Lindblad
operators L̂k are proportional to the single-qubit Pauli opera-
tors (see Appendix C). Moreover, we consider both the exact
implementation of Eq. (10) and approximate implementations
where Eq. (10) is expanded to the first order in �t . Due to the
Trotter errors that we have discussed, applying M according
to Eq. (10) for each time step may not lead to the accurate
simulation result. We therefore use the fidelity to quantify the
simulation errors.

A. Probabilistic error cancellation

The quantum error mitigation method of probabilistic error
cancellation [19] uses multiple copies of the quantum system
to stochastically implement a nonphysical map. For a single
qubit as described above, the error mitigation superoperator
(10) is in the form

M = q01 ⊗ 1 + q1X̂ ⊗ X̂ + q2Ŷ
∗ ⊗ Ŷ + q3Ẑ ⊗ Ẑ, (16)

where q0 + q1 + q2 + q3 = 1 and q0 > 0 (see Appendix C for
details). As M might convert a time evolution to a less noisy
version, it might be nonphysical, corresponding to negative
values of q1, q2, and q3. In this case, Eq. (16) can only be im-
plemented stochastically, in combination with postprocessing.
To be specific, we first define sampling probabilities

μ1 = |q1|
q0 + |q1| + |q2| + |q3| , (17)

μ2 = |q2|
q0 + |q1| + |q2| + |q3| , (18)

μ3 = |q3|
q0 + |q1| + |q2| + |q3| , (19)

where | · | refers to taking the absolute value. For each sam-
ple, a unitary operator is applied to the qubit and a classical
prefactor is multiplied to the density matrix. With proba-
bility 1 − μ1 − μ2 − μ3, the unitary operator is the identity
operator 1 and the prefactor is q0 + |q1| + |q2| + |q3|. With
probability μi (i = 1, 2, 3), the unitary operator is the Pauli
operator P̂i (P̂1 = X̂ , P̂2 = Ŷ , and P̂3 = Ẑ) and the prefactor
is sgn(qi ) × (q0 + |q1| + |q2| + |q3|), where sgn(·) refers to
taking the sign. Averaging over an infinite number of sam-
ples corresponds to the ideal implementation of Eq. (16). For
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practical numerical simulations, however, there are finite
errors that decrease with an increasing sample size. In Ap-
pendix B we use numerical examples to show that deviations
from the ideal sampling probabilities (17)–(19) may lead to
nonphysical simulation results, as the postprocessing is not a
physical process.

B. Closed dynamics

The desired dynamics to be simulated are determined by
the Hamiltonian (15). The time evolution of the population
of the excited state can be expressed analytically independent
of the parameter β,

〈1|ρ(t )|1〉 = 1
2 [1 + cos(2ωt )]. (20)

It represents an oscillation between 0 and 1 with period
π/ω, as shown by the green dashed line in Fig. 1(a).

1. Digital quantum simulation

We first consider a noisy digital quantum simulation of the
closed dynamics. As discussed in Sec. II A, the noise is typi-
cally modeled by a separate layer of noise channel following
the unitary layer within each time step. We assume that the
noise channel is expressed as

N (ρ) = (1 − λ1 − λ2 − λ3)ρ + λ1X̂ρX̂ + λ2Ŷ ρŶ

+ λ3ẐρẐ, (21)

where the coefficients satisfy λ1, λ2, λ3 � 0 and λ1 + λ2 +
λ3 � 1 so that N (ρ) is a physical map. The error mitigation
layer aims at canceling the effect of N (ρ). Rigorous calcula-
tion steps involve finding Ln expressed via λ1, λ2, and λ3 and
then calculating the error mitigation superoperator following
Eq. (9). This will be described in detail in Sec. III C 1 when
we consider the digital simulation of open dynamics. For
the case here, we can directly take the inverse matrix of the
superoperator form of N and get M expressed in the form of
Eq. (16) with coefficients

q1 = 1

4

[
1 −

(
− 1

1 − 2λ2 − 2λ3
+ 1

1 − 2λ1 − 2λ3

+ 1

1 − 2λ1 − 2λ2

)]
, (22)

q2 = 1

4

[
1 −

(
1

1 − 2λ2 − 2λ3
− 1

1 − 2λ1 − 2λ3

+ 1

1 − 2λ1 − 2λ2

)]
, (23)

q3 = 1

4

[
1 −

(
1

1 − 2λ2 − 2λ3
+ 1

1 − 2λ1 − 2λ3

− 1

1 − 2λ1 − 2λ2

)]
. (24)

These define the exact probabilistic error cancellation map.
Note however that the calculation requires inverting a large
matrix and thus is not scalable to more qubits. Moreover, more
advanced methods are required to generalize to noise models
that are not Pauli [19,21]. We may therefore also consider an

FIG. 1. Combination of stepwise probabilistic error cancellation
with a noisy digital quantum computer to simulate closed dynamics.
The parameters are ω = 1, �t = 0.5, and λ1 = λ2 = λ3 = 0.05. The
blue numerical data points are the ensemble averages over 2 × 107

samples and the error bars correspond to the standard deviation. The
green dashed line is the actual closed dynamics to be simulated,
following Eq. (20). The orange dot-dashed line is the analytical result
for the ideal implementation of the error mitigation maps, i.e., in the
limit of an infinitely large sample size. (a) Exact probabilistic error
cancellation. The parameters q0, q1, q2, and q3 in Eq. (16) follow the
exact inversion of the noise channel, as given in Eqs. (22)–(24). Here
the green dashed line also corresponds to the ideal implementation
of probabilistic error cancellation; therefore, there is no systematic
error. (b) Approximate probabilistic error cancellation. The parame-
ters q0, q1, q2, and q3 are the approximate ones following Eq. (25).
The orange dot-dashed line follows Eq. (26). It implies that even in
the limit of an infinitely large number of samples, the noise cannot
be fully canceled.

approximate implementation of Eq. (9) if λ1, λ2, λ3 � 1,

q′
1 = −λ1, q′

2 = −λ2, q′
3 = −λ3, (25)

corresponding to negating the coefficients [10] in Eq. (21).
It also corresponds to expanding Eqs. (22)–(24) to the first
order in λ1, λ2, and λ3. Coefficients in Eq. (25) thus define the
approximate probabilistic error cancellation map, which does
not involve intensive calculations of matrix inversion.

As a numerical example, we consider β = 0 in the Hamil-
tonian (15) and take ω = 1. We choose the depolarizing noise
channel λ1 = λ2 = λ3 = 0.05 in Eq. (21). We take the time
step �t = 0.5 and 20 layers of error mitigation. The results
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are shown in Fig. 1. The numerical data come from sampling
according to the probabilistic error cancellation procedure
described in Sec. III A. The lines corresponding to the ideal
implementations of probabilistic error cancellation, on the
other hand, come from directly applying the superoperator
(16) to the vectorized density matrix ρ and therefore are equiv-
alent to an infinite sample size. As discussed in Sec. II A, for
the digital simulation of closed dynamics, Eq. (9) fully recov-
ers the unitary dynamics without any Trotter error, as Trotter
errors come from the commutator [Ld ,Lh] and for closed
dynamics Ld = 0. Thus, in Fig. 1(a) the ideal implementation
of the exact probabilistic error cancellation coincides with
the actual closed dynamics, both of which are described by
Eq. (20). The approximate probabilistic error cancellation
plotted in Fig. 1(b), on the other hand, is based on a linear
approximation to Eq. (9). This approximation induces error in
the simulation, which persists even in the limit of an infinite
number of samples. In fact, the orange dot-dashed line in
Fig. 1(b) has an analytical closed-form expression due to the
simplicity of the depolarizing noise channel we have chosen,

〈1|ρ(t )|1〉 = 1
2 [1 + (

1 − 16λ2
1

)t/�t
cos(2ωt )], (26)

where the time t = N�t is only defined at an integer multiple
of �t , N = 0, 1, 2, . . .. It is interesting to look at the limit of
taking an infinitesimal time step �t → 0. We can consider
two distinct situations. For the first situation, we assume that
λ1 is independent of �t . Taking the limit brings the right-hand
side of Eq. (26) to 1

2 . Features in the dynamics are completely
lost as we have introduced a fixed amount of noise per step and
we have an infinite number of steps. For the second situation,
we assume that λ1 is proportional to �t . Taking the limit
brings the right-hand side of Eq. (26) to Eq. (20), which is
the closed dynamics. Details are included in Appendix A.

2. Analog quantum simulation

Now we consider a noisy analog quantum simulation of the
closed dynamics. In this case, the device noise acts simultane-
ously with the unitary dynamics to be simulated. As discussed
in Sec. II B, the Hamiltonian-independent error mitigation
superoperator M is defined according to Eq. (9). However,
there is no Trotter error only if [Lh,Ln] = 0. We consider two
noise models. The first noise model is a depolarizing noise
model, whose superoperator commutes with the superoperator
of the Hamiltonian. The second noise model only contains a
Pauli-X̂ operator and therefore only commutes with Lh if the
parameter β in the Hamiltonian (15) is taken as β = π/2.

a. Depolarizing noise.. Under a depolarizing noise model,
the quantum state evolves according to the master equation

dρ(t )

dt
= −i[Ĥ, ρ(t )] + κ (X̂ρ(t )X̂ − ρ(t ))

+ κ (Ŷ ρ(t )Ŷ − ρ(t )) + κ (Ẑρ(t )Ẑ − ρ(t )), (27)

where the Hamiltonian Ĥ is given in Eq. (15). The solution
can be found to be

〈1|ρ(t )|1〉 = 1
2 [1 + e−4κt cos(2ωt )], (28)

representing a Rabi oscillation with damping. In order to
apply probabilistic error cancellation, we discretize the con-
tinuous dynamics into time step �t and after each time step

apply the error mitigation step following Eq. (9) and the
procedure described in Sec. III A. Note that the device noise
superoperator

Ln = κ (X̂ ⊗ X̂ − 1 ⊗ 1) + κ (Ŷ ∗ ⊗ Ŷ − 1 ⊗ 1)

+ κ (Ẑ ⊗ Ẑ − 1 ⊗ 1), (29)

commutes with Lh; therefore, there is no Trotter error. As
there are only Pauli errors, exp(±Ln�t ) have simple closed-
form expressions [6]. The error mitigation operator M is
therefore expressed in the form of Eq. (16) with coefficients

q1 = q2 = q3 = 1
4 (1 − e4κ�t ). (30)

In addition to this exact map, we can also define an approx-
imate error mitigation map by keeping only the linear term
in �t , although taking the approximation at different places
leads to different expressions. Here we expand exp(Ln�t ) to
the first order in �t and define the approximate M as the
inverse of the expansion of exp(Ln�t ), resulting in

q′
1 = q′

2 = q′
3 = − κ�t

1 − 4κ�t
. (31)

We introduce another way of linear expansion when we
deal with the simulation of open dynamics in Sec. III C 2.

In Figs. 2(a) and 2(b) we show the numerical simulations
following the coefficients in Eqs. (30) and (31), respectively.
Note that the results are independent of the parameter β in the
Hamiltonian. While the exact coefficients (30) result in recov-
ering the actual closed dynamics to be simulated in the limit
of an infinite number of samples, the approximate coefficients
(31) lead to errors that increase in time. Note that these errors
are not the Trotter error mentioned before. In fact, the orange
dot-dashed line in Fig. 2(b) has an analytical form

〈1|ρ(t )|1〉 = 1

2

(
1 + e−4κt

(1 − 4κ�t )t/�t
cos(2ωt )

)
, (32)

defined for t = N�t with N = 0, 1, 2, . . .. This corresponds
to the solution of a master equation, Eq. (27) replacing κ with

κ → κ + 1

4�t
ln(1 − 4κ�t )

≈ κ

(
−2κ�t − 16

3
(κ�t )2 + · · ·

)
. (33)

Note that this is smaller than 0, indicating a nonphysical
result. This is because the process of probabilistic error can-
cellation as described in Sec. III A involves postprocessing
that does not satisfy physical rules.

b. Pauli-X noise.. Next we consider a noise model that
does not commute with the Hamiltonian (15) for general β.
The evolution of the system follows

dρ(t )

dt
= −i[Ĥ , ρ(t )] + κ (X̂ρ(t )X̂ − ρ(t )).

In this case, Ln = κ (X̂ ⊗ X̂ − 1 ⊗ 1) does not commute with
Lh unless β = π/2. This also implies that a succinct form of
〈1|ρ(t )|1〉 no longer exists.

For the exact probabilistic error cancellation map, we still
define M according to Eq. (9). This corresponds to the coef-
ficients in Eq. (16) as

q1 = 1
2 (1 − e2κ�t ), q2 = q3 = 0. (34)
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FIG. 2. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate closed dynamics,
assuming a depolarizing noise channel. The parameters are ω = 1,
�t = 0.5, and κ = 0.1. The blue numerical data points are the en-
semble averages over 5 × 106 samples and the error bars correspond
to the standard deviation. The orange dot-dashed line is the analytical
result for the ideal implementation of the error mitigation maps, i.e.,
in the limit of an infinitely large sample size. (a) Exact probabilistic
error cancellation. The parameters q0, q1, q2, and q3 in Eq. (16)
correspond to the exact probabilistic error cancellation map, as given
in Eq. (30). Here the orange dot-dashed line also corresponds to the
actual closed dynamics to be simulated, as [Ln,Lh] = 0 implies no
Trotter error. (b) Approximate probabilistic error cancellation. The
parameters q0, q1, q2, and q3 are the approximate ones following
Eq. (31). The orange dot-dashed line follows Eq. (32). It implies that
even in the limit of an infinitely large number of samples, the result
is different from the actual closed dynamics.

Numerical simulations are shown in Fig. 3. Although not
large, the deviation of the error mitigated results compared
with the actual closed dynamics increases as β decreases from
π/2 to 0. This deviation comes from the noncommuting Lh

and Ln.
We can also define the approximate probabilistic error can-

cellation map, using the linear expansion method described
above in Sec. III B 2 a. The resulting coefficients are

q′
1 = − κ�t

1 − 2κ�t
, q′

2 = q′
3 = 0. (35)

Numerical results are shown in Fig. 4. The deviation of
the error mitigated results compared with the actual closed

FIG. 3. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate closed dynam-
ics, assuming a Pauli-X noise channel. The parameters are ω = 1,
�t = 0.5, and κ = 0.3. The numerical data points are the ensemble
averages over 5 × 106 samples and the error bars correspond to
the standard deviations. The green dashed line is the actual closed
dynamics to be simulated, as in Eq. (20). The parameters q0, q1,
q2, and q3 in Eq. (16) correspond to the exact probabilistic error
cancellation map, as given in Eq. (34). The brown square data points
for β = π/2 correspond to the case without Trotter error. Decreasing
β to π/4 (purple triangles) and 0 (red circles) leads to larger Trotter
errors resulting from the nonzero [Ln,Lh].

dynamics is much larger than the case of Fig. 3. This is
because of the linear expansion we made, which causes much
larger errors than the Trotter errors.

FIG. 4. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate closed dynam-
ics, assuming a Pauli-X noise channel. The parameters are ω = 1,
�t = 0.5, and κ = 0.3. The numerical data points are the ensemble
averages over 5 × 106 samples and the error bars correspond to
the standard deviations. The green dashed line is the actual closed
dynamics to be simulated, as in Eq. (20). The parameters q0, q1,
q2, and q3 in Eq. (16) correspond to the approximate probabilistic
error cancellation map, as given in Eq. (35). Increasing β from 0 (red
circles) to π/4 (purple triangles) to π/2 (brown squares) leads to
increasing simulation errors. Instead of Trotter errors, these errors
are from the approximation of linear expansion and can lead to
nonphysical results.
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FIG. 5. Combination of stepwise probabilistic error cancellation
with a noisy digital quantum computer to simulate open dynamics.
The parameters are ω = 1, �t = 0.5, λ1 = 0.16, λ2 = 0.12, λ3 =
0.2, and γ = 0.3. The fidelity is defined by comparing the exact
solution of Eq. (36) with the result from the ideal implementation
(i.e., infinite sample size) of the exact error mitigation map with
coefficients Eq. (39). The red solid line with circles is for β = 0.
The purple dashed line with triangles is for β = π/4. The brown
dot-dashed line with squares is for β = π/2, in which case there is
no Trotter error, so the fidelity remains 1.

C. Open dynamics

Now we demonstrate the quantum simulation of open dy-
namics, where the Trotter errors nontrivially depend on the
superoperators of the noise part of the open dynamics to be
simulated Ld , the unitary part Lh, and the device noise Ln,
as argued in Sec. II. Specifically, we consider simulating the
master equation

dρ(t )

dt
= −i[Ĥ, ρ(t )] + γ (X̂ρ(t )X̂ − ρ(t )), (36)

describing Rabi oscillations with Pauli-X error continuous in
time. The same as before, the Hamiltonian Ĥ is given by
Eq. (15). As Ld = γ (X̂ ⊗ X̂ − 1 ⊗ 1) only commutes with
Lh for β = π/2, in general the exact solution as expressed by
Eq. (5) does not have a simple analytical form. Instead, we
plot the exact solutions with the green dashed lines in Fig. 6,
for three values of β. The time evolution of the exited-state
population is a damped Rabi oscillation, while β = 0 corre-
sponds to the weakest damping and β = π/2 corresponds to
the strongest damping.

1. Digital quantum simulation

We have shown in Sec. II A that if [Ld ,Lh] �= 0, there
will be Trotter errors in the quantum simulation. Importantly,
this criterion is independent of the device noise superoperator
Ln. We choose the device noise channel to follow the same
form as in Eq. (21). Its vectorized form N = (1 − λ1 − λ2 −
λ3)1 ⊗ 1 + λ1X̂ ⊗ X̂ + λ2Ŷ ∗ ⊗ Ŷ + λ3Ẑ ⊗ Ẑ can be rewrit-
ten in the form of exp(Ln�t ) in order to match Eq. (7), with

Ln = κ1(X̂ ⊗ X̂ − 1 ⊗ 1) + κ2(Ŷ ∗ ⊗ Ŷ − 1 ⊗ 1)

+ κ3(Ẑ ⊗ Ẑ − 1 ⊗ 1) (37)

(a)

(b)

(c)

FIG. 6. Combination of stepwise probabilistic error cancellation
with a noisy digital quantum computer to simulate open dynamics.
The parameters are ω = 1, �t = 0.5, λ1 = 0.16, λ2 = 0.12, λ3 =
0.2, γ = 0.3, and (a) β = 0, (b) β = π/4, and (c) β = π/2. The
green dashed line is the actual open dynamics to be simulated, which
is the solution of Eq. (36). The orange dot-dashed line is the ana-
lytical result, i.e., in the limit of an infinitely large sample size (also
called ideal implementation), for the approximate error mitigation
maps. The parameters q0, q1, q2, and q3 in Eq. (16) follow Eq. (42).
The difference between the green dashed line and the orange dot-
dashed line implies that, due to the approximation to the first order
of γ�t , λ1, λ2, and λ3, even in the limit of an infinitely large number
of samples, the noise cannot be fully canceled.

and coefficients

κ1 = 1

4�t
ln

(
1 − 2λ2 − 2λ3

(1 − 2λ1 − 2λ2)(1 − 2λ1 − 2λ3)

)
,

κ2 = 1

4�t
ln

(
1 − 2λ1 − 2λ3

(1 − 2λ1 − 2λ2)(1 − 2λ2 − 2λ3)

)
,

κ3 = 1

4�t
ln

(
1 − 2λ1 − 2λ2

(1 − 2λ1 − 2λ3)(1 − 2λ2 − 2λ3)

)
. (38)

Here we assume that the device noise channel is weak,
e.g., λ1 + λ2 + λ3 � 1

2 . The exact error mitigation superop-
erator, as defined in Eq. (10), is in the form of Eq. (16) with
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coefficients

qk = 1

4

[
1 − e−2γ�t

(
(−1)δ1,k

e2γ�t

1 − 2λ2 − 2λ3

+ (−1)δ2,k
1

1 − 2λ1 − 2λ3

+ (−1)δ3,k
1

1 − 2λ1 − 2λ2

)]
, (39)

where k = 1, 2, 3 and δi, j is the Kronecker delta.
In Fig. 5 we show numerical examples of how the com-

mutator [Ld ,Lh] affects the Trotter errors in the quantum
simulation. As we aim at demonstrating the Trotter errors,
which are rather small (as clearly seen in the case of Fig. 3),
we only show the ideal implementation of the error mitiga-
tion map, i.e., considering an infinite number of samples. We
quantify how close the simulation result is to the exact open
dynamics via fidelity, which for qubits is expressed as [22]

F (ρ1, ρ2) = Tr(ρ1ρ2) + 2
√

det(ρ1)det(ρ2), (40)

where det(·) refers to the determinant. As seen in Fig. 5, only
the case of β = π/2 corresponds to simulation results without
any error, as for this β, the Hamiltonian only contains the
Pauli-X̂ operator.

We can also define the approximate error mitigation super-
operator by expanding Eq. (38) to the first order in λ1, λ2, and
λ3,

κ1 ≈ λ1

�t
, κ2 ≈ λ2

�t
, κ3 ≈ λ3

�t
. (41)

The approximate error mitigation superoperator thus has co-
efficients

q′
1 = γ�t − λ1, q′

2 = −λ2, q′
3 = −λ3. (42)

Note that this is the approach taken by Ref. [10].
In Fig. 6 we show numerical examples of how the ap-

proximation described above affects the simulation results.
Although getting the approximated expression of the error
mitigation map M following Eq. (42) does not require in-
verting any matrix, the resulting simulation error turns out to
be significantly larger than the Trotter error. Most oscillatory
features of the damped Rabi oscillation cannot be resolved.

2. Analog quantum simulation

Next we focus on noisy analog quantum simulations of the
open dynamics. As derived in Sec. II B, the Trotter error now
depends on the commutator [Lh,Ld − Ln]. We will look into
two noise models. The first one is a depolarizing noise model,
which will induce Trotter errors. The second one is a biased
Pauli-X noise model, which has more Pauli-X noise than a
depolarizing noise model. As the open dynamics we aim at
simulating only has Pauli-X noise, this noise model will not
have Trotter error.

a. Depolarizing noise. For the depolarizing noise channel,
the system evolves following the master equation (27). Step-
wise probabilistic error cancellation implements the map (10).
In the form of Eq. (16), the coefficients are given by

q1 = 1
4 (1 + e4κ�t − 2e−2γ�t+4κ�t ),

q2 = q3 = 1
4 (1 − e4κ�t ). (43)

FIG. 7. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate open dynamics,
assuming a depolarizing noise channel. The parameters are ω = 1,
�t = 0.5, κ = 0.1, and γ = 0.3. The fidelity is defined by com-
paring the exact solution of Eq. (36) with the result from the ideal
implementation of the approximate error mitigation map with coef-
ficients (46). The red solid line with circles is for β = 0. The purple
dashed line with triangles is for β = π/4. The brown dot-dashed line
with squares is for β = π/2.

Interestingly, the simulation results in this case are exactly
the same as those shown in Fig. 5. To prove this, we focus on
the superoperator applied to the vectorized state at each time
step. For the case in Fig. 5, the superoperator is

e(Ld −Ln )�t eLn�t eLh�t = eLd �t eLh�t . (44)

Here the effective Ln is defined via Eqs. (37) and (38) and
we use the fact that both Ld and Ln only contain Pauli terms
and therefore they commute with each other. For the analog
simulation case considered here, the superoperator at each
time step is

e(Ld −L′
n )�t eL

′
n�t+Lh�t = eLd �t eLh�t . (45)

Here L′
n is the depolarizing noise channel as written in

Eq. (29) and we use that the depolarizing noise commutes
both with Ld and with Lh. As the open dynamics to be simu-
lated corresponds to the stepwise superoperator exp(Ld�t +
Lh�t ), Trotter error exists, as illustrated in Fig. 5.

We can also define the approximate error mitigation map,
by expanding Eq. (43) to the first order in κ�t and γ�t . This
results in the coefficients

q′
1 = (γ − κ )�t, q′

2 = q′
3 = −κ�t . (46)

The numerical results are shown in Fig. 7. Although the
fidelities are close to 1, the errors are not just Trotter errors,
but also the errors from the linear expansion of q1, q2, and q3.
Compared with the case in Fig. 6, the errors here are much
smaller, as there is no step similar to the approximation in
Eq. (41). Interestingly, the errors here are even smaller than
the case of the exact error mitigation map (Fig. 5), possibly
because the Trotter errors and the linear approximation errors
cancel with each other.

b. Biased Pauli-X noise. Now we consider a biased Pauli-
X noise model such that [Lh,Ld − Ln] = 0 is satisfied. We
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FIG. 8. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate open dynamics,
assuming a biased Pauli-X noise channel. The parameters are ω = 1,
�t = 0.5, κ = 0.1, and γ = 0.3. The numerical data points are the
ensemble averages over 5 × 106 samples and the error bars corre-
spond to the standard deviations. The parameters q0, q1, q2, and q3

in Eq. (16) correspond to the exact probabilistic error cancellation
map, as given in Eq. (30). The brown squares are data points for
β = π/2, the purple triangles are for β = π/4, and the red circles
are for β = 0.

assume that the system evolves following the master equation

dρ(t )

dt
= −i[Ĥ, ρ(t )] + (γ + κ )(X̂ρ(t )X̂ − ρ(t ))

+ κ (Ŷ ρ(t )Ŷ − ρ(t )) + κ (Ẑρ(t )Ẑ − ρ(t )). (47)

The exact stepwise probabilistic error cancellation super-
operator (10), written in the form of Eq. (16), has coefficients
that are the same as Eq. (30). Numerical results are shown
in Fig. 8. As there is no Trotter error for all values of β, the
numerical data match the analytical actual dynamics in Fig. 6.

For the approximate error mitigation map, we can expand
Eq. (30) to the first order in κ�t and get

q′
1 = q′

2 = q′
3 = −κ�t . (48)

The numerical results are shown in Fig. 9. The small
deviations of the fidelity from 1 are results of the linear ap-
proximations we have made, rather than the Trotter errors.

IV. CONCLUSION

We have analyzed the limitations of combining stepwise
probabilistic error cancellation with noisy quantum simula-
tions of continuous dynamics beyond the exponentially large
sampling overhead. We pointed out the Trotter errors originat-
ing from the superoperators governing the unitary dynamics
Lh, the device noise Ln, and the noise part Ld of the open
dynamics to be simulated. These Trotter errors exist even in
the limit of an infinite sample size. For a digital quantum sim-
ulation, a nonzero commutator [Ld ,Lh] leads to the Trotter
error. For an analog quantum simulation, a nonzero commu-
tator [Ld − Ln,Lh] leads to the Trotter error. Importantly,
even for simulating closed dynamics Ld = 0, this Trotter error
can still exist for an analog quantum simulation. We also
pointed out that the commonly used coefficients in the error

FIG. 9. Combination of stepwise probabilistic error cancellation
with a noisy analog quantum computer to simulate open dynam-
ics, assuming a biased Pauli-X noise channel. The parameters are
ω = 1, �t = 0.5, κ = 0.1, and γ = 0.3. The fidelity is defined by
comparing the exact solution of Eq. (36) with the result from the
ideal implementation of the approximate error mitigation map with
coefficients (48). The red solid line with circles is for β = 0. The
purple dashed line with triangles is for β = π/4. The brown dot-
dashed line with squares is for β = π/2.

mitigation map, which do not involve inverting a large matrix,
are actually linear approximations of the exact error miti-
gation map and therefore may induce additional simulation
errors. Although dominated by the numerical errors in real
quantum devices for now, these errors that we have investi-
gated here put fundamental limitations on the constructions of
the simulation methods. It can be expected that as the quality
of the quantum hardware improves, these errors are going to
become limiting factors for quantum simulations.

We note however that it is very difficult for a systematic
study, such as what we have done here, to go beyond few-qubit
toy models and simple noise channels such as Pauli noise
channels. How to reduce the Trotter errors in a scalable way
remains an open question. One possible way is to design the
simulation setup such that the Trotter error from the noncom-
muting Hamiltonians of a multiqubit system partially cancels
the Trotter error between the unitary part and the noise part of
the dynamics to be simulated. Another possible way may be
to remove the time discretization as a middle step and instead
find methods to map one dissipative dynamics to another in
a matter that is continuous in time [23–25], which can be
implemented under noisy quantum operations.
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APPENDIX A: DIGITAL QUANTUM SIMULATION
WITH ERROR PROBABILITY PROPORTIONAL

TO THE TIME STEP

To digitally simulate the unitary dynamics, we take a small
time step �t , implement the unitary gate for this time step
on the quantum computer, and apply the unitary gate N times
to get the density matrix at time N�t . Note that for this toy
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FIG. 10. Comparison between the exact solution of the master
equation (28) (blue solid line) and the discretized solution (A2) (or-
ange dashed line). The parameters are ω = 1, κ = 0.1, and �t = 0.5.
Although we show 〈1|ρ1|1〉 as a solid curve using Eq. (A3), it is only
defined at integer multiples of �t .

model, the digitization is somewhat trivial as we can directly
write down the closed-form propagator Û (t ) = exp(−iωt X̂ ),
which is continuous in time. However, this allows us to focus
on the errors in the quantum simulations that are induced
solely by dealing with the noise intrinsic to the quantum com-
puter. As a simple example, we suppose that the noise in the
quantum computer effectively applies a depolarizing channel
after each quantum gate is applied [10], and the strength of the
depolarizing noise channel is proportional to the time step �t .
To be specific, in each step the density matrix is transformed
in the following way:

ρ1(t + �t ) = (1 − 3κ�t )e−iω�t X̂ ρ1(t )eiω�t X̂

+ κ�t X̂ e−iω�t X̂ ρ1(t )eiω�t X̂ X̂

+ κ�tŶ e−iω�t X̂ ρ1(t )eiω�t X̂ Ŷ

+ κ�t Ẑe−iω�t X̂ ρ1(t )eiω�t X̂ Ẑ. (A1)

Here ρ1 denotes the resulting density matrix for this digital
simulation and κ�t � 1 corresponds to the error rate in the
depolarizing channel. Note that we have included the factor
�t in the definition of the error rate to facilitate a direct
comparison in the dissipation rate with Eq. (27). Starting from
the initial state 〈1|ρ(0)|1〉 = 1, the simulation result is derived
as

〈1|ρ1(N�t )|1〉 = 1
2 [1 + (1 − 4κ�t )N cos(2ωN�t )]. (A2)

This corresponds to the solution of the master equation (27)
with a time-step-dependent dissipation rate

− 1

4�t
ln(1 − 4κ�t ) ≈ κ (1 + 2κ�t + · · · ). (A3)

In the limit �t → 0, Eq. (A1) is equivalent to Eq. (27),
which is also an algebraic way [26] of deriving Eq. (28).
However, for finite �t , Eq. (A1) always corresponds to a
stronger dissipation than Eq. (27). As shown in Fig. 10, al-
though the steady state is not changed by this difference, the
time evolution before reaching the steady state is changed.

(a)

(b)

FIG. 11. Consideration of imprecise sampling probabilities, us-
ing probabilistic error cancellation to remove the noise. The
parameters are ω = 1, κ = 0.1, and �t = 0.5. The blue numerical
data points are the ensemble averages over 2 × 107 samples and the
error bars correspond to the standard deviation. The orange lines
are the analytical results in the limit of an infinitely large sample
size, Eq. (B2). (a) In each error mitigation step, the probability μ′

of sampling X̂ (or Ŷ or Ẑ) is smaller than the ideal probability
μ1, μ′ = 0.97μ1. This corresponds to κ ′ ≈ 0.0041 and ξ ≈ 1.01,
meaning that the trace is increasing with the number of steps. (b) The
probability μ′ of sampling X̂ (or Ŷ or Ẑ) is larger than the ideal
probability μ1, μ′ = 1.03μ1. This corresponds to κ ′ ≈ −0.0042 and
ξ ≈ 0.99, meaning that the trace is decreasing with the number of
steps, but instead of a decay, the oscillation amplitude increases in
time.

APPENDIX B: IMPRECISE SAMPLING PROBABILITIES

In principle, adding probabilistic error cancellation after
every time step in a digital quantum simulation can remove the
noise of the quantum computer in a statistical way. However,
it is known that the major disadvantage of quantum error
mitigation is that the sampling cost scales exponentially as the
number of quantum gates to be applied [2,11]. Here we will
point out another issue: When randomly sampling Pauli gates
to be applied to the quantum state, deviation in the sampling
probabilities may lead to nonphysical simulation results.

The map in Eq. (16) is nonphysical if not all q1, q2, and q3

are non-negative, as shown in the examples in Sec. III. There-
fore, M can only be implemented stochastically, together with
postprocessing, following the description in Sec. III A. We
consider a case where the sampling probabilities are deviated
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from the ideal values μ1, μ2, and μ3, but the prefactors are not
modified. This can be due to an unknown bias in the sampling
process. We take the example of Eq. (A1) and aim at remov-
ing the noise characterized by κ�t . In order to simplify the
expressions, we assume that the probability of applying the X̂
(or Ŷ or Ẑ) gate is μ′, which is different from μ1 (= μ2 = μ3).
The implemented map M(ρ) can be not-trace-preserving as
we have

Tr[M(ρ)] = (1 + 2κ�t )(1 − 6μ′)
1 − 4κ�t

≡ ξ . (B1)

Applying the error mitigation map M(ρ) after each step
of the noisy digital quantum simulation (A1) results in the
statistically averaged simulation result

〈1|ρ(N�t )|1〉 = ξN 1
2 [1 + e−4κ ′N�t cos(2ωN�t )], (B2)

with

κ ′ = 1

4�t
ln

(
1 − 6μ′

(1 − 4κ�t )(1 − 2μ′)

)
. (B3)

In addition to the change in the trace described by ξ ,
another nonphysical feature is that κ ′ can be negative. The
reason the simulation results are nonphysical is that, even
though the process of randomly sampling a Pauli matrix to
apply it to the state is a physical operation that preserves the
trace and makes sure that the diagonal elements of the density
matrix are non-negative, the postprocessing of multiplying
the density matrix with a prefactor is not a physical process.
Numerical examples are shown in Fig. 11. Although ξ only
slightly deviates from 1 and if κ ′ < 0 it is very close to 0, the
exponential in N means that the nonphysical features grow
exponentially in the number of steps, i.e., circuit depth.

APPENDIX C: EXPLICIT EXPRESSION OF THE ERROR
MITIGATION SUPEROPERATOR FOR SINGLE-QUBIT

PAULI-ERROR MODELS

In this Appendix we give the explicit expression of
Eq. (16), which is Eq. (10) assuming a single qubit under Pauli
errors.

The superoperator Ld describes the noise on the qubit that
is the noise part of the open dynamics to be simulated,

Ld = γ1(X̂ ⊗ X̂ − 1 ⊗ 1) + γ2(Ŷ ∗ ⊗ Ŷ − 1 ⊗ 1)

+ γ3(Ẑ ⊗ Ẑ − 1 ⊗ 1), (C1)

where the error rate γk > 0. The superoperator Ln describes
the effect of the device noise on the qubit and its explicit form
is given in Eq. (37). The error mitigation superoperator as
defined in Eq. (10) is found to have the form of Eq. (16) with
the coefficients

q0 = 1
4 (1 + e2(κ1−γ1+κ2−γ2 )�t + e2(κ3−γ3+κ1−γ1 )�t

+ e2(κ2−γ2+κ3−γ3 )�t ), (C2)

q1 = 1
4 [1 − e−2(γ1+γ2+γ3−κ1−κ2−κ3 )�t (−e2(γ1−κ1 )�t + e2(γ2−κ2 )�t

+ e2(γ3−κ3 )�t )], (C3)

q2 = 1
4 [1 − e−2(γ1+γ2+γ3−κ1−κ2−κ3 )�t (e2(γ1−κ1 )�t − e2(γ2−κ2 )�t

+ e2(γ3−κ3 )�t )], (C4)

q3 = 1
4 [1 − e−2(γ1+γ2+γ3−κ1−κ2−κ3 )�t (e2(γ1−κ1 )�t + e2(γ2−κ2 )�t

− e2(γ3−κ3 )�t )]. (C5)

It is straightforward to check that q0 + q1 + q2 + q3 = 1 and
q0 > 1

4 . The signs of q1, q2, and q3 depend on the values of
the error rates γk and κk .
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