
PHYSICAL REVIEW A 109, 012430 (2024)

Hamiltonian simulation using the quantum singular-value transformation:
Complexity analysis and application to the linearized Vlasov-Poisson equation
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Quantum computing can be used to speed up the simulation time (more precisely, the number of queries of the
algorithm) for physical systems; one such promising approach is the Hamiltonian simulation (HS) algorithm. Re-
cently, it was proven that the quantum singular-value transformation (QSVT) achieves the minimum simulation
time for HS. An important subroutine of the QSVT-based HS algorithm is the amplitude amplification operation,
which can be realized via the oblivious amplitude amplification or the fixed-point amplitude amplification in
the QSVT framework. In this work we execute a detailed analysis of the error and number of queries of the
QSVT-based HS and show that the oblivious method is better than the fixed-point one in the sense of simulation
time. Based on this finding, we apply the QSVT-based HS to the one-dimensional linearized Vlasov-Poisson
equation and demonstrate that the linear Landau damping can be successfully simulated.
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I. INTRODUCTION

A. Background

Quantum computers are expected to outperform classical
counterparts in some problems. Several quantum algorithms
have obtained speedups over classical ones, such as the Grover
search algorithm [1], Shor’s algorithm for integer factoriza-
tion [2], and the Harrow-Hassidim-Lloyd algorithm [3,4].
Quantum computing also gives us algorithms for solving
physics problems. In particular, the algorithms [5,6] realize
exponential speedup for the simulation of quantum systems.
This seems natural since quantum computing is based on
quantum mechanics. In recent years, some quantum algo-
rithms for simulating classical physical systems have been
developed, such as the Navier-Stokes equation [7,8], plasma
equations [9–12], the Poisson equation [13,14], and the wave
equation [15,16].

One of the quantum algorithms for simulating physical
systems is a Hamiltonian simulation (HS) algorithm [17–26],
which implements U = exp(−iHt ), where H is a time-
independent Hamiltonian and t is an evolution time. The
optimal HS result was shown by Low and Chuang using
quantum signal processing (QSP) [27,28]. This result has
been generalized to the quantum singular-value transforma-
tion (QSVT) in Ref. [29]. The QSVT is a quantum algorithm
for applying a polynomial transformation P(SV)(A) to the sin-
gular values of a given matrix A, called the singular-value
transformation. Notably, the QSVT can formulate major quan-
tum algorithms in a unified way, such as the Grover search,
phase estimation [30], matrix inversion, quantum walks [31],
and the HS algorithm. Therefore, the QSVT is called a grand
unification of quantum algorithms in Ref. [32].

The HS algorithm using the QSVT has been proposed in
Refs. [29,32]. The algorithm includes an amplitude amplifi-
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cation algorithm that can be implemented by the QSVT as
a subroutine. There are two QSVT-based amplitude ampli-
fication algorithms proposed for HS: One is the oblivious
amplitude amplification (OAA) algorithm [29] and the other
is the fixed-point amplitude amplification (FPAA) algorithm
[32]. However, there have been no discussions to compare
those two schemes from either theoretical or numerical view-
points. It would be helpful to clarify which one is preferable
when the QSVT-based HS algorithm is applied to physical
systems.

B. Contribution of this paper

We elaborate the QSVT-based HS using explicit quantum
circuits and discuss the approximation error and query com-
plexity. As a result, the number of queries for the OAA-based
HS scales as O(t + log(1/ε)), whereas the FPAA-based one
scales as O(t log(1/ε) + log2(1/ε)), where t is an evolution
time and ε is an error tolerance. To support this fact, we per-
form numerical experiments: We plot the number of queries
for a wide range of parameters t and ε; we curve fit the data to
identify the constant factors and coefficients of the number of
queries hidden behind the asymptotic scalings. Our findings
indicate that the OAA-based method is both theoretically and
numerically more advantageous than the FPAA-based method
in the sense of the number of queries. Importantly, this advan-
tage is consistent, independent of the type of the Hamiltonian.

To demonstrate the effectiveness of the QSVT-based HS
combined with the above-described detailed analysis, we ap-
ply the OAA-based HS to the simulation of the linearized
Vlasov-Poisson system. This system can be transformed into
the same form of unitary time evolution as of quantum sys-
tems [9]. In addition to the simulation, we discuss several
issues unaddressed in previous studies on quantum algorithms
for plasma simulation [9–12]: We discuss the computational
complexity of extending the evolution time using sequential
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short HS circuits, we propose an algorithm to obtain a quantity
related to the distribution function, and we provide explicit
quantum circuits for the higher-dimensional systems. Further-
more, we show a potential advantage of applying the HS to
physical systems compared to the classical Euler method.

C. Comparison to prior work

The QSVT-based HS algorithms were introduced in
Refs. [29,32]. The authors of Ref. [29] originally proposed
the QSVT framework. Within the framework, they developed
a method for implementing the exponential function and the
OAA algorithm, which constructs the Chebyshev polynomial
of the first kind. Combining these methods, they realized
the QSVT-based HS and showed that its asymptotic com-
plexity is consistent with the result of the HS by Low and
Chuang [27,28], known to be optimal. The authors of Ref. [32]
reviewed that several major quantum algorithms can be de-
scribed in a unified way within the QSVT framework and
suggested for the HS the use of FPAA, which constructs the
approximate polynomial of the sign function. These authors
independently proposed using OAA and FPAA for the HS,
respectively, with rough analyses of the approximation error
and query complexity. However, a theoretical or numerical
comparison of these methods remains lacking.

To date, no investigation exists to compare OAA and FPAA
in a non-QSVT framework. This is probably because these
algorithms were originally developed for distinct purposes.
The OAA algorithm was initially developed to simulate a
sparse Hamiltonian evolution [21,23], achieving amplitude
amplification without the reflection operator about an un-
known initial state. It is also used to decompose single-qubit
unitaries [33] and compute matrix products for nonunitary
matrices [34]. On the other hand, the FPAA algorithm is an al-
gorithm that ensures amplitude amplification regardless of an
unknown amplitude. Notably, several non-QSVT-based FPAA
algorithms have been developed, such as the π/3 algorithm
[35], the measurement-based algorithm [36], and the FPAA
technique by Yoder et al. [37].

Several studies have addressed quantum algorithms for
plasma simulations. The authors of Ref. [10] conducted an
extensive survey on applying quantum computers to plasma
simulations. The authors of Ref. [9] introduced the quantum
algorithm for calculating the time evolution of the one-
dimensional linearized Vlasov-Poisson system using the HS
algorithm by Low and Chuang [27,28]. They concluded that
the algorithm achieves an exponential speedup for a velocity
grid size. They also discussed an estimation of the electric
field with the quantum amplitude estimation algorithm [38]
and simulated its linear Landau damping. While the state’s
amplitude comprises the electric field and the distribution
function, no method has been proposed to extract the latter’s
quantity from the state. They indicated that the above find-
ings can be extended to systems with higher dimensions, yet
without providing explicit circuits. The authors of Ref. [12]
examined the computational complexity for a system size of
a quantum algorithm for the one-dimensional Vlasov-Poisson
system with collisions. They adopted the Hermite represen-
tation, reducing the equations to a linear ordinary differential
equation problem, distinct from our work and Ref. [9]. The

authors of Ref. [11] implemented the HS algorithm for one-
dimensional cold plasma waves, dividing the HS circuit into
shorter circuits to avoid a large evolution time t , yet without
discussing its cost.

D. Organization of the paper

The rest of this paper is organized as follows. In Sec. II we
present a brief description of the QSVT with application to
the trigonometric functions; then we show the transformation
from the linearized Vlasov-Poisson system to a form of the
Schrödinger equation. In Sec. III we discuss the error and
query complexity of the QSVT-based HS. The quantum algo-
rithm for the linearized Vlasov-Poisson system is discussed in
Sec. IV. We show the numerical results in Sec. V. The paper
is summarized in Sec. VI.

II. PRELIMINARIES

A. Quantum singular-value transformation

The quantum singular-value transformation [29,32] is a
quantum algorithm for applying a polynomial transformation
P(SV)(A) to the singular values of a given matrix A. As men-
tioned above, the QSVT has been applied to many problems,
including the HS. In these problems, a degree-d polynomial Pε

is used to ε approximate the corresponding objective function
P. How much quantum speedup is obtained depends on the
degree d . Recall that the QSVT generalizes the result of QSP
[27,28,39,40]. We present a brief description of the derivation
from QSP to QSVT in the Appendix.

We introduce the block encoding [29], which represents a
matrix A as the upper left block of a unitary matrix U . Let
A be a matrix acting on s qubits and U be a unitary matrix
acting on a + s qubits. Then, for α > 0 and ε > 0, U is called
an (α, a, ε) block encoding of A if

‖A − α(〈0|a ⊗ I )U (|0〉a ⊗ I )‖ � ε, (1)

where |0〉a = |0〉⊗a. Note that, since ‖U‖ = 1, we necessarily
have ‖A‖ � α + ε. If ε = 0, then we can represent A as the
upper left block of U ,

U =
[

A
α

·
· ·

]
, (2)

where the dot denotes a matrix with arbitrary elements.
Recall now that the singular-value decomposition of A, that

is, any matrix A ∈ Cm×n, can be decomposed as

A = W �V, (3)

where W ∈ Cm×m and V ∈ Cn×n are unitary matrices and �

is diagonal and contains the set of non-negative real numbers
{σk}, called the singular values of A. The matrix A is also
expressed as

A =
r∑

k=1

σk |wk〉 〈vk| , (4)

where {|wk〉} and {|vk〉} are right and left singular vectors and
r = rank(A).

The singular-value transformation is defined from the
singular-value decomposition as follows: For an odd

012430-2



HAMILTONIAN SIMULATION USING THE QUANTUM … PHYSICAL REVIEW A 109, 012430 (2024)

FIG. 1. Quantum circuits used to implement the unitary matrix
exp(iφ�): (a) |b〉〈b| ⊗ e(−1)biφ� and (b) |cb〉〈cb| ⊗ e(−1)biφ(c)�. (a) A
single phase φ is used and the series of gates surrounded by dashed
lines is denoted by S1(φ), which is used in Figs. 3 and 4. (b) Two
phases φ (0) and φ (1) are used and the series of gates surrounded by
dashed lines is denoted by S2(φ (0), φ (1) ), which is used in Fig. 2.

polynomial P ∈ C,

P(SV)(A) ≡
∑

k

P(σk ) |wk〉 〈vk| , (5)

and for an even polynomial P ∈ C,

P(SV)(A) ≡
∑

k

P(σk ) |vk〉 〈vk| . (6)

If A is Hermitian and positive semidefinite, then P(SV)(A) is
equal to the eigenvalue transformation P(A).

Suppose that U is an (α, a, 0) block encoding of A as in
Eq. (2). Then a unitary matrix U	 called the alternating phase
modulation sequence in Ref. [29] is defined as follows: For
odd d ,

U	 ≡ eiφ0�Ueiφ1�

(d−1)/2∏
k=1

(
U †eiφ2k�Ueiφ2k+1�

)
, (7)

and for even d ,

U	 ≡ eiφ0�

d/2∏
k=1

(
U †eiφ2k−1�Ueiφ2k�

)
, (8)

where 	 = {φ0, φ1, . . . , φd} ∈ Rd+1 is called the phases and
� = 2 |0〉a 〈0| − I . The unitary matrix exp(iφ�) can be im-
plemented as in Fig. 1. The phases are calculated efficiently
from the degree-d polynomial P on a classical computer. The
details of the calculation can be found in Refs. [29,41]. In this
work we use the code provided in Ref. [42] to calculate the
phases.

Given a degree-d polynomial P ∈ C and the corresponding
phases 	 ∈ Rd+1, the unitary U	 can be represented as a

(1, a, 0) block encoding of P(SV)(A/α):

U	 =
[

P(SV)( A
α

) ·
· ·

]
,

P(SV)

(
A

α

)
= (〈0|a ⊗ I )U	(|0〉a ⊗ I ). (9)

Note that P is not arbitrary and has some constraints; P
satisfies the following conditions [29,32]: (i) P has parity
d mod 2, (ii) |P(x)| � 1 ∀ x ∈ [−1, 1], (iii) |P(x)| � 1 ∀ x ∈
(−∞,−1] ∪ [1,∞), and (iv) if d is even, then P(ix)P∗(ix) �
1 ∀ x ∈ R. These conditions are complicated, but taking the
real part of P relaxes them, that is, P� ≡ Re(P) satisfies
the following conditions: (v) P� has parity d mod 2 and (vi)
|P�(x)| � 1 ∀ x ∈ [−1, 1]; the corresponding phases can be
calculated as in [29,32].

B. Applying the QSVT to trigonometric functions

Let U be a (1, a, 0) block encoding of H :

U =
[

H ·
· ·

]
, H = (〈0|a ⊗ I )U (|0〉a ⊗ I ), (10)

where ‖H‖ � 1 is a Hermitian matrix that is positive semidef-
inite. We will discuss later the case in which H is negative and
normalized by α. The goal of the HS is to construct a quantum
circuit UHS that is a block encoding of exp(−iHt ) using the
unitary U , where t is the evolution time. Note that UHS cannot
be realized by a single U	 using the QSVT, because exp(−ixt )
has no definite parity. To avoid this problem, one can instead
apply QSVT to two different functions: cos(xt ) and sin(xt ).

The functions cos(xt ) and sin(xt ) are given by the Jacobi-
Anger expansion

cos(xt ) = J0(t ) + 2
∞∑

k=1

(−1)kJ2k (t )T2k (x), (11)

sin(xt ) = 2
∞∑

k=0

(−1)kJ2k+1(t )T2k+1(x), (12)

where Jm(t ) is the mth Bessel function of the first kind and
Tk (x) is the kth Chebyshev polynomial of the first kind. One
can obtain the εtri approximation to cos(xt ) and sin(xt ) by
truncating Eqs. (11) and (12) at an index R:∣∣∣∣∣cos(xt ) − J0(t ) − 2

R∑
k=1

(−1)kJ2k (t )T2k (x)

∣∣∣∣∣ � εtri, (13)

∣∣∣∣∣sin(xt ) − 2
R∑

k=0

(−1)kJ2k+1(t )T2k+1(x)

∣∣∣∣∣ � εtri, (14)

where 0 < εtri < 1/e and

R(t, εtri ) =
⌊

1

2
r

(
et

2
,

5

4
εtri

)⌋
, (15)

r(t, εtri ) = 


(
t + ln

(
1
εtri

)
ln(e + ln

(
1
εtri

)
/t )

)

� O(t + log(1/εtri )). (16)

For more details see Ref. [29].
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FIG. 2. Quantum circuit Uexp that is a (1, a + 2, κεtri ) block encoding of κ exp(−iHt )/2. The gate S2 is shown in Fig. 1(b), the unitary U
is given by Eq. (10), and the phases 	(c) ∈ R2R+1 and 	(s) ∈ R2R+2 are calculated from the (2R)th polynomial Pcos

εtri,κ
(x) and the (2R + 1)th

polynomial Psin
εtri,κ

(x) in Eq. (17), where R is given by Eq. (15).

We denote the approximate polynomials of Eqs. (13)
and (14) by Pcos

εtri
(x) and Psin

εtri
(x). Since cosine and sine

are bounded in magnitude by 1, these polynomials obey
|Pcos

εtri
(x)|, |Psin

εtri
(x)| � 1 + εtri. Therefore, condition (vi) is vi-

olated. Here we introduce rescaled polynomials

Pcos
εtri,κ

(x) = κPcos
εtri

(x), Psin
εtri,κ

(x) = κPsin
εtri

(x), (17)

where κ = 1/(1 + εtri ). These polynomials satisfy the in-
equality∣∣∣∣∣κ2 e−ixt − Pcos

εtri,κ
(x) − iPsin

εtri,κ
(x)

2

∣∣∣∣∣
� 1

2

∣∣κ cos(xt ) − Pcos
εtri,κ

(x)
∣∣+ 1

2

∣∣κ sin(xt ) − Psin
εtri,κ

(x)
∣∣

� κεtri + κεtri

2
= κεtri, (18)

where in the first inequality we used the triangle inequality.
Suppose the phases 	(c) ∈ R2R+1 and 	(s) ∈ R2R+2 are

calculated from the (2R)th polynomial Pcos
εtri,κ

(x) and the (2R +
1)th polynomial Psin

εtri,κ
(x). The quantum circuit Uexp using

these phases is shown in Fig. 2. This circuit constructs the
(1, a + 2, κεtri ) block encoding of κe−iHt/2,∥∥∥∥κ

2
e−iHt − (〈0|abc ⊗ I )Uexp(|0〉abc ⊗ I )

∥∥∥∥ � κεtri, (19)

with R uses of U and U † and one use of the controlled U .
Therefore, the query complexity of Uexp is

R + R + 1 = 2

⌊
1

2
r

(
et

2
,

5

4
εtri

)⌋
+ 1 (20)

� O(t + log(1/εtri )). (21)

To obtain the block encoding of exp(−iHt ), the amplitude
amplification must be used. In Sec. III we discuss two types
of QSVT-based amplitude amplification algorithms: the obliv-
ious amplitude amplification [29] and fixed-point amplitude
amplification [32].

C. Linearized Vlasov-Poisson system

The time evolution of the distribution function f (x, v, t )
for electrons with stationary ions and the electric field
E = (Ex, Ey, Ez ) governed by the Vlasov-Poisson system is

described by the equations

∂ f

∂t
+ v · ∇ f − e

m
E · ∂ f

∂v
= 0, (22)

∂E
∂t

= 1

ε0

∫
ev f dv, (23)

where e is the absolute value of the electron charge, m is the
electron mass, and ε0 is the permittivity of the vacuum. The
variables f and E are expanded into the equilibrium terms
(labeled by 0) and perturbations (labeled by 1) to linearize
Eq. (22):

f (x, v, t ) = f0(v) + f1(x, v, t ),

E = E1(x, t ).
(24)

Note that we do not deal with the case when the nonzero
electric field E0 increases the system’s energy, i.e., E0 = 0.

We assume a Maxwellian background distribution f0 = fM

and apply the same transformations as in Ref. [9]: a Fourier
transformation of the variables in space, change of variables,
and discretization in velocity space with the dimensionless
variables

k̂ = λDe k, t̂ = ωpet, v̂ = v

λDeωpe
,

f̂ = (λDeωpe)3

ne
f , Ê = eλDe

kBTe
E, (25)

where k = (kx, ky, kz ) is the wave vector for the Fourier trans-
formation, λDe is the Debye length with ions neglected, ωpe is
the electron plasma frequency, ne is the electron number den-
sity, Te is the electron temperature, and kB is the Boltzmann
constant. As a result, Eqs. (22) and (23) become

dFj

dt
= −i(kxv jx + kyv jy + kzv jz )Fj

− iμ j (v jx Ex + v jy Ey + v jz Ez ), (26)

dEp

dt
= −i

∑
j

μ jv jpFj (p = x, y, z), (27)
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where the subscript 1 has been dropped,

μ j = μ
(
v jx , v jy , v jz

) =
√

�v fM
(
v jx , v jy , v jz

)
, (28)

Fj = F
(
v jx , v jy , v jz , t

)
= i

√
�v

fM
(
v jx , v jy , v jz

) f
(
v jx , v jy , v jz , t

)
, (29)

∑
j

· =
Nvx −1∑
jx=0

Nvy −1∑
jy=0

Nvz −1∑
jz=0

, (30)

where �v = �vx�vy�vz is the product of the mesh sizes;
Nvx = 2nvx , Nvy = 2nvy , and Nvz = 2nvz are the grid sizes in
velocity space; and the velocity space grid is represented by
the index j = ( jx, jy, jz ).

Equations (26) and (27) can be rewritten in the form of the
Schrödinger equation

d |ψ (t )〉
dt

= −iH |ψ (t )〉 , (31)

where H is a time-independent Hamiltonian and |ψ (t )〉 is a
quantum state whose amplitudes are the variables, which is
written in bra-ket notation as

|ψ (t )〉 = 1

η

(∑
j

Fj |0〉r | j〉v + Ex |1〉r |0〉v

+ Ey |2〉r |0〉v + Ey |3〉r |0〉v
)

, (32)

where | j〉v = | jx〉vx
| jy〉vy

| jz〉vz
, |0〉v = |0〉vx

|0〉vy
|0〉vz

, and
the normalization constant

η =
√∑

j

|Fj |2 + |Ex|2 + |Ey|2 + |Ez|2. (33)

Here |ψ (t )〉 has two registers labeled by r and v. The r register
encodes the variable index: |0〉r ↔ F , |1〉r ↔ Ex, |2〉r ↔ Ey,
and |3〉r ↔ Ez. The v register stores the velocity space depen-
dence of F : |0〉r | j〉v ↔ Fj . The corresponding Hamiltonian
H , which acts on these registers, is given by

H =
∑

j

[(
kxv jx + kyv jy + kzv jz

) |0〉r | j〉v 〈0|r 〈 j|v

+ μ jv jx (|0〉r | j〉v 〈1|r 〈0|v + |1〉r |0〉v 〈0|r 〈 j|v )

+ μ jv jy (|0〉r | j〉v 〈2|r 〈0|v + |2〉r |0〉v 〈0|r 〈 j|v )

+ μ jv jz (|0〉r | j〉v 〈3|r 〈0|v + |3〉r |0〉v 〈0|r 〈 j|v )
]
. (34)

The solution of Eq. (31) is given by

|ψ (t )〉 = e−iHt |ψ (t = 0)〉 . (35)

Therefore, the time evolution of Eqs. (26) and (27) can be
computed by the HS.

III. QSVT-BASED HAMILTONIAN SIMULATION

A. Oblivious amplitude amplification

Oblivious amplitude amplification using the QSVT has
been proposed in Ref. [29]. In this section we show the cir-
cuit of OAA and discuss the error and number of queries
of the OAA-based HS. In the QSVT-based OAA, the dth
Chebyshev polynomial of the first kind, defined by Td (x) =
cos[d arccos(x)], is used as an objective function. For odd d ,
the corresponding phases 	 ∈ Rd+1 is given by

φ0 = −dπ

2
,

φk = π

2
(k = 1, 2, . . . , d ). (36)

From Eq. (18), the following inequality holds:∣∣∣∣∣e
−ixt

2
− Pcos

εtri,κ
(x) − iPsin

εtri,κ
(x)

2

∣∣∣∣∣
�
∣∣∣∣κεtrie−ixt

2

∣∣∣∣+
∣∣∣∣∣κe−ixt

2
− Pcos

εtri,κ
(x) − iPsin

εtri,κ
(x)

2

∣∣∣∣∣
� κεtri

2
+ κεtri

= 3εtri

2(1 + εtri )
<

3

2
εtri. (37)

In the first inequality we used the triangle inequality. Letting
U be Uexp in Eq. (7) and using the phases

φ
(OAA)
0 = −3π

2
,

φ
(OAA)
k = π

2
(k = 1, 2, 3), (38)

then one can get the block encoding of

T3

(
e−iHt

2

)
= T3

[
cos

(
π

3

)]
e−iHt = −e−iHt , (39)

FIG. 3. Quantum circuit UOAA that is a (1, a + 2, ε) block encoding of exp(−iHt ). The unitary Uexp is shown in Fig. 2, the gate S1 is shown
in Fig. 1(a), and the phase 	(OAA) ∈ R4 is given by Eq. (38).
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Algorithm 1. The OAA-based Hamiltonian simulation.

Input: A (1, a, 0) block encoding of a Hamiltonian matrix H , an
evolution time t , and an error tolerance ε.

Output: A (1, a + 2, ε) block encoding of e−iHt .
Runtime: Q(OAA)

HS queries to the block encoding of H , where Q(OAA)
HS

is given by Eq. (41).
Procedure:

1: Calculate the phases 	(c) ∈ R2R+1 and 	(s) ∈ R2R+2 on a
classical computer from the (2R)th polynomial Pcos

εtri,κ
(x) and

(2R + 1)th polynomial Psin
εtri,κ

(x) in Eq. (17), where
κ = 1/(1 + εtri ), εtri = ε/9, and R is given by Eq. (15).

2: Construct the circuit Uexp in Fig. 2 using the phases 	(c) and
	(s), which is a (1, a + 2, κεtri ) block encoding of κe−iHt/2.

3: Run the circuit UOAA in Fig. 3 using the phases 	(OAA) ∈ R4 in
Eq. (38).

where in the first equality we used that the singular value of a
unitary matrix is 1. The OAA multiplies the error by a factor of
2d [29]. Therefore, the quantum circuit UOAA in Fig. 3 using
the phases 	(OAA) in Eq. (38) constructs the (1, a + 2, 9εtri )
block encoding of exp(−iHt ),

‖e−iHt − (〈0|abc ⊗ I )UOAA(|0〉abc ⊗ I )‖ � 9εtri, (40)

with two uses of Uexp and one use of U †
exp.

Given an error tolerance ε, the functions cos(xt ) and
sin(xt ) should be ε

9 approximated. Therefore, the number of
queries of the OAA-based HS is given by

Q(OAA)
HS = 3

[
2R

(
t,

ε

9

)
+ 1

]
� O(t + log(1/ε)). (41)

We summarize the OAA-based HS in Algorithm 1.

B. Fixed-point amplitude amplification

Fixed-point amplitude amplification using the QSVT was
proposed in Refs. [29,32]. In this section the error and number
of queries of the FPAA-based HS are investigated in detail. In
QSVT-based FPAA, the sign function

sgn(x) =
⎧⎨
⎩

−1, x < 0
0, x = 0
1, x > 0

(42)

is chosen as an objective function. The sign function can be
estimated by a polynomial approximation to an error function
erf (kx) for large enough k [32]. Let D be odd, � > 0, and
εsgn ∈ (0,

√
2/eπ ]. The phases 	(FPAA) ∈ RD+1 can be cal-

culated from the Dth polynomial Psgn
εsgn,�

[29,32] (the explicit

form of Psgn
εsgn,�

was given in Ref. [43]):

∣∣sgn(x) − Psgn
εsgn,�

(x)
∣∣ � εsgn

for x ∈
[
−1,−�

2

]
∪
[
�

2
, 1

]
. (43)

The degree D was given asymptotically in Refs. [29,32]. We
give it explicitly using the result of Refs. [43,44]. If k =

√
2

�
ln1/2(8/πε2

sgn ) and

D(k, εsgn ) = 2

⌈
16k√
πεsgn

exp

[
−1

2
W

(
512

πε2
sgne2

)]⌉
+ 1

= O

(
1

�
log(1/εsgn )

)
, (44)

where W is the Lambert W function, then Psgn
εsgn,�

is an εsgn

approximation to the sign function in the region [−1,−�
2 ] ∪

[�
2 , 1]. We require that �/2 � κ/2 because we desire that κ/2

be mapped to a value greater than 1 − εsgn, and then 1/� �
1/κ . If 1/� increases, then D increases because of D ∝ k ∝
1/�. Therefore, we should choose � = κ .

We discuss the upper bound of the error of the FPAA-based
HS. Let us define A = κ exp(−iHt )/2 and Ã = (〈0|abc ⊗
I )Uexp(|0〉abc ⊗ I ). Equation (19) can be rewritten as

‖A − Ã‖ � κεtri, (45)

and the inequality

‖A + Ã‖ � ‖A‖ + ‖A‖ + ‖Ã − A‖
� κ

2
+ κ

2
+ κεtri

= κ (1 + εtri ) = 1 (46)

holds, where in the first inequality we used the triangle in-
equality. Therefore, the matrices A and Ã satisfy the inequality

‖A − Ã‖ +
∥∥∥∥A + Ã

2

∥∥∥∥
2

� κεtri + 1

4

= 5

4
− 1

1 + εtri

<
5

4
− e

1 + e
< 1, (47)

where in the penultimate inequality we used εtri < 1/e. Ac-
cording to Lemma 23 in Ref. [29], we have that∥∥Psgn

εsgn,�
(A) − Psgn

εsgn,�
(Ã)
∥∥

� D

√
2

1 − ∥∥A+Ã
2

∥∥2 ‖A − Ã‖

�
√

8

3
D

εtri

1 + εtri
<

√
3Dεtri. (48)

Therefore, we have that∥∥sgn(A) − Psgn
εsgn,�

(Ã)
∥∥

�
∥∥sgn(A) − Psgn

εsgn,�
(A)
∥∥+ ∥∥Psgn

εsgn,�
(A) − Psgn

εsgn,�
(Ã)
∥∥

� εsgn +
√

3Dεtri ≡ ε′. (49)

From the above inequality, we have that ‖Psgn
εsgn,�

(Ã)‖ �
1 + ε′, which violates condition (vi). Therefore, we must
consider the rescaled polynomial 1

1+ε′ P
sgn
εsgn,�

(Ã) such that
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FIG. 4. Quantum circuit UFPAA that is a (1, a + 3, ε) block encoding of exp(−iHt ). The unitary Uexp is shown in Fig. 2, the gate S1 is shown
in Fig. 1(a), and the phase 	(FPAA) ∈ RD+1 is calculated from the Dth polynomial Psgn

εsgn,� that satisfies Eq. (43).

1
1+ε′ ‖Psgn

εsgn,�
(Ã)‖ � 1. Now we obtain the inequality∥∥∥∥sgn(A) − 1

1 + ε′ P
sgn
εsgn,�

(Ã)

∥∥∥∥
� 1

1 + ε′
[∥∥sgn(A) − Psgn

εsgn,�
(Ã)
∥∥+ ‖ε′sgn(A)‖]

� ε′ + ε′

1 + ε′ < 2ε′ (50)

and the error tolerance is defined as

ε ≡ 2ε′ = 2(εsgn +
√

3Dεtri ). (51)

The quantum circuit UFPAA using the phases 	(FPAA) ∈ RD+1

in Fig. 4 constructs the (1, a + 3, ε) block encoding of
exp(−iHt ),

‖e−iHt − (〈0|abcd ⊗ I )UFPAA(|0〉abcd ⊗ I )‖ � ε, (52)

with (D + 1)/2 uses of Uexp and (D − 1)/2 uses of U †
exp.

Therefore, the number of queries of the FPAA-based HS is
given by D(2R + 1). It varies depending on εtri and εsgn satis-
fying Eq. (51). The number of queries of the FPAA-based HS
is defined as

Q(FPAA)
HS = min

εtri,εsgn

D(κ, εsgn )[2R(t, εtri ) + 1]. (53)

This is asymptotically given by

Q(FPAA)
HS = O( log(1/εsgn )[t + log(1/εtri )])

= O(t log(1/ε) + log2(1/ε)). (54)

We summarize the FPAA-based HS in Algorithm 2; also we
summarize the comparison between OAA-based and FPAA-
based HSs in Table I.

TABLE I. Comparison between the OAA-based and the FPAA-
based HS. The asymptotic scalings of the number of queries are
described in Eqs. (41) and (54).

Method OAA-based HS FPAA-based HS

polynomial used T3(x) approximate polynomial
of sgn(x)

number of queries 3
(
2R
(
t, ε

9

)+ 1
)

D(κ, εsgn )[2R(t, εtri ) + 1]

asymptotic query O(t + log(1/ε)) O(t log(1/ε) + log2(1/ε))
complexity

C. Hamiltonian simulation for the general Hermitian matrix
and extension of evolution time

We describe the way to implement the HS for a general
Hermitian matrix H that is not positive semidefinite and nor-
malized by α > 0, i.e., ‖H/α‖ � 1. Suppose that U is an
(α, a, 0) block encoding of H :

U =
[

H
α

·
· ·

]
,

H

α
= (〈0|a ⊗ I )U (|0〉a ⊗ I ). (55)

The authors of Ref. [32] proposed the unitary U ′ as in
Fig. 5, which is a (1, a + 1, 0) block encoding of the positive-
semidefinite Hermitian matrix (H/α + I )/2. Instead of U ,
this unitary is used in the circuits Uexp, and UOAA or UFPAA,
denoted by UHS. Then UHS becomes a (1, a + 3, ε) block
encoding of exp(−i H/α+I

2 t ):∥∥e−i[(H/α+I )/2]t − (〈0|aa′bc ⊗ I )UHS(|0〉aa′bc ⊗ I )
∥∥ � ε. (56)

If the evolution time t is modified to 2αt , then UHS becomes
a (1, a + 3, ε) block encoding of e−iHt up to a global phase.
Therefore, the query complexity of the QSVT-based HS can
be generally represented as

O(2αt + log(1/ε)). (57)

Note that the factor log(1/ε) is multiplied by the above com-
plexity for the FPAA-based HS, but it is ignored for simplicity.

Larger t requires calculating a higher number of phases,
which can be challenging. One can instead use Nt sequential
UHS for the smaller time step �t = t/Nt and extend the evo-
lution time as follows:

e−iHt ≈ (〈0|aa′bc ⊗ I )U Nt
HS(〈0|aa′bc ⊗ I ). (58)

This split is also found in Ref. [11]. We discuss the query
complexity of the extension of the evolution time of the HS.

FIG. 5. Construction of the unitary U ′ that is a (1, a + 1, 0) block
encoding of (H/α + I )/2 from the unitary U , defined as in Eq. (55).
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Algorithm 2. The FPAA-based Hamiltonian simulation.

Input: A (1, a, 0) block encoding of a Hamiltonian matrix H , an
evolution time t , and an error tolerance ε.

Output: A (1, a + 3, ε) block encoding of e−iHt .
Runtime: Q(FPAA)

HS queries to the block encoding of H , where
Q(FPAA)

HS is given by Eq. (53)
Procedure:

1: Calculate εtri and εsgn which minimize Q(FPAA)
HS , where R and D

are given by Eqs. (15) and (44).
2: Calculate the phases 	(c) ∈ R2R+1 and 	(s) ∈ R2R+2 on a

classical computer from the (2R)th polynomial Pcos
εtri,κ

(x) and
the (2R + 1)th polynomial Psin

εtri,κ
(x) in Eq. (17), where

κ = 1/(1 + εtri ).
3: Construct the circuit Uexp in Fig. 2 using the phases 	(c) and

	(s), which is a (1, a + 2, κεtri ) block encoding of κe−iHt/2.
4: Calculate the phases 	(FPAA) ∈ RD+1 on a classical computer

from the Dth polynomial Psgn
εsgn,κ that satisfies Eq. (43).

5: Run the circuit UFPAA in Fig. 4 using the phases 	(FPAA).

According to Lemma 53 in Ref. [29], the error of the prod-
uct of two block-encoded matrices does not exceed the sum
of each error. Let UHS be a (1, a + 3, δ) block encoding of
exp(−iH�t ) and then we have that∥∥e−iHt − (〈0|aa′bc ⊗ I )U Nt

HS(|0〉aa′bc ⊗ I )
∥∥ � Ntδ ≡ ε, (59)

where ε is an error tolerance. The query complexity in
Eq. (57) can be rewritten as follows:

Nt O

(
2α�t + log

(
1

δ

))
= O

(
2αt + Nt log

(
Nt

ε

))
. (60)

IV. QUANTUM ALGORITHM FOR THE LINEARIZED
VLASOV-POISSON SYSTEM

Quantum algorithms for the linearized Vlasov-Poisson
system have three steps: (1) initialization, (2) HS, and (3)
extracting data. Initialization prepares a quantum state that
represents initial physical conditions, HS implements the time
evolution of Eq. (31), and physically meaningful data are
extracted from a final state.

To encode data and construct the Hamiltonian H , we use a
rotation gate called a variable rotation introduced in Ref. [9],
defined as

R(x) ≡
{

e−iY arccos x (x ∈ R)
e−iX arccos Im(x)eiZπ/2 (x ∈ C \ R),

(61)

where x is a rotation angle such that |x| � 1. This gate acts as
R(x) |0〉 = x |0〉 +

√
1 − |x|2 |1〉. We assume that the rotation

angles can be calculated efficiently on temporary registers,
and applying the rotations controlled on the angle qubits can
be implemented efficiently. Then the cost to implement the
variable rotations is O(poly(nv )) = O(poly(log Nv )) because
the input register has nv qubits.

A. One-dimensional linearized Vlasov-Poisson system

Efficiently preparing a quantum state that represents the
physical data is a very difficult problem. This problem is re-
lated to amplitude encoding [45]. Assuming quantum random

access memory [46], amplitude encoding is also implemented
efficiently. Under this assumption, we desire that a quantum
circuit for initialization U ideal

ini can prepare the initial state

U ideal
ini |0〉r |0〉v

= 1

η

⎛
⎝Nv−1∑

jx=0

Fjx (t = 0) |0〉r | jx〉vx
+ E (t = 0) |1〉r |0〉vx

⎞
⎠,

(62)

where η =
√∑

jx
|Fjx (t = 0)|2 + |E (t = 0)|2. We assume

that the gate complexity of U ideal
ini is O(poly(log Nvx )).

To implement the HS for the linearized Vlasov-Poisson
system, it is necessary to construct the corresponding uni-
tary U that is an (α, a, 0) block encoding of H . The unitary
for the one-dimensional system was proposed in Ref. [9],
which consists of two unitaries Urow and Ucol. These uni-
taries are called state preparation unitaries in Ref. [29] and
satisfy U = U †

rowUcol. The gate complexity of U is given
by O(poly(log Nvx )). According to Ref. [9], α satisfies the
inequality

4�

5
� α � �, (63)

where

� = |kx|vx,max +√�vxNvx vx,maxGmax,

vx,max = max
jx

|v jx |,

Gmax = max
jx

|v jx fM(vv jx
)|.

(64)

Since �vxNvx = 2vx,max + �vx, � does not increase with in-
creasing Nvx , i.e. α = 
(1). Therefore, the query complexity
of the QSVT-based HS is given by O(t + log(1/ε)). The gate
complexity of the QSVT-based HS is the above equation mul-
tiplied by poly(log Nvx ).

One of the ways to obtain data from the final state is the
quantum amplitude estimation (QAE) algorithm [38], which
can produce an estimate p̃ of the probability p with an error
bounded by

| p̃ − p| � 2π

√
p(1 − p)

M
+ π2

M2
, (65)

where M is the number of iterations. The authors of Ref. [9]
used QAE to obtain an estimate of the magnitude |E |. They
also proposed the algorithm for obtaining the real and imag-
inary parts of E and showed that its cost does not change
asymptotically. We discuss the computational complexity of
calculating the time evolution of E and the algorithm for
obtaining quantities related to the distribution function f .

The state after the HS for the evolution time t is applied to
the initial state in Eq. (62) becomes

|ψ (t )〉 = 1

η
|0〉a

⎛
⎝Nvx −1∑

jx=0

Fjx (t ) |0〉r | jx〉vx
+ E (t ) |1〉r |0〉vx

⎞
⎠,

(66)
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where the label a is represented as all ancilla qubits including
qubits labeled a, a′, b, c, and d . Let p = |E (t )|2/η2 and its
estimate be p̃. We introduce a = |E (t )|2 and ã = η2 p̃, which
then satisfy the following inequality from Eq. (65):

|ã − a| � 2π

√
a(η2 − a)

M
+ π2η2

M2

� 2πη|E (t )|
M

+ π2η2

M2
. (67)

In the last inequality we used η2 − a � η2. Assuming we
know the upper bound of |E (t )| is Eu, we let 0 < δ < 1 and
M = � (2Eu+1)πη

δ
�. The above inequality becomes

|ã − a| � 2|E (t )|δ
2Eu + 1

+ δ2

(2Eu + 1)2

� 2|E (t )|δ
2Eu + 1

+ δ

2Eu + 1
� δ, (68)

where in the last inequality we used 2|E (t )| + 1 � 2Eu + 1.
The value of E (t ) can also be obtained asymptotically with
the same complexity at an additional cost using the algorithm
proposed in Ref. [9]. Since M = O(1/δ), the gate complexity
of the whole algorithm for obtaining the estimate of E (t )
including the initialization and HS steps is given by

O

(
poly(log Nv )

δ
[t + log(1/ε)]

)
. (69)

Now we discuss the cost of calculating the time evolution
of E . For simplicity, we assume the phases 	(c) and 	(s) for
a large t , and a given error tolerance ε can be calculated.
Let Nt be the number of time steps, tmax the maximum of
the evolution time, and �t = tmax/Nt the time step. The gate
complexity of the algorithm for the evolution time tl = l�t is
given by Eq. (69) with t replaced by tl , denoted by Ql . Since

Nt∑
l=1

tl = �t

2
Nt (Nt + 1) = tmax(Nt + 1)

2
, (70)

the gate complexity of calculating the time evolution of E is

Nt∑
l=1

Ql = O

(
poly(log Nv )Nt

δ
[tmax + log(1/ε)]

)
. (71)

If we consider tmax to be a constant, then the cost of the
quantum algorithm is asymptotically the same for the number
of time steps Nt as that of a classical algorithm, which scales
linearly with Nt .

We show the way to obtain the deviation from the Maxwell
distribution

DM(t ) ≡
Nvx −1∑
jx=0

| f (v jx , t ) − fM(v jx )|2�vx

=
Nvx −1∑
jx=0

| f1(v jx , t )|2�vx. (72)

Here we write the subscript 1 explicitly. This quantity can be
used to know how well the fluid approximation is applied to
the system. We add a single ancilla qubit and variable rotation

gates with angles
√

fM(v jx ) and the state in Eq. (66) becomes

1

η

Nvx −1∑
jx=0

i f1(v jx , t )
√

�vx |0〉a |0〉r | jx〉vx
|0〉 + |⊥〉 , (73)

where |⊥〉 is the state of no interest. When the QAE is applied
to the above state, we obtain the estimate

p̃ ≈ 1

η2

Nvx −1∑
jx=0

| f1(v jx , t )|2�vx = 1

η2
DM(t ). (74)

Similar to the discussion of QAE to obtain the estimate of
E (t ), the number of iterations to obtain the estimate of DM

is also given by M = O(1/δ). Therefore, the gate complexity
of the algorithm for calculating the deviation DM is given by
Eq. (69).

B. Higher-dimensional Vlasov-Poisson systems

The discussion of initialization and extracting data steps
for the one-dimensional linearized Vlasov-Poisson system can
easily be extended to the higher system. In this section we
focus on the construction of unitaries U = U †

rowUcol that are
(α, a, 0) block encoding of H for the higher systems.

We show the circuits Urow and Ucol for the two-dimensional
system in Figs. 6 and 7. The unitary U is an (α, 6, 0) block
encoding of the Hamiltonian H ,

H

α
=
∑

j

[
c2b2

j |0〉r | j〉v 〈0|r 〈 j|v +
√

1 − |c|2d j√
2Nv

× (p jx (|0〉r | j〉v 〈1|r 〈0|v + |1〉r |0〉v 〈0|r 〈 j|v )

+ q jy (|0〉r | j〉v 〈2|r 〈0|v + |2〉r |0〉v 〈0|r 〈 j|v ))

]
+ D̂2,

(75)

where D̂2 is the unused subspace. Comparing Eq. (34) for the
two-dimensional system with Eq. (75), we obtain

c2b2
j = kxv jx + kyv jy

α
,

√
1 − |c|2 p jx d j√

2Nv

= μ jv jx

α
,

√
1 − |c|2 q jy d j√

2Nv

= μ jv jy

α
,

(76)

where Nv = Nvx Nvy . The angles b j , d j , p jx , and q jy are chosen
as

b j =
√

kxv jx + kyv jy

Kmax
, d j =

√
fM(v j )

gmax
,

p jx = v jx

Vmax
, q jy = v jy

Vmax
, (77)

where

Kmax = max
j

|kxv jx + kyv jy |,

gmax = max
j

fM(v jx , v jy ),

Vmax = max
jx

|v jx | max
jy

|v jy | = vx,maxvy,max. (78)
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FIG. 6. Quantum circuit of the unitary Urow for the two-dimensional linearized Vlasov-Poisson system.

FIG. 7. Quantum circuit of the unitary Ucol for the two-dimensional linearized Vlasov-Poisson system.
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FIG. 8. Quantum circuit of the unitary Urow for the three-dimensional linearized Vlasov-Poisson system.

Note that we assume vx,max � 1 and vy,max � 1 to make
|p jx | � 1 and |q jy | � 1 hold. From Eqs. (76) and (77), c and
α are given by

c2 = �

2

(√
1 + 4

�
− 1

)
, (79)

α = Kmax

c2
, (80)

where

� = K2
max

2�vNvV 2
maxgmax

, (81)

with �v = �vx�vy. As for the one-dimensional system, α

satisfies the inequality

4�

5
� α � �, (82)

where

� = Kmax +
√

2�vNvV 2
maxgmax. (83)

Since �vNv = (2vx,max + �vx )(2vy,max + �vy), if Nv in-
creases, then � does not increase, i.e. α = 
(1). Therefore,
the query complexity also does not increase with increasing
Nv . In addition, the gate complexity scales logarithmically
with Nv because the input register of the variable rotations in
Figs. 6 and 7 has nvx + nvy qubits. These results are the same
as for the one-dimensional system.

We show a unitary U = U †
rowUcol for the three-dimensional

Vlasov-Poisson system and results similar to the ones for the
lower-dimensional systems. The circuits Urow and Ucol are
shown in Figs. 8 and 9. The unitary U is an (α, 7, 0) block
encoding of the Hamiltonian H ,

H

α
=
∑

j

(
c2b2

j |0〉r | j〉v 〈0|r 〈 j|v +
√

1 − |c|2d j

2
√

Nv

[
p jx (|0〉r | j〉v 〈1|r 〈0|v + |1〉r |0〉v 〈0|r 〈 j|v )

+ qjy (|0〉r | j〉v 〈2|r 〈0|v + |2〉r |0〉v 〈0|r 〈 j|v ) + r jz (|0〉r | j〉v 〈3|r 〈0|v + |3〉r |0〉v 〈0|r 〈 j|v )
])+ D̂3, (84)

where Nv = Nvx Nvy Nvz and D̂3 is the unused subspace. The
corresponding angles and α are

b j =
√

kxv jx + kyv jy + kzv jz

Kmax
,

d j =
√

fM(v j )

gmax
, p jx = v jx

Vmax
, (85)

q jy = v jy

Vmax
, r jz = v jz

Vmax
,
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FIG. 9. Quantum circuit of the unitary Ucol for the three-dimensional linearized Vlasov-Poisson system.

c2 = �

2

(√
1 + 4

�
− 1

)
, (86)

α = Kmax

c2
, (87)

where

Kmax = max
j

|kxv jx + kyv jy + kzv jz |,

gmax = max
j

fM(v jx , v jy , v jz ),

Vmax = vx,maxvy,maxvz,max,

� = K2
max

4�vNvV 2
maxgmax

.

(88)

As for the lower-dimensional system, α satisfies the inequality

4�

5
� α � �, (89)

where

� = Kmax +
√

4�vNvV 2
maxgmax. (90)

Since �vNv = (2vx,max + �vx )(2vy,max + �vy)(2vz,max +
�vz ), if Nv increases, then � does not increase. Therefore,
the same result is obtained for the query complexity and the
gate complexity. We summarize the computational resources
of the HS for the linearized Vlasov-Poisson system in
Table II.

V. NUMERICAL RESULTS

A. QSVT-based Hamiltonian simulation

We compare the number of queries of the OAA-based and
FPAA-based HS algorithms. The number of queries for some
given error tolerances ε and evolution times t calculated from
Eqs. (41) and (53) is shown in Figs. 10 and 11. Notably,
the number of queries of the OAA-based HS is significantly
smaller than that of the FPAA-based one for all parameters.
These figures show that the number of queries Q(OAA)

HS and
Q(FPAA)

HS scale linearly for t and linearly and quadratically for
ln(1/ε), respectively. These results are consistent with the
asymptotic scaling of Eqs. (41) and (54). To identify the con-
stant factors and coefficients of the number of queries hidden
behind the asymptotic scaling, we fit the curve for OAA with

Q(OAA)
HS = α0 + α1t + α2ln(1/ε) (91)

and the curve for FPAA with

Q(FPAA)
HS = α0 + α1t + α2ln(1/ε)

+ α3t ln(1/ε) + α4ln2(1/ε). (92)

The results are presented in Table III. Both values of FPAA are
greater than those of OAA. Thus, OAA proves more effective
for HS than FPAA in terms of the number of queries.

We emphasize that the advantage of OAA over FPAA in
HS is a general result. The reasons for this can be explained
as follows. The number of queries is calculated from Eqs. (41)
and (53). These equations are derived under the general as-
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TABLE II. Comparison of the Hamiltonian simulation for the linearized Vlasov-Poisson system. The system register is defined as a register
labeled by r and v.

Dimension Total grid size Nv No. of system registers No. of ancilla qubits of U Gate complexity

1 Nvx nvx + 1 4
2 Nvx Nvy nvx + nvy + 2 6 O(poly(log Nv )[t + log(1/ε)])
3 Nvx Nvy Nvz nvx + nvy + nvz + 2 7

sumption that the Hamiltonian is positive semidefinite and its
norm is less than 1, that is, Eqs. (41) and (53) hold without
respect to the type of Hamiltonian. Therefore, from the theo-
retical and numerical results of the number of queries, OAA
is more advantageous than FPAA in Hamiltonian simulations
of general systems.

To specify what degree of approximation of trigonometric
functions or sign function dominates the number of queries of
the FPAA-based HS, we fit the curves for R and D in Eq. (53)
with

R = α0 + α1t + α2ln(1/ε), (93)

D = α0 + α2ln(1/ε) (94)

FIG. 10. Number of queries vs 1/ε for (a) the OAA-based HS
and (b) the FPAA-based HS.

for 0.1 � t � 10 and 10−5 � ε � 0.9. Then we obtain the
following results: For R,

α0 = 0.853, α1 = 0.913, α2 = 0.293, (95)

and for D,

α0 = 21.8, α2 = 10.1. (96)

The constant factors and coefficients of D are larger than those
of R. Thus, the large number of queries of the FPAA-based HS
is caused by requiring a high degree of approximation of the
sign function.

We now explain the intuitive reason why it is not appropri-
ate to use a sign function for amplitude amplification in the

FIG. 11. Number of queries vs t for (a) the OAA-based HS and
(b) the FPAA-based HS.
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TABLE III. Constant factors and coefficients of Eqs. (41) and (53).

Method Range of parameters α0 α1 α2 α3 α4

OAA 0.1 � t � 10, 10−5 � ε � 0.9 2.73 4.88 1.78
OAA 1 � t � 100, 10−10 � ε � 0.9 2.77 4.18 2.45
FPAA 0.1 � t � 10, 10−5 � ε � 0.9 142 28.3 11.9 20.9 7.26
FPAA 1 � t � 100 10−10 � ε � 0.9 490 21.7 −15.6 15.4 10.9

QSVT-based HS. As seen in Sec. II B, the specific amplitude
value κ/2 ≈ 1

2 must be amplified in the QSVT-based HS.
For the OAA-based HS, the third Chebyshev polynomial is
precisely |T3(x)| = 1 at x = 1

2 , whereas for the FPAA-based
one the sign function is sgn(x) = 1 for 1

2 � x � 1. The OAA-
based method amplifies the value exclusively at x = 1

2 . In
contrast, the FPAA-based method aims to amplify the values
for 1

2 � x � 1, leading to extra, unneeded effort for amplifi-
cation in this range, as depicted in Fig. 12. This results in a
high degree of approximation of the sign function and many
queries for the FPAA-based HS.

B. Application to the linearized Vlasov-Poisson system

Here the OAA-based HS is applied to the simulation of the
one-dimensional linearized Vlasov-Poisson system. The sim-
ulation is implemented on a classical emulator of a quantum
computer using QISKIT [47], with Statevector Simulator as the
backend. This backend gives us access to the whole output
space at all moments, and we do not implement QAE directly
to save the number of qubits. We compare the simulation
results of the quantum algorithm using the HS with those of a
classical algorithm which have been obtained by directly solv-
ing the Vlasov equation and the Poisson equation using the
Euler method for the time. These simulations are performed

FIG. 12. Illustration of the difference between amplitude ampli-
fications in the OAA-based and the FPAA-based HS. The red solid
line represents the third Chebyshev polynomial with a negative sign.
The blue dash-dotted line represents the polynomial approximating
the sign function. The gray dashed line represents x = 1

2 .

using the following parameters for a given wave number k:

Nv = 32, fM(v j ) = 1√
2π

e−v2
j /2,

vmax = 4.5, f1(v j, t = 0) = 0.1 fM(v j ),

E (t = 0) = i

k

∑
j

f1(v j, t = 0)�v. (97)

We construct the unitary U ′ in Fig. 5 from the unitary U =
U †

rowUcal in Ref. [9], which is the (α, 4, 0) block encoding of
H . Using the unitary U ′, we construct the circuit UOAA for
t = 2 and choose an error tolerance ε = 10−3. Then UOAA

is a (1, 7, 10−3) block encoding of e−iH�t , where �t = 1/α.
We implement the HS for the evolution time l�t using l
sequential UHS because it is difficult to compute the phases
	(c) and 	(s) for a large t , as mentioned in Sec. III C.

Figure 13 shows the time evolution of the electric field
E for k = 0.4 using the quantum algorithm. In this case,
the normalization of the Hamiltonian becomes 1/α = 0.238.
After a brief initial stage, the imaginary component of E is
damped and oscillating. We fit the curve with the function
Ae−iγ (t−t0 ) cos[ω(t − t0) − ρ] + E0 to obtain parameters of in-
terest, i.e., the frequency ω and damping rate γ ,

ω = 1.285 08, γ = 0.066 23, (98)

where t0 = 5.23. One can find precise values of ω = 1.285 06
and γ = 0.066 13 from the linear Landau theory [48]. Fig-
ure 14 shows the comparison of the frequencies and damping
rates obtained from the results of the quantum algorithm with

FIG. 13. Time evolution of the electric field E when using the
quantum algorithm with �t = 0.238 (k = 0.4). The envelope is a
fitted exponential ± exp(γ t ).
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FIG. 14. Comparison of the frequencies and damping rates ob-
tained from the results of the quantum algorithm (QA) for various
wave numbers with those obtained from the linear Landau theory.

the linear theory for various wave numbers. The parame-
ters obtained by fitting the curves agree well with the linear
theory. These results indicate that our quantum algorithm ac-
curately reproduces the linear Landau damping. Hereafter, the
case k = 0.4 is discussed in both the quantum and classical
algorithms.

Figure 15 shows the time evolution of E with the same
time step �t = 0.238 in the classical algorithm using the
Euler method. Unlike the quantum algorithm, the imaginary
component of E diverges numerically because of the long time
step. Table IV shows the relative errors of ω and γ for the
quantum and classical algorithms with different time steps.
The classical algorithm requires a smaller time step �t to
obtain ω and γ with the same order of accuracy as in the
quantum algorithm.

In the linearized Vlasov-Poisson system, the energy trans-
fer between the particles and the electric field occurs and the

FIG. 15. Time evolution of the electric field E when using
the classical algorithm using the Euler method with �t = 0.238
(k = 0.4).

TABLE IV. Comparison of the frequencies and damping rates
with different time steps obtained from the quantum algorithm (QA)
and classical algorithm (CA) for k = 0.4.

Relative error (%)

Time step �t Frequency ω Damping rate γ

QA
2.38 × 10−1 1.67 × 10−3 1.60 × 10−1

CA
1.00 × 10−2 6.25 × 10−2 1.24 × 101

1.00 × 10−3 8.77 × 10−3 −1.12
5.00 × 10−4 5.52 × 10−3 −4.92 × 10−1

1.00 × 10−4 2.91 × 10−3 6.51 × 10−3

distribution functions have a wavy structure. Figure 16 shows
the velocity profiles of the distribution functions at different
times. The distribution functions at t = 8.32, 16.65, and 24.97
have a wavy structure. At t = 16.65 and 24.97, the structure
appears mainly around the phase velocity vφ = ω/k = 3.213.
These results are consistent with the linear Landau theory
[48].

We validate the results of the distribution functions by
comparing them with those of the classical algorithm. The
error between different distribution functions is defined as

δ( f , g) =
∑

j

| f j − g j |2�v, (99)

where f and g are different distribution functions. We de-
note by fQA and fCA the distribution functions obtained from
the quantum algorithm and the classical algorithm. The dis-
tribution function fCA corresponds to the case when �t =
1 × 10−4 and k = 0.4. We consider the result of this case
as accurate because the time step �t is sufficiently small.
Table V shows that the errors between these distribution func-
tions are sufficiently small. For reference, we show the error
δ = 2.02 × 10−5 between a Maxwellian distribution fM(v)

FIG. 16. Time evolution of the distribution function f = fM + f1

(k = 0.4): (a) t = 0.0, (b) t = 8.32, (c) t = 16.65, and (d) t = 24.97.
The black solid curve shows the Maxwellian f = fM distribution
function. The gray dashed lines show the theoretical phase velocity
vφ = 3.21.
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TABLE V. Errors between the distribution functions fQA and fCA,
defined as in Eq. (99): fQA is obtained from the quantum algorithm
with �t = 0.238 (k = 0.4); fCA is obtained from the classical algo-
rithm using the Euler method with �t = 1 × 10−4 (k = 0.4).

t δ

0 0.000
8.32 0.560
16.65 0.925
24.97 1.06

and a drift Maxwellian distribution fM(v − 10−4) for Nv =
32. These results indicate that our quantum algorithm can
reproduce precisely the structure of the distribution function.

VI. SUMMARY

In this study, we have shown how to apply the quantum
singular-value transformation to the Hamiltonian simulation
algorithm and discussed the error and query complexity of the
HS using oblivious amplitude amplification and fixed-point
amplitude amplification within the QSVT framework. As a
result, the number of queries for the OAA-based HS scales
as O(t + log(1/ε)), whereas the FPAA-based one scales as
O(t log(1/ε) + log2(1/ε)), where t is an evolution time and
ε is an error tolerance. In addition, we numerically compared
the number of queries of these HS algorithms, showing that
the number of queries of the OAA-based HS is smaller than
that of the FPAA-based one, regardless of the parameters t
and ε. Fitting the curve of the plotted data, we computed the
constant factors and coefficients hidden behind the asymptotic
scaling. Then we found that the values of the OAA-based
HS are smaller than those of the FPAA-based HS. We also
identified that the large number of queries of the FPAA-based
HS is due to the high degree required to approximate the sign
function. Therefore, the OAA method is more appropriate for
the HS than the FPAA one.

Based on the above findings, by applying the OAA-based
HS to the one-dimensional linearized Vlasov-Poisson system,
we simulated the case of electrostatic Landau damping for
various wave numbers on a classical emulator of a quantum
computer using QISKIT [47]. The frequencies ω and damping
rates γ obtained by curve fitting the time evolutions of the
electric field E are in agreement with the linear Landau the-
ory [48]. Moreover, the velocity profiles of the distribution
function f that the quantum algorithm produces match the
classical ones for the same velocity grid size Nv . These results
show that the quantum algorithm can reproduce precisely the
linear Landau damping with the structure of the distribution
function.

We compared the results of the quantum algorithm using
the HS with those of the classical algorithm using the Euler
method for time. The classical algorithm with a large time
step �t = 0.238 causes numerical divergence. On the other
hand, the quantum algorithm remains stable for the same
�t . This stability is because the state at the next time can
be analytically determined by U = exp(−iHt ), which is one
of the features of the HS algorithm. The classical algorithm

requires a smaller time step �t to obtain ω and γ with the
same order of accuracy as in the quantum algorithm. These
results show that the HS algorithm has advantages in the time
step over the classical algorithm using the Euler method.

We discussed the gate complexity of the algorithm for
calculating the time evolution of the electric field E . The
complexity scales logarithmically with the total grid size in
velocity space Nv and linearly with the number of time steps
Nt . We proposed an algorithm for obtaining the deviation
from the Maxwell distribution. The gate complexity of this
algorithm also scales logarithmically with Nv . Circuits of the
unitaries which are block encodings of the Hamiltonian for
the higher-dimensional systems were developed. The gate
complexities of the HS using the circuits can be represented
in the same form as the one-dimensional system and scale
logarithmically with Nv . This result indicates that the quan-
tum algorithm for the linearized Vlasov-Poisson system has
exponential speedups over classical algorithms.
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APPENDIX: FROM QSP TO QSVT

Quantum singular-value transformation is based on the
results of quantum signal processing [29]. Quantum signal
processing is performed using a series of two gates W and
S defined as

W (x) ≡ ei arccos(x)X =
[

x i
√

1 − x2

i
√

1 − x2 x

]
(A1)

for x ∈ [−1, 1] and

S(φ) ≡ eiφZ =
[

eφ 0
0 e−φ

]
. (A2)

These gates construct the gate sequence

W	′ ≡ eiφ′
0Z

d∏
k=1

W (x)eiφ′
kZ , (A3)

where 	′ = (φ′
0, φ

′
1, . . . , φ

′
d ) ∈ Rd+1. This convention is

called the Wx convention in Ref. [32].
Another convention is the reflection convention, which

uses a reflection gate R instead of W ,

R(x) ≡
[

x
√

1 − x2√
1 − x2 −x

]
. (A4)

The relationship between W and R is given by

W (x) = ie−i(π/4)ZR(x)e−i(π/4)Z . (A5)

Therefore, Eq. (A3) is rewritten as

eiφ′
0Z

d∏
k=1

W (x)eiφ′
kZ = eiφ0Z

d∏
k=1

R(x)eiφkZ

≡ R	, (A6)
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FIG. 17. Quantum circuit UP� that constructs a (1, 1, 0) block
encoding of P�.

where

φ0 = φ′
0 + (2d − 1)

π

4
,

φk = φ′
k − π

2
(k = 1, 2, . . . , d − 1),

φd = φ′
d − π

4
.

(A7)

The phases 	,	′ ∈ Rd+1 exist and the gate sequence con-
structs the (1, 1, 0) block encoding of a polynomial function
P ∈ C,

〈0|W	′ |0〉 = 〈0| R	 |0〉 = P(x), (A8)

if and only if conditions (i)–(iv) in Sec. III hold. If P� satisfies
conditions (v) and (vi) in Sec. III, then there exists P ∈ C that
satisfies Re(P) = P� and the above conditions (i)–(iv).

Since R∗(x) = R(x), if the complex conjugate of R	 is
taken, we can get

R∗
	 = e−iφ0Z

d∏
k=1

R(x)e−iφkZ =
[

P∗(x) ·
· ·

]
, (A9)

and R∗
	 can be denoted by R−	. The quantum circuit in Fig. 17

constructs the (1, 2, 0) block encoding of P�:

〈0| 〈0|UP� |0〉 |0〉
= 〈+| 〈0| (|0〉 〈0| ⊗ R	 + |1〉 〈1| ⊗ R−	) |+〉 |0〉

= P(x) + P∗(x)

2

= P�(x). (A10)

Now we derive the result of the QSVT from that of
QSP. Suppose that U is a (1, a, 0) block encoding of a
matrix A such that A =∑r

k=1 σk |wk〉 〈vk|. The unitaries
U and eiφ�, where � = 2 |0〉a 〈0| − I , act on the two-
dimensional invariant subspaces Span(|0〉a |vk〉 , |⊥〉 |vk〉) and
Span(|0〉a |wk〉 , |⊥〉 |wk〉), where |⊥〉 satisfies 〈⊥|0〉a = 0.
The unitary U acts on these invariant subspaces as follows:

U |0〉a |vk〉 = σk |0〉a |wk〉 +
√

1 − σ 2
k |⊥〉 |wk〉 ,

U |⊥〉 |vk〉 =
√

1 − σ 2
k |0〉a |wk〉 − σk |⊥〉 |wk〉 . (A11)

Therefore, U becomes

U =
∑

k

⎡
⎣ σk

√
1 − σ 2

k√
1 − σ 2

k −σk

⎤
⎦⊗ |wk〉 〈vk|

=
∑

k

R(σk ) ⊗ |wk〉 〈vk| (A12)

and U † becomes

U † =
∑

k

R†(σk ) ⊗ (|wk〉 〈vk|)†

=
∑

k

R(σk ) ⊗ |vk〉 〈wk| . (A13)

Moreover, � acts on the invariant subspaces as follows:

� ⊗ Is = (|0〉a 〈0| − |⊥〉 〈⊥|) ⊗
∑

k

|wk〉 〈vk|

=
∑

k

[
1 0
0 −1

]
⊗ |wk〉 〈vk|

=
∑

k

Z ⊗ |wk〉 〈vk| . (A14)

Therefore, eiφ� becomes

eiφ� =
∑

k

eiφZ ⊗ |wk〉 〈vk| . (A15)

Now the alternating phase modulation sequence U	 de-
fined in Eq. (7) becomes the (1, a, 0) block encoding of
P(SV)(A) as for odd d:

U	 =
∑

k

eiφ0Z
d∏

j=1

[R(σk )eiφ j Z ] ⊗ |wk〉 〈vk|

=
[∑

k P(σk ) |wk〉 〈vk| ·
· ·

]

=
[

P(SV)(A) ·
· ·

]
, (A16)

with a similar derivation for even d . We can construct the
(1, a + 1, 0) block encoding of the real polynomial function
P(SV)

� like QSP. Since U−	 is the (1, a, 0) block encoding of
P∗(SV), we can construct a quantum circuit UP(SV)

�
:

〈0|b 〈0|a UP(SV)
�

|0〉b |0〉a

= (〈0|b H ) 〈0|a (|0〉b 〈0| ⊗ U	

+ |1〉b 〈1| ⊗ U−	)(H |0〉b) |0〉a

= 〈0|a (U	 + U−	) |0〉a

2

= P(SV)(A) + P∗(SV)(A)

2
= P(SV)

� (A). (A17)
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