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Parallel multi-two-qubit SWAP gate via quantum nondemolition interaction
of orbital-angular-momentum light and an atomic ensemble
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Nowadays, the quantum SWAP gate has become an integral part of quantum computing, so the investigation
of methods for its realization seems to be an important practical problem for various quantum-optical and
information applications. In the present paper, we propose a scheme for performing a SWAP logic operation
in discrete variables in the framework of quantum nondemolition interaction between an atomic ensemble and
a multimode light with orbital angular momentum. We discuss in detail the procedure for revealing two-qubit
closed subsystems on a set of atomic and field states for different values of the driving field orbital momentum.
We also demonstrate the possibility of implementing a parallel multi-two-qubit quantum SWAP gate.
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I. INTRODUCTION

To date, various quantum computation schemes have been
proposed for both discrete variables [1] and continuous vari-
ables [2], and many of those schemes have been successfully
implemented experimentally [3,4]. Operating with quantum
systems in terms of continuous variables has both a number
of indisputable advantages [5] as well as inconveniences. The
latter includes the finite squeezing of real quantum oscilla-
tors [6] and the difficulty of implementing experimentally a
non-Gaussian transformation to perform an arbitrary com-
putational operation [7]. Calculations in terms of discrete
variables are devoid of these difficulties but also have a key
factor limiting their application, namely, the fundamentally
probabilistic nature of a successful computational operation.
Scaling the scheme will obviously lead to an increase in com-
putational time and a loss of quantum supremacy. Therefore,
the efforts of many scientific groups are aimed at researching
various physical systems and processes that provide the most
efficient operations. To construct universal quantum computa-
tions in discrete variables, there must be a way to implement
a universal set of quantum logical operations [8]. In other
words, any admissible computational operation must be split
into a finite sequence of gates from the universal set. In our
previous paper [9] we proposed a method for realization of
quantum single qubit gates as well as generalized qubit pro-
tocols for systems of higher dimensionality—qudits. In the
present paper, we investigate the possibility of constructing
a two-qubit logical transformation. As such a logical trans-
formation, we chose the SWAP [10] element, which in qubit
representation describes the cyclic permutation of states of
two qubits, and is an integral part of quantum computing.
For example, the SWAP gate is an important component of
the network scheme of Shor’s algorithm [11]. In addition, it
is shown that the ability to successfully implement a logical
SWAP transformation is a prerequisite for the network com-
patibility of quantum computation [12]. Today, the SWAP gate
has various experimental implementations based on physical

objects of different nature: ionic [13–16], atomic [17–20], and
photonic [21,22] systems, quantum dots [12,23], etc. Today it
is not definitely possible to say that any of these platforms
has a clear advantage in the implementation of computations.
Therefore, research of new methods for the realization of the
quantum SWAP gate remains a relevant challenge for quantum
optics and quantum informatics.

One promising resource for quantum computation in dis-
crete variables is a light with orbital angular momentum
(OAM) [24], since the OAM projection can take any integer
values, making it possible to work in a high-dimensional
Hilbert space [25]. The Laguerre-Gaussian modes with orbital
momentum also have high stability when propagating in a
turbulent atmosphere, i.e., they show relatively high decoher-
ence time [26]. Since these modes are well-localized spatial
modes, there are currently well-established methods for gen-
erating, separating, and detecting such multimode radiation.
These methods are based on the use of phase holograms [27],
q plates [28], and cylindrical lenses [29,30]. However, to
perform effective transformations over modes with different
OAMs using such optical elements, it is necessary to change
the system parameters specifically for each mode, which is not
satisfactory for quantum computation schemes. The potential
of high-dimensional Hilbert space for computation in discrete
variables can be evaluated in a dual way: we can either in-
troduce multiple qubit systems on a set of physical states, or
work with a smaller number of objects of higher dimension-
ality (qudits). The advantages of one or the other approach
remain an open question. Working with multiple qubits may
cause some difficulties with the initiation of the input mul-
tiqubit state, while working with qudits is more difficult in
some cases to ensure the coherence of the transformation of
different qudit states [9]. Successful attempts have been made
to build single-qubit quantum logic gates over single photons
possessing OAM [31,32].

At the same time, the construction of two-qubit gates over
qubits encoded through states of optical fields is a nontriv-
ial task due to the lack of direct (nonmediated) interaction
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FIG. 1. Schematic representation of the interaction geometry and
the atomic energy levels. Here � is the detuning of light frequency
from atomic transitions; classical and quantum fields have polar-
ization �ex and �ey, respectively, so that the driving field acts on the
transitions |1〉 - |3〉′ and |2〉 - |3〉 and the quantum field acts on the
transitions |1〉 - |3〉 and |2〉 - |3〉′. Initially, an atomic ensemble is
prepared in the state |1〉 with the average collective spin directed
along the axis x and the magnetic spin momentum mx = − 1

2 .

between the light states. In our paper, we propose to consider
quantum nondemolition (QND) interaction [33] between an
ensemble of cold atoms and multimode light with OAM as
one of the possible ways to implement a quantum SWAP gate
in discrete variables. We will show that the system under con-
sideration allows one to perform SWAP operation on several
two-qubit systems simultaneously, which is undoubtedly an
advantage in solving the scalability problem.

II. QUANTUM NONDEMOLITION INTERACTION
BETWEEN OAM LIGHT AND ATOMIC ENSEMBLE

A. Model and interaction Hamiltonian

We consider an ensemble of four-level atoms (see Fig. 1),
uniformly distributed in a cylindrical cell with a transverse
area of S and a length of L along the axis z. We assume that
the lower-energy levels |1〉 and |2〉 are long lived and neglect
the decay of the levels during the light-atomic interaction. Let
us suppose that initially all atoms are prepared in the state
|1〉 with the average collective spin directed along the axis x
and the magnetic spin momentum mx = − 1

2 . The |3〉 and |3′〉
levels are almost not populated due to the large detuning �.

The atomic ensemble interacts with a strong classical
driving field �Ed (�r, t ) and a weak quantum field Ês(�r, t ).
Both fields are considered as quasimonochromatic quasiplane
waves in the paraxial approximation with the carrier fre-
quency ω0. The frequency ω0 is detuned by −� from the

frequencies of atomic transitions ω13′ and ω23. Quantum and
classical fields could be decomposed as a set of modes with a
certain OAM:

�̂Es(�r, t ) = −i
√

h̄ω0√
8πc

∑
m

âm(z, t )U (s)
m (�ρ )eik0z−iω0t �ey + H.c.,

(1)

�Ed (�r, t ) = −i
∑

n

En(z, t )U (d )
n (�ρ )eik0z−iω0t �ex + c.c. (2)

Here we take the polarization of the fields �ex and �ey so that the
driving field acts on the transitions |1〉 - |3〉′ and |2〉 - |3〉 and
the quantum field acts on the transitions |1〉 - |3〉 and |2〉 - |3〉′
(see Fig. 1). U (s)

m (�ρ) and U (d )
n (�ρ ) are the Laguerre-Gaussian

functions of the quantum and driving fields, respectively;
âm(z, t ) are the photon annihilation operators in the Laguerre-
Gaussian mode with the OAM value m.

The procedure of constructing the interaction Hamiltonian
is very similar to that described in [32], but with additional
features of the light with OAM taken into account. Under
all approximations, discussed in detail in Appendix A, the
Hamiltonian could be written in the form

ĤQND = −
√

2h̄g
√

N

�

∫
dz

∑
m,l

(χl−m�l−m[b̂†
l âm + bl â

†
m]

−χl+m�l+m[b̂†
l â†

m + b̂l âm]). (3)

Here g is the coupling constant between the atom and the
field; �n(z, t ) denotes the Rabi frequencies, referred to the
mode of the driving field with the OAM value n; N denotes
average concentration of atoms. The bosonic atomic operators
b̂l (z, t ) are introduced as a normalized projections of the spin
coherence on the Laguerre-Gaussian functions with the index
l [see (A16)].

The coefficients χk are the overlap integrals of the light and
atomic modes:

χl−m =
∫

d �ρ
∣∣U (d )

l−m(�ρ )
∣∣∣∣U (s)

l (�ρ )
∣∣∣∣U (s)

m (�ρ )
∣∣, (4)

χl+m =
∫

d �ρ
∣∣U (d )

l+m(�ρ )
∣∣∣∣U (s)

l (�ρ )
∣∣∣∣U (s)

m (�ρ )
∣∣. (5)

We can control the magnitude of the individual constants
geometrically by changing the ratio of the waist widths [9].
It should be noted that the interaction constants are invariant
to the change of the index sign: χl−m = χm−l .

A more detailed analysis of the physical conditions nec-
essary to perform logic transformations on qubits will be
presented further in Sec. III.

B. Heisenberg equations and input-output relations

The expression obtained for the Hamiltonian (3) does not
allow us to see clearly that we obtain the QND Hamiltonian.
Let us demonstrate that the expression (3) provides the QND
interaction between the atomic and field systems, similar to
that described in [33]. Let us proceed to another set of modes,
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which is a superposition of the modes with OAM:

â0 = â0, b̂0 = b̂0, (6)

â(+)
m = 1√

2
(âm + â−m), (7)

â(−)
m = 1

i
√

2
(âm − â−m), (8)

b̂(+)
m = 1√

2
(b̂m + b̂−m), (9)

b̂(−)
m = 1

i
√

2
(b̂m − b̂−m). (10)

It would be useful to consider the driving field with the
symmetric OAM spectrum and take �k = �−k . Furthermore,
we will refer to the pair of modes with OAM equal to k and
−k as one mode of the driving field since we only consider the
symmetric spectrum. The Hamiltonian (3) is simplified with
new variables and the driving field with the symmetric OAM
spectrum:

ĤQND = Ĥ (+) + Ĥ (−), (11)

Ĥ (+) =
∫

dz

[
κ0

2
χ0 p̂0ŷ0 +

∞∑
k=1

κk√
2
χk ( p̂(+)

k ŷ0 + p̂0ŷ(+)
k )

+
∞∑

m=1

∞∑
k=1

κ|m−k|χm−k p̂(+)
k ŷ(+)

m

]
, (12)

Ĥ (−) =
∫

dz
∞∑

m=1

∞∑
k=1

κ|m−k|χm−k p(−)
k ŷ(−)

m , (13)

κk = 4h̄
√

2g
√

N

�
�k . (14)

Here, {q̂(±)
i , p̂(±)

i } are quadrature components of the opera-
tors b̂(±)

i which describe the atomic system. {x̂(±)
i , ŷ(±)

i } are
quadrature components of the operators â(±)

i which describe
the field. The Hamiltonian in new variables is divided into two
noninteractive components, since the operators with different
indices commute:[

q̂ j
m, p̂i

k

] = [
x̂ j

m, ŷi
k

] = i

2S(s)
m

δk,mδi, j,

k, m ∈ [1,∞); i, j = {(+), (−)}. (15)

As a result, the Hamiltonian Ĥ (+) provides the QND in-
teraction between the atomic and field modes with indices 0
and (+) by the different driving field modes with the OAM
(the lower index at κk indicates the orbital angular momentum
of the driving field). Modes with the index (–) create a closed
subsystem that evolves through the Hamiltonian Ĥ (−), without
interacting with other modes.

In the context of qubit construction, we follow only the
subsystem evolved by the Hamiltonian Ĥ (+) and omit the
top index for simplicity. In addition, we limit the considera-
tion to situations in which the OAM spectrum of the driving
field is reduced to a single mode with the index k. For the
multimode driving field cases, i.e., when in (12) we have to
sum over the index k, each mode of the atomic ensemble
interacts with many modes of the quantum field. Therefore,
the effective integral interaction time Tk = ∫ T

0 dt �2
k (t )/�2 is

different for the various �k , which makes the interaction more
complicated.

To describe the input-output relations in the presence of the
driving field’s single mode �k , let us pass to the integral di-
mensionless quadrature operators according to the following
expressions:

X̂m(z) =
∫ T

0 �k (t )x̂s
m(z, t )dt√∫ T

0 �2
k (t )dt

, (16)

Ŷm(z) =
∫ T

0 �k (t )ŷs
m(z, t )dt√∫ T

0 �2
k (t )dt

, (17)

Q̂l (t ) = 1√
L

∫ L

0
q̂s

l (z, t )dz, (18)

P̂l (t ) = 1√
L

∫ L

0
p̂s

l (z, t )dz. (19)

The input-output relations for the new quadrature operators
evolved by the Hamiltonian (12) can be written as

X̂ out
m = X̂ in

m + χ̃m−kP̂in
m−k, (20)

Q̂out
m−k = Q̂in

m−k + χ̃m−kŶ
in

m , (21)

Ŷ out
m = Ŷ in

m , (22)

P̂out
m−k = P̂in

m−k . (23)

Here, the upper indices in and out are introduced accord-
ing to the following rule: X̂ in

m = X̂m(z = 0), X̂ out
m = X̂ s

m(z =
L), Ŷ in

m = Ŷm(z = 0), Ŷ out
m = Ŷm(z = L), Q̂in

m−k = Q̂m−k (t =
0), Q̂out

m−k = Q̂m−k (t = T ), P̂in
m−k = P̂m−k (t = 0), and P̂out

m−k =
P̂m−k (t = T ).

The dimensionless coupling constant for the QND interac-
tion is defined as

χ̃m−k = 2
√

2g
√

Nχm−k√
S(s)

m S(s)
m−k

√∫ T

0

�2
k (0, t )

�2
dt . (24)

The integral of the square of the Rabi frequency determines
the efficient integral interaction time and depends on the pulse
length of the driving field T .

In this section, we analyzed the Hamiltonian of the interac-
tion between the multimode light with OAM and the atomic
ensemble under the complex structure of the driving field. The
QND protocol features allowed us to formulate the selection
rules and demonstrate that the interaction is OAM selective.
In the basis of (+) and (−) modes, when using a driving
field with the symmetric OAM spectrum, the Hamiltonian
describes the QND interaction between the atomic and field
systems. At the same time, the indices of the interacting
modes differ by the OAM value of the driving field.

The analysis above allows us, in principle, to work in a log-
ical space of any dimension. In the next section, we consider
the obtained operator transformation in terms of the two-qubit
interaction and focus on the different ways of encoding qubits
for the various driving fields’ OAM values. Although we
present the technique of constructing the logical space basis
and quantum gates only for the special case of qubits, the
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results of Sec. II can be applied to the general qudit case as
well.

III. QUBIT LOGICAL GATES

A. Constructing the appropriate logical basis

1. Interaction with k = 0

For the purpose of this subsection, we will put the momen-
tum of the driving field equal to zero. For a better illustration
of the evolution of physical atomic-field states and logical
qubit states, provided by the QND interaction of modes with
OAM, it is useful to write down the input-output relation for
field and atomic mode operators in the form of the Bogoliubov
transform:(

�̂A†

�̂B†

)out

=
(
I S
S I

)(
�̂A†

�̂B†

)in

+
(
O S∗
S∗ O

)(
�̂A
�̂B

)in

. (25)

Here, for convenience, the following notation is introduced:
�̂A = (Â0 Â1 Â2 · · ·)T

and �̂B = (B̂0 B̂1 B̂2 · · ·)T
.

The operators Âi and B̂ j are defined by the quadrature com-
ponents (16)–(19) as Âi = X̂i + iŶi, B̂i = Q̂i + iP̂i, the lower
index as before is associated with the OAM mode, and
I and O are unit and zero matrices, respectively. The matrix
S for the driving field with OAM equal to zero is diagonal and
is expressed as follows:

Sk, j = −iχ̃k−1

2
δk, j, {k, j} ∈ [1,∞). (26)

We will further encode the logical states of qubits by phys-
ical states of atomic or field systems with a single excitation
in the OAM superposition state. So, it is convenient for us
to rewrite the input-output relations (25) only following the
creation operators:(

�̂A†

�̂B†

)in

=
(
I S∗
S∗ I

)(
�̂A†

�̂B†

)out

+ F ( �̂Aout, �̂Bout ). (27)

Here F ( �̂Aout, �̂Bout ) is some matrix function only of the output
annihilation operators and provides the preservation of the
commutation relations. To design a two-qubit transformation,
we need to identify the appropriate basis of physical states of
the field and atoms to encode a logical basis in the two-qubit
space. Let us denote states with a single excitation as an
appropriate basis:

|1〉m,L ≡ Â†
m |0〉m,L , |1〉k,A ≡ B̂†

k |0〉k,A . (28)

The indices m and k are associated with the value of the OAM;
L and A denote the light or atomic system; the upper index in
is omitted. Figure 2 shows a scheme of interaction of atomic
and field states with different OAMs in the presence of the
driving field with OAM k = 0. We can distinguish several
closed subsystems: in the case under consideration, the inter-
action occurs only between states with the same OAM. We
could take into account a finite number of states with different
OAMs, due to experimental difficulties with the generation
of large OAM values. Then, limiting the maximal OAM of
quantum states to some number K − 1, we can distinguish

FIG. 2. Schematic representation of the interaction of the field
and atomic states with different OAMs. The OAM of the driving
field is k = 0. The different two-qubit subsystems are marked in
the figure with frames. The first index of the physical Fock states
indicates the OAM of the populated mode; the second index L or A
denotes light or atomic systems, respectively. The upper index of the
logical state from 1 to j numbers the two-qubit subsystems, and the
lower one numbers the qubits into one separate subsystem.

K/2 closed two-qubit subsystems on the set of physical states,
defining qubit states as follows:

|0〉 j
1 ≡ |1〉2( j−1),L , |1〉 j

1 ≡ |1〉2 j−1,L , (29)

|0〉 j
2 ≡ |1〉2( j−1),A , |1〉 j

2 ≡ |1〉2 j−1,A . (30)

FIG. 3. Dependence of overlap integrals χ0,m,m on the distance
between the driving and quantum field waists in Rayleigh length
units. All constants asymptotically approach unity at large distances
between waists, i.e., in the driving field plane-wave limit.
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The index j ∈ [1, K/2] refers to the number of the two-qubit
subsystem; the lower index 1 or 2 numbers the qubits within
one subsystem. Thus, we assume that the logical state |0〉1

1 of
the first qubit of the first subsystem corresponds to the physi-
cal state with one photon in a mode with OAM equal to zero,
and the same state of the second qubit could be associated with
one excitation in an atomic mode with OAM equal to zero.
The |1〉1

1 state can be represented by an excitation in a field
mode with OAM equal to 1, and so on. That is, for each pair
of qubits, there are two excitations—one in the light modes
and one in the atomic modes. The logical states of the second
two-qubit subsystem could be encoded through excitations in
atomic and field modes with OAM 2 and 3, and so on.

Thus, the system contains many two-qubit subsystems,
each of which evolves independently of the others. Let us note
that to implement a two-qubit gate based on QND interaction,
we need to ensure equality of interaction constants within
one subsystem. Since all constants depend on the same Rabi
frequency �0, we can only vary the overlap integrals χm,k,m−k

(we specify all three indices here and in the figures for better
readability). As it was shown in [34], we are able to control
the overlap integrals through the geometry of the fields. By
varying the ratios of the waist widths of the classical and
quantum fields (we use the distance between the waists in
Rayleigh length units zS/zR as a parameter), we can provide
different values of the overlap integrals for different modes.
From Fig. 3, one can see that at significant shifts of the
classical field waist relative to the quantum one, i.e., at the
waist width of the driving beam much larger than the waist
width of the quantum one (the plane-wave limit), all overlap
integrals tend to unity. Thus, we can consider a system of K/2
two-qubit subsystems, where all subsystems interact with the
same constant, which we call χ̃ for brevity. In Sec. III B, we
describe the SWAP gate protocol for each subsystem.

2. Interaction with k = 1

In the case when the driving field has an OAM equal to
1, the interaction picture becomes significantly more compli-
cated in comparison to the situation considered in the previous
subsection. It can be noted that the identification of closed
two-qubit subsystems is no longer a trivial issue, since the
states no longer interact in pairs. The continuum of field states
with even OAMs interacts with the continuum of atomic states
with odd OAMs, and vice versa. The interaction constants
for various states are also different (see Figs. 4 and 5). This
raises the question, how can we construct such a basis of
physical states that the revealing of noninteracting subsystems
becomes possible?

The input-output relations for the creation operators are as
follows:(

�̂A†

�̂B†

)in

=
(
I H∗
H∗ I

)(
�̂A†

�̂B†

)out

+ F ( �̂Aout, �̂Bout )

= M
(

�̂A†

�̂B†

)out

+ F ( �̂Aout, �̂Bout ). (31)

Here F ( �̂Aout, �̂Bout ), as before, denotes some matrix function
of the output annihilation operators. The matrix H is defined

FIG. 4. Schematic representation of the interaction of the field
and atomic states with different OAMs. The driving field momentum
is k = 1. The separation of two-qubit systems is a nontrivial problem,
because of the intermeshing interactions of different modes with
various interaction constants. As before, the first index indicates the
OAM of the mode, and the second one denotes light and atomic
systems.

through the following matrix elements:

Hk, j = −i
χ̃kδk+1, j + χ̃k−1δk−1, j

2
, {k, j} ∈ [1,∞). (32)

The matrix H here contains interaction constants and, unlike
S , is not diagonal: the nonzero elements are located on two
diagonals parallel to the main one. To identify closed subsys-
tems, we turn to the properties of the matrix M. Let us define
the basis of the eigenvectors of the matrix M:

Mi, j =
∑

n

λnmn,imn, j, (33)

FIG. 5. Dependence of overlap integrals χ1,m,m+1 on the distance
between the driving and quantum field waists in Rayleigh length
units. In contrast to the integrals χ0,m,m, in this case it is impossible
to specify the value of the geometric parameter at which all integrals
χ1,m,m+1 become equal in magnitude.

012428-5



BASHMAKOVA, VASHUKEVICH, AND GOLUBEVA PHYSICAL REVIEW A 109, 012428 (2024)

where λn are the eigenvalues, which depend on all interaction
constants χ̃k; mn,i is the ith element of the nth eigenvector
of the matrix M. Using the elements of the eigenvectors, we
define the set of operators Ê†

n as follows:

Ê†
n =

K∑
i=1

mn,iÂ
†
i−1 +

2K∑
i=K+1

mn,iB̂
†
i−1. (34)

The indices in and out are omitted, and will be specified only
where necessary. For convenience, we also limit the dimen-
sionality of the matrix M to some number 2K , but for now
we generally assume that 2K tends to infinity.

The operators Ê†
n are eigenoperators for the input-output

transformation given by the expression (31), that is, these
operators simply multiplying on the eigenvalues λn after the
transformation. The analysis shows that the operators Ê†

n
have an interesting property: in the linear combination (34)
there are simultaneously only field operators with even in-
dices and atomic operators with odd indices, or vice versa,
field operators with odd indices and atomic operators with
even indices. Moreover, in the spectrum of the matrix M
of dimension 2K there are only K/2 different (in modulo)
eigenvalues. Let us follow which operators Ê†

n correspond to
equal eigenvalues.

(1) A pair of equal eigenvalues λ1, λ2 corresponds to such
a pair of eigenoperators Ê†

1 , Ê†
2 that

m1,s = m2,s+K

m1,s+K = m2,s
∀s ∈ [1, K/2] ⇔ λ1 = λ2. (35)

In other words, if some operator Ê†
1 contains only field op-

erators with odd OAM with coefficients m1,s and atomic
operators with even OAM with coefficients m1,s+K , then the
operator Ê†

2 will include only odd atomic operators with
weights m1,s and even field operators with weights m1,s+K .

(2) A pair of complex conjugate eigenvalues λ1, λ3 corre-
sponds to such a pair of eigenoperators Ê†

1 , Ê†
3 that

m1,s = m3,s ∀s ∈ [1, K] ⇔ λ∗
1 = λ3. (36)

That is, for each eigenoperator Ê†
1 there is an operator Ê†

3 , such

that the linear combination Ê†
1 +Ê†

3√
2

is expressed only through

atomic operators, and Ê†
1 −Ê†

3√
2

depends only on field operators.
The matrix M written for combinations of the eigenoper-

ators
Ê†

n ±Ê†
n+2√

2
,
Ê†

n+1±Ê†
n+3√

2
is block diagonal with block Un with

dimension 4 × 4:

M =

⎛
⎜⎝U1 · · · O

...
. . .

...

O · · · U2K−3

⎞
⎟⎠, (37)

Un =

⎛
⎜⎜⎝

1 iIm[λn] 0 0
iIm[λn] 1 0 0

0 0 1 iIm[λn]
0 0 iIm[λn] 1

⎞
⎟⎟⎠,

n = 1, 5, 9, . . . , 2K − 3. (38)

This separation of the matrix M spectrum into tetrads of
eigenvalues (λn = λn+1 = λ∗

n+2 = λ∗
n+3) allows us to define

groups of physical states that form a closed system regarding

evolution by QND interaction, described by one block Un.
For example, the first four states corresponding to the largest
eigenvalue λ1 can be written in the following form:

|1〉1
A,o ≡ 1√

2
(Ê†

1 + Ê†
3 ) |0〉A,o , (39)

|1〉1
L,e ≡ 1√

2
(Ê†

1 − Ê†
3 ) |0〉L,e , (40)

|1〉1
A,e ≡ 1√

2
(Ê†

2 + Ê†
4 ) |0〉A,e , (41)

|1〉1
L,o ≡ 1√

2
(Ê†

2 − Ê†
4 ) |0〉L,o . (42)

The lower indices o and e are abbreviations of odd and even.
The state defined by equality (39) is the field state with one
excitation distributed over a superposition of states with even
OAM. The photon’s detection probability amplitude in a mode
with a particular OAM equal to, for example, 4, is defined
through the M matrix’s fifth element of the first eigenvector
as

√
2m1,5 [see the expression (34)]. The other states can be

described in a similar way.
As in the previous subsection, we can define K/2 closed

two-qubit subsystems on the physical state space, defining the
qubit states as follows:

|0〉 j
1 ≡ |1〉(4 j−3)

L,o , |1〉 j
1 ≡ |1〉(4 j−3)

L,e , (43)

|0〉 j
2 ≡ |1〉(4 j−3)

A,o , |1〉 j
2 ≡ |1〉(4 j−3)

A,e . (44)

The index j ∈ [1, K/2] refers to the number of the two-qubit
subsystem; the index 1 or 2 numbers the qubits within one
subsystem. Figure 6 shows a schematic representation of the
interaction between the states defined by Eqs. (39)–(42) for
the first subsystem and similar ones (with various eigenop-
erators Ê†

k ) for the other subsystems). Figure 7 shows the
numerical calculation of the values Im[λk] for the first seven
different eigenvalues. Within the framework of the calculation
we assumed for simplicity χ̃m = χm, i.e., we put all combina-
tion of parameters not related to overlap integrals χm equal
to unity in expression (24). It should be noted that in general
constants χ̃m can be varied by changing integral interaction
time, that is, Fig. 7 can be scaled and one can provide the re-
quired value of interaction constants by choosing the integral
time. The values Im[λk] are functions of overlap integrals, and
therefore depend on the geometric parameter of the ratio of
the driving and quantum fields. It is important to note that
we can no longer ensure the same interaction constants for
all two-qubit subsystems (see Fig. 6). We will analyze this
feature in detail in the next section when constructing the
SWAP operation for qubits.

B. Parallel multi-two-qubit SWAP gate

Let us discuss the input state of the system and the pro-
cedure for initialization of this state before describing the
protocol for performing a SWAP gate. Within a single two-
qubit subsystem, an arbitrary two-qubit separable state can be
written in the following form:

|ψ〉 j
in = (

c j
0 |0〉 j

1 + c j
1 |1〉 j

1

) ⊗ (
t j
0 |0〉 j

2 + t j
1 |1〉 j

2

)
, (45)
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2Im[λ1]|0 1>

1st two-qubit subsystem

1 |0 2>1

|1 2>1|1 1>1

|1 L,o≡>
|1 L,e≡>

|1 A,o≡>
|1 A ,e≡>

|0 1>

2nd two-qubit subsystem

2 |0 2>2

|1 2>2|1 1>2

|0 1>

K/2-th two-qubit subsystem

K/2 |0 2> K/2

|1 2> K/2|1 1> K/2

...

2Im[λ5]

2Im[λ2K-3]

1 1

1

|1 L,o≡>
|1 L,e≡>

|1 A,o≡>
|1 A ,e≡>

|1 L,o ≡>

5 5

5 5

2K-3

|1 L,e ≡>2K-3

|1 A,o ≡>2K-3

|1 A,e ≡>2K-3

1

FIG. 6. Schematic representation of the interaction of field and
atomic states with different OAMs in the new basis. The driving
field momentum is k = 1. The different two-qubit subsystems are
marked in the figure with frames. The first lower index L or A of the
physical Fock states denotes light or atomic systems respectively; the
second index indicates the OAM parity of the populated mode (o, e
for the superposition modes including only odd or even OAM terms,
respectively); the upper index is the number of the first eigenvalue
of the jth tetrade. The upper index of the logical state from 1 to j
numbers the two-qubit subsystems and the lower one numbers the
qubits into one separate subsystem.

where the coefficients c j
i and t j

i refer to the jth subsystem
and obey the standard normalization condition |c j

0|2 + |c j
1|2 =

|t j
0 |2 + |t j

1 |2 = 1. The total input state of the whole system
then is the tensor product of the states of all two-qubit
subsystems:

|ψ〉in =
K/2⊗
j=1

|ψ〉 j
in . (46)

Let us discuss the encoding method of qubit logical states
via physical states. This method depends on the chosen in-
teraction regime [expressions (29) and (30) for �0 and (43)
and (44) for �1], and we can rewrite the expression (46).
For regimes k = 0 (when the driving field has zero OAM),
k = 1 (when the driving field has OAM equal to 1), and the
input state of the system could be written through operators
Âi and B̂i [see (27) and (31)]. For k = 0,

|ψ〉in =
K/2⊗
j=1

(
c j

0Â†
2 j−2 + c j

1Â†
2 j−1

)(
t j
0 B̂†

2 j−2 + t j
1 B̂†

2 j−1

) |vac〉 .

(47)

FIG. 7. Dependence of Im[λk] on the geometric parameter for
the first seven different eigenvalues.

For k = 1,

|ψ〉in =
K/2⊗
j=1

K∑
i=1

(
c j

0m2 j−3,iÂ
†
i−1 + c j

1m2 j−1,iÂ
†
i−1

)

×
K∑

i=1

(
t j
0 m2 j−2,iB̂

†
i−1 + t j

1 m2 j,iB̂
†
i−1

) |vac〉 . (48)

Regardless of the selected regime, the input state is a
state with K excitations, where K/2 of the total number of
excitations are present in the field system and another K/2
are present in the atomic system. For the k = 0 regime, the
algorithm for initiating the input state is relatively simple.
To initiate a two-qubit system with number j, it is necessary
to create excitation in the superposition of field modes with
OAMs 2 j − 2 and 2 j − 1, with probability amplitudes c j

0 and
c j

1 for the first qubit, and to excite the atomic medium in the
superposition state with the same OAM projections as for
the field system, but with probability amplitudes t j

0 and t j
1

for the second qubit. Creating the excitation of the atomic
medium in the desired superposition state can be performed,
for example, using the QND quantum memory protocol de-
scribed in [33]. That is, we could produce the desired field
state and transfer this state to the atomic ensemble in a mem-
ory write cycle.

The initialization procedure is slightly more complicated
for regime k = 1. When working in this regime, we first need
to limit the dimensionality of the system, i.e., the maximum
value of the OAM. After this, the elements of the eigenvectors
of the matrix M [see (33)] can be calculated numerically. The
generation of the field superposition state according to ex-
pressions (34) and (39)–(42) can be carried out using modern
multiplexing devices [35]. It seems that the k = 0 regime is
preferable to k = 1 because it allows a simpler procedure for
initializing the qubit states and also ensures that all two-qubit
subsystems evolve with the same interaction constants χ̃ . In
the other regime we cannot ensure the equality of constants
for different subsystems (see Fig. 7). We will discuss the pros
and cons of the different regimes in the conclusion.
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Considering the QND interaction in terms of discrete vari-
ables, the transform allows us to describe the evolution of each
two-qubit system using the matrix Um(�k ):⎛

⎜⎜⎝
|0〉1
|0〉2
|1〉1
|1〉2

⎞
⎟⎟⎠

j,out

= Um(�k )

⎛
⎜⎜⎝

|0〉1
|0〉2
|1〉1
|1〉2

⎞
⎟⎟⎠

j,in

, (49)

Um(�0) ≡

⎛
⎜⎜⎝

1 1
2 i ν0,m 0 0

1
2 i ν0,m 1 0 0

0 0 1 1
2 i ν0,m

0 0 1
2 i ν0,m 1

⎞
⎟⎟⎠, (50)

Um(�1) ≡

⎛
⎜⎜⎝

1 0 0 1
2 i ν1,m

0 1 1
2 i ν1,m 0

0 1
2 i ν1,m 1 0

1
2 i ν1,m 0 0 1

⎞
⎟⎟⎠. (51)

Depending on the OAM of the driving field, the logic states
of the qubits are defined by expressions (29) and (30), for
the case when the driving field is �0 and by expressions
(43) and (44) for the regime with �1. In the notation of
the matrix element νk,m, the index k is responsible for the
OAM of the driving field and takes the value 0 or 1, de-
pending on the regime. The index m = 4 j − 3 takes the value
of 1, 5, 9, . . . , 2K − 3; the index j indicates the number of
the two-qubit subsystem. The matrix elements can be written
explicitly through the effective interaction constants χ̃m for
k = 0, or the eigenvalues λm for k = 1:

ν0,m ≡ χ̃m, ν1,m ≡ 2Im[λm]. (52)

The matrices Um(�k ) are in general not unitary, since the
evolution of the input qubit states with the Bogoliubov trans-
formations (25) and (31) pulls the output state out of the
two-qubit space. This occurs because the QND interaction
Hamiltonian contains a part corresponding to the paramet-
ric generation process that does not preserve the number of
excitations in the considered modes. In the qubit language
this leads to output states that do not belong to the two-qubit
space, where the number of excitations is strictly equal to 2.
In addition, the other part of the Hamiltonian (A19), which
is a beam-splitter-type transformation, leads to bunching of
excitations due to Hong-Ou-Mandel interference [36]. The
states bunched in the same mode excitations are also not a
part of the two-qubit space of vectors |ψ〉 j (45), where each
basis state corresponds to the physical state with exactly one
excitation. Thus, the terms of states that do not belong to
the two-qubit space are omitted in (49) for compactness of
the notation. To avoid this complication and to perform the
desired two-qubit operation, we can implement a sequence of
interactions.

Now let us consider a protocol consisting of a QND op-
eration with constants ν1

k,m, rotation of the first and second
qubits by angles θ1 and θ2, respectively, and another QND
operation with constants ν2

k,m. We deal with the case where
both QND interactions take place without a regime change,
i.e., the indices k are the same in both QND interactions.
The top index indicates the order of applied operations. In
the general case, we have the possibility to select different
integral interaction times and geometric parameter values for

the operations, which enables us to choose the interaction
constants independently. We should note that the matrix of
such transformation is not reduced to a simple product of
the matrices U and the rotation matrix. To correctly construct
the matrix we have to use the full form of the Bogoliubov
transform (25) or (31) and describe the QND-rotation-QND
protocol in the Heisenberg representation, only at the fi-
nal stage passing to the evolution matrix of the two-qubit
state.

It is not accidental that we chose the QND-rotation-QND
protocol. In [37] the single-mode variant of such a protocol
has been used to implement quantum memory and entan-
glement generation. Depending on the rotation angles of the
atomic and light quadratures, the authors achieved either sup-
pression of the beam-splitter-type interaction (when rotating
the atomic and light quadratures by π/2 and π/2, respec-
tively) or parametric generation (at angles π/2 and −π/2).
This suppression was possible due to the negligibly small
time interval between the first QND interaction and the second
one, and both interactions could be considered simultaneous.
Based on the regime with suppression of parametric gener-
ation, the authors implemented a quantum memory protocol
and demonstrated an ideal exchange of states between the
atomic system and the field in the limit of large QND in-
teraction constants. The case we consider differs from that
described in the cited paper in its essentially multimode na-
ture. We also do not want to emphasize the simultaneity of
two QND interactions, reserving the possibility to implement
the protocol step by step, similar to the situation considered
in [38].

We are interested in such values of constants and rotation
angles that the action of the protocol results in a SWAP opera-
tion on the two qubits. The output state up to an arbitrary local
single-qubit operation can be written in the form

|ψ〉 j
out = (

t0 |0〉 j
1 + t1 |1〉 j

1

) ⊗ (
c0 |0〉 j

2 + c1 |1〉 j
2

)
= SWAP |ψ〉 j

in . (53)

We assume that QND interactions take place sequentially,
i.e., separated in time. Let us set the regime k = 0 for simplic-
ity. The calculation shows (see Appendix B) that by choosing
the duration of each interaction and rotation angle such that

ν1
0,mν2

0,m = 2, ν2
0,m  1, θ1 = θ2 = π/2 (54)

the protocol implements a two-qubit SWAP operation over the
jth subsystem. According to expressions (B9) and (B10),
the output state of the one subsystem with number j with
appropriate values of the parameters [identified by (54)] could
be written as (we omit the subsystem index below)

|ψ〉out = C

(
SWAP |ψ〉in + α4

α1
|vac〉

)
, (55)

C = α1√
(α1)2 + (α4)2

,
α4

α1
∝ ν2

0,m[(
ν2

0,m

)2 + 1
] . (56)

Here term SWAP |ψ〉in is the desired output state, and term
|vac〉 describes the contribution of the vacuum state. It could
be seen that the normalization constant C tends to unity and
α4
α1

tends to zero when the value of ν2
0,m is high enough.

Hence in the limit of the high interaction constant the SWAP
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operation occurs deterministically with probability equal to
unity.

Recall that the constants ν0,m are the same for all two-qubit
subsystems and do not depend on the subsystem number. Thus
all these constants can reach the required value on the similar
interaction times. It would lead to the same transformation
for all two-qubit subsystems and we can perform a parallel
simultaneous SWAP operation on an ensemble of two-qubit
subsystems (up to the normalization factor):

|ψ〉out =
K/2⊗
j=1

SWAP j |ψ〉 j
in . (57)

If we select the k = 1 regime, the transformation will occur
with a state parity change (see Fig. 6). It differs from SWAP

up to two single-qubit operations X1 and X2, acting on the
first and second qubits, respectively. Although the constants
for various subsystems differ in magnitude (see Fig. 7), we
can, as in the case of k = 0, select interaction times such
that the constants of the second QND operation for the sub-
systems of interest are large enough, and the product of the
first and second interaction constants is equal to 2. So, we
can write the output state of the system in the following
form:

|ψ〉out =
K/2⊗
j=1

(X1X2) jSWAP j |ψ〉 j
in . (58)

We can conclude that both regimes under consideration,
with the appropriate choice of parameters, provide a parallel
n-two-qubit SWAP transformation over the system up to the
local operations.

IV. CONCLUSION

In this paper we considered the interaction of a multimode
field with orbital angular momentum and an ensemble of cold
atoms in the case when the driving field also has OAM. We
identified conditions under which the interaction Hamiltonian
is reduced to an interaction of the QND type. At the same
time, the field modes that differ in the value of the OAM
interact with different spatial modes of spin coherence of the
atomic ensemble. The presence of a multimode driving field
makes it possible to organize not only the pairwise interac-
tions of modes, but also more complex schemes that require
additional study. When the driving field spectrum is limited
to one particular value of the OAM, the interaction becomes
pairwise. The interaction constants for each pair depend on
the integral interaction time, as well as on the geometrical
parameter of overlapping of the spatial modes, which gives
an additional degree of freedom for varying the interaction of
modes with different OAMs.

As part of the description of the resulting interaction in
terms of discrete variables, we have analyzed in detail two
regimes of interaction: with the driving field OAM value equal
to 0 and 1. For both regimes the qubit states can be encoded by
the physical states of atomic or field systems with a single ex-
citation in the OAM superposition state, but the superposition
type is significantly different. We have described in detail the
procedure of identifying an ensemble of closed subsystems

on the continuum of atomic-field physical states for the case
of qubit logic, but such a description could be extended to
logical objects of higher dimensionality—qudits. A detailed
study of the described interaction in terms of qudit logic is a
natural next step in this research.

To construct a two-qubit operation that does not lead the
state of the system out of the logical space, we chose the
QND-rotation-QND protocol. The calculation has shown that
the described protocol implements an n-two-qubit parallel
SWAP operation for the whole ensemble of subsystems if the
interaction times and rotation angles are chosen correctly. Let
us note that the operation regime differs from the previously
considered [37,38].

Comparing the two considered regimes of the SWAP opera-
tion, it should be noted that, although the regime without the
OAM change is obviously simpler to implement, it is easier to
verify that the interaction occurred when the OAM is changed.
In addition, the quantum state parity change can be used for
the error correction procedure [39,40].

The presented SWAP gate implementation scheme could
be compared with schemes based on linear optics [41]. It
can be noted that light-atomic interaction allows the SWAP

gate to be performed with probability and fidelity close to
unity, while all-optical two-qubit gates are performed only
probabilistically.

Comparing the proposed SWAP gate implementation proto-
col with others, we can also refer to [12,18,42,43], where the
exchange of quantum states between a polarization light qubit
and an atomic qubit in different configurations is considered.
A key difference of our scheme is the ability to perform
the operation on multiple two-qubit systems in parallel. This
capability arises solely due to the usage of multidimensional
degree of freedom. Thus, there is no need to use multiple cir-
cuits to scale the scheme, which is undoubtedly an advantage
of our proposed approach.

Speaking about the sensitivity of the gate, the interaction
constants depend on the optical depth, since we consider the
interaction of light not with one atom, but with an atomic
ensemble, which allows us to significantly increase constant
values and distinguishes our scheme from those using sin-
gle atoms [18]. At the same time, discrete qubit states are
always vulnerable to losses. In the presented scheme losses
can occur both in the optical channel and due to the relaxation
of atoms to third-party levels. There are well-known mate-
rials to implement a quantum memory protocol in a QND
configuration [34]. The same materials are suitable for im-
plementing the proposed SWAP gate. On the other hand, since
the execution of the gate does not require significant time,
the requirement on the lifetimes of the lower sublevels could
be reduced, and, therefore, the class of suitable media could
be expanded.

In the future, we intend not only to extend the analysis to
qudits, but also to describe entangling operations in discrete
variables via QND interactions.
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APPENDIX A: HAMILTONIAN OF THE QND
INTERACTION BETWEEN OAM LIGHT

AND ATOMIC ENSEMBLE

Using the results of [34], we assume that the cell length
L is small enough compared to the Rayleigh range of the
beams. Under these restrictions, we neglect the diffraction
effects at the scale of the interaction. According to [44], the
transverse spatial profile of the Laguerre-Gaussian mode is a
ring with a radius w

√|l| + 1/2, where w is the waist width
and the index l is the OAM value. The cross-sectional area
of the beam is defined as Sl = πw2 (|l|+1)

4 . Within the atomic-
light interaction under consideration, we need the presence of
both the driving classical and quantum fields to ensure two-
photon transitions. Photon annihilation operators âm(z, t ) in
the Laguerre-Gaussian mode with the index m are normalized
so that the average 〈â†

m(z, t ) âm(z, t )〉 is the particle number
flux in the mode U (s)

n (�ρ). It is usually assumed that the square
of the driving field’s amplitude is the particle number flux
through the cross-sectional area of the mode per unit time.
For the correct description of the light-atomic interaction, we
renormalize the amplitudes, operators, and mode functions
on the cross-sectional area of a mode. Doing so, we define
dimensionless amplitudes and operators with a normalization
that does not depend on the mode index.

In order to ensure the best overlap between the light modes,
we assume that these modes have different transverse sizes.
The ratio of the waist widths seems to be an appropriate
parameter to control the overlapping of the modes and, con-
sequently, the effective interaction constants. The transverse
spatial profile of the driving and quantum fields could be
defined as normalized Laguerre-Gaussian modes:

U ( j)
l (�ρ ) =

√
(|l| + 1)

2|l|!

(
ρ
√

2

w( j)

)|l|
exp

(
− ρ2

(w( j) )2

)
eilφ, (A1)

∑
l

U ( j)
l (�ρ ) U ( j)∗

l (�ρ ′) = δ(2)(�ρ − �ρ ′), (A2)

∫
d �ρ U ( j)∗

l (�ρ )U ( j)
l ′ (�ρ ) = δl,l ′π (w( j) )2 (|l| + 1)

4
= S( j)

l ,

j = s, d . (A3)

Here, w( j) is the quantum field’s waist width at j = s and
the driving field’s waist width at j = d . Photon annihilation
operators âm(z, t ) from (1) obey the following commutation
relations:

[âm(z, t ), â†
m′ (z′, t )] = cδm,m′

S(s)
m

(
1 − i

k0

∂

∂z

)
δ(z − z′). (A4)

To describe an atomic ensemble we use the collective co-
herences and population operators (the index k numbers the
atoms, and N is the average concentration of atoms)

σ̂i j (�r, t ) =
N∑

k=1

ζ̂ k
i j (t ) δ(�r − �rk ), (A5)

N̂i = σ̂ii(�r, t ) =
N∑

k=1

ζ̂ k
ii (t ) δ(�r − �rk ). (A6)

The operators ζ̂i j = |i〉〈 j| are the projectors of the state | j〉 on
the state |i〉 at the time t . The kth atom is located at �rk . The
commutation relations for the introduced collective variables
can be represented as follows:

[σ̂i j (�r, t ), σ̂mn(�r ′, t )] = [δ jmσ̂in(�r, t ) − δniσ̂m j (�r, t )]

× δ(3)(�r − �r′). (A7)

According to [33], the QND interaction Hamiltonian in the
dipole approximation could be written as

ĤQND = 1√
2

(Ĥ1 − Ĥ2), (A8)

where Ĥ1 is the beam-splitter Hamiltonian and Ĥ2 is the
parametric-gain Hamiltonian. In our case of multimode inter-
action, it is also possible to distinguish two similar-looking
parts of the interaction Hamiltonian. Under the rotating
wave approximation, the interaction Hamiltonian could be
represented as

Ĥ1 = ih̄
∫

d3r

[
gσ̂ †

13(�r, t )
∑

m

âm(z)U (s)
m (�ρ)e−i�t+ik0z

+ σ̂
†
23(�r, t )

∑
n

�n(z, t )U (d )
n e−i�t+ik0z

]
+ H.c., (A9)

Ĥ2 = ih̄
∫

d3r

[
gσ̂ †

23′ (�r, t )
∑

m

âm(z)U (s)
m (�ρ)e−i�t+ik0z

+ σ̂
†
13′ (�r, t )

∑
n

�n(z, t )U (d )
n e−i�t+ik0z

]
+ H.c. (A10)

Here we introduce the notation for the coupling constant g be-
tween the atom and the field and the Rabi frequencies �n(z, t ),
referred to the mode of the driving field with the number n:

g =
√

ω0

8π h̄c
d13, (A11)

�n(z, t ) = En(�r, t )d23

h̄
, (A12)

where di j is the matrix element of the dipole momentum oper-
ator for the transition between levels |i〉 and | j〉 (for simplicity,
we consider these elements to be real numbers).

Since the upper atomic levels are not populated in the inter-
action process, we are able to perform an adiabatic elimination
of these levels. In this case, only two-photon transitions occur
in the system, involving the transition of atoms from the state
|1〉 to the state |2〉 and back. Moreover, assuming the quantum
field is weak in comparison with the driving one, we could
suppose these transitions rarely occur and the population of
the level |1〉 can be taken as a constant equal to N . Then,
according to [45], it is possible to use the Holstein-Primakov
approximation and replace the spin coherence σ̂12(�r, t ) by
the bosonic operators b̂(�r, t ). The interaction Hamiltonian in
terms of bosonic modes’ interaction could be written as

Ĥ1 = −h̄
∫

dz
2g

√
N

�

∑
m,k,l

�∗
k b̂†

l âm

×
∫

d �ρ U (d )∗
k (�ρ )U (s)∗

l (�ρ )U (s)
m (�ρ ) + H.c., (A13)
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Ĥ2 = −h̄
∫

dz
2g

√
N

�

∑
m,k,l

�kb̂†
l â†

m

×
∫

d �ρ U (d )
k (�ρ )U (s)∗

l (�ρ )U (s)∗
m (�ρ ) + H.c. (A14)

By following the approach of [33], we ignore the ac-Stark
shift caused by the driving and weak quantum fields. The
atomic operators b̂l (z, t ) are introduced as projections of the
bosonic operators b̂(�r, t ) on the Laguerre-Gaussian functions
with the index l:

b̂l (z, t ) =
∫

d �ρ b̂(�r, t )U s
l (�ρ ), (A15)

[b̂m(z, t ), b̂†
m′ (z′, t )] = δl,l ′

S(s)
l

δ(z − z′). (A16)

In particular, we want to analyze the overlap integrals of the
Laguerre-Gaussian modes defined in (A13) and (A14). Using
the explicit form of the functions U ( j)

l given by (A1), we can
simplify the integrals:∫

d �ρ U (d )∗
k (�ρ )U (s)∗

l (�ρ )U (s)
m (�ρ )

=
∫

d �ρ |U (d )
k (�ρ )||U (s)

l (�ρ )||U (s)
m (�ρ )|δk,l−m

≡ χl−m, (A17)∫
d �ρ U (d )

k (�ρ )U (s)∗
l (�ρ )U (s)∗

m (�ρ )

=
∫

d �ρ |U (d )
k (�ρ )||U (s)

l (�ρ )||U (s)
m (�ρ )|δk,l+m

≡ χl+m. (A18)

The Kronecker symbol in (A17) and (A18) allows us to
formulate selection rules for the interacting modes. By sub-
stituting the expressions for the overlap integrals in (A13)
and (A14), we obtain the one-dimensional multimode
Hamiltonian:

ĤQND = −
√

2h̄g
√

N

�

∫
dz

∑
m,l

(χl−m�l−m[b̂†
l âm + bl â

†
m]

−χl+m�l+m[b̂†
l â†

m + b̂l âm]). (A19)

APPENDIX B: BOGOLIUBOV TRANSFORMATIONS
FOR THE QND-ROTATION-QND PROTOCOL

Within this Appendix, we would like to give a technique
for calculation of interaction constants and rotation angles in
the QND-rotation-QND protocol to obtain the SWAP trans-
form. We give an explicit form of the transformation only for
the first two-qubit subsystem of the k = 0 regime, since for
other subsystems and the k = 1 regime the explicit form of
the transformation can be constructed in a similar way. Let
us denote this as ν1

0,1 ≡ ν1, ν
2
0,1 ≡ ν2 for brevity. Then the

Bogoliubov transformations of the operators Âm and B̂m (m =
0, 1) can be written in three steps as(

Â†
m

B̂†
m

)out,1

= − i

2

⎡
⎣G1

(
Â†

m

B̂†
m

)in

+ L1

(
Âm

B̂m

)in
⎤
⎦, (B1)

(
Â†

m

B̂†
m

)out,2

= R

(
Â†

m

B̂†
m

)out,1

, (B2)

(
Â†

m

B̂†
m

)out,3

= − i

2

⎡
⎣G2

(
Â†

m

B̂†
m

)out,2

+ L2

(
Âm

B̂m

)out,2
⎤
⎦. (B3)

Here Gn and Ln are the nth QND operation matrices and R is
the rotation matrix of the light operators by the angle θ1 and
of the atomic operators by the angle θ2:

Gn =
(

2i νn

νn 2i

)
, Ln =

(
0 −νn

−νn 0

)
,

R =
(

exp −iθ1 0
0 exp −iθ2

)
. (B4)

Expressing from (B1)–(B3) the input operators through the
output ones, we obtain the following form of transformation:(

Â†
m

B̂†
m

)in

= G̃

(
Â†

m

B̂†
m

)out,3

+ L̃

(
Âm

B̂m

)out,3

, (B5)

G̃ = i

2

(−2ieiθ1 + ν2ν1 sin θ2 ν2eiθ1 + ν1eiθ2

ν2eiθ2 + ν1eiθ1 −2ieiθ2 + ν2ν1 sin θ1

)
,

(B6)

L̃ = i

2

( −ν2ν1 sin θ2 −ν2e−iθ1 − ν1eiθ2

ν2e−iθ2 − ν1eiθ1 −ν2ν1 sin θ1

)
. (B7)

Using (45), one could write the input separable state of the
two-qubit subsystem as

|ψ〉in =
∑

m=0,1

∑
l=0,1

cmtl (Â
†
m)in(B̂†

l )in |vac〉 . (B8)

Substituting (B5) into (B8), we obtain the output state of the
system (up to the normalization factor):

|ψ〉out = α1SWAP |ψ〉in + α2 |ψ〉in + α3 |NQ〉 + α4 |vac〉 .

(B9)

The first term in (B8) describes the result of the SWAP op-
eration, the second term is the initial nontransformed state,
and the third term |NQ〉 describes the contribution of non-
two-qubit states, namely, states with bunching of excitations
in atomic or light modes [e.g., (Â†

0)2 |vac〉 and B̂†
0B̂†

1 |vac〉 and
others], and the fourth is the vacuum state contribution. The
αi coefficients can be calculated explicitly using expressions
(B6) and (B7). For the rotation angles θ1 = θ2 = π/2, we
renormalize all the coefficients by α1 in order to estimate the
conditions by which the contributions of all but the first term
are negligibly small:

α1 ∝ 1, α2 ∝ (2 − ν1ν2)2

(ν1 + ν2)2
,

α3 ∝ (2 − ν1ν2)

(ν1 + ν2)
, α4 ∝ ν1 − ν2 + ν1ν

2
2

(ν1 + ν2)2
. (B10)

One can notice that at ν1ν2 = 2 the coefficients α2 and α3

turn to zero, which leads to the absence in the output state of
terms with bunching of excitations |NQ〉 and the contribution
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from the nontransformed input state |ψ〉in. The vacuum state
contribution can be neglected by the order of smallness by
choosing one of the constants, for example ν2, large enough.

Thus, at large values of ν2  1 and ν1 = 2/ν2 � 1 the out-
put state of the two qubits is described only by the first
term (B9).
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