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Qutrit circuits and algebraic relations: A pathway to efficient spin-1 Hamiltonian simulation
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Quantum information processing has witnessed significant advancements through the application of qubit-
based techniques within universal gate sets. Recently, exploration beyond the qubit paradigm to d-dimensional
quantum units or qudits has opened new avenues for improving computational efficiency. This paper delves into
the qudit-based approach, particularly addressing the challenges presented in the high-fidelity implementation of
qudit-based circuits due to increased complexity. As an innovative approach towards enhancing qudit circuit
fidelity, we explore algebraic relations, such as the Yang-Baxter-like turnover equation, which may enable
circuit compression and optimization. The paper introduces the turnover relation for the three-qutrit time
propagator and its potential use in reducing circuit depth. We further investigate whether this relation can
be generalized for higher-dimensional quantum circuits, including a focused study on the one-dimensional
spin-1 Heisenberg model. Our paper outlines both rigorous and numerically efficient approaches to potentially
achieve this generalization, providing a foundation for further explorations in the field of qudit-based quantum
computing.
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I. INTRODUCTION

Quantum information processing through a gate-based
quantum computing approach with qubits involves a universal
gate set consisting of single-qubit gates in the SU(2) group
and entangling two-qubit gates [1]. This approach has been
intensively studied in recent years for applications in quantum
information science. Particularly in the quantum error correc-
tion, the qubit-based surface code [2,3] has been thus far the
primary route for error detection and correction [4–7].

Nevertheless, for certain specific applications, it has been
discussed that a more generalized d-dimensional (d > 2)
quantum unit, or qudit, might offer advantages over the qubit
system. This is because the qudit-based approach allows
exploration beyond two levels, potentially enhancing perfor-
mance through access to a larger computational space and
requiring fewer entangling gates for certain algorithms. Qu-
dits have theoretically exhibited advantages through compact
logical encoding (to overcome erasure and ternary errors)
[8–10]), as well as enhancements in efficiency and fault tol-
erance [11–15]. In the field of quantum key distribution,
studies suggest that qudits can increase the average raw key
rates and improve robustness and reliability [16,17]. Re-
garding other applications, theoretical reports have proposed
the use of qutrits, the simplest qudit system, to enhance
quantum algorithms (e.g., Shor’s factoring [18], Grover’s
search [19,20], and quantum Fourier transformation [21]),
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quantum simulations [22], quantum cryptography [23,24],
and quantum communication [25].

Discussions have also been extended to more funda-
mental problems, such as the Byzantine agreement [26],
efficient Toffoli gates [27], and quantum channels demon-
strating the superadditivity of classical capacity [28]. Certain
quantum gates, such as parametrized gates for quantum
heuristics [29], can be implemented more naturally in qutrit
systems [30], as qutrits offer a more direct and efficient
mapping for spin-1 models compared to traditional qubits.
This direct mapping is particularly beneficial in studying phe-
nomena like the Haldane gap and many-body localization in
spin-1 chains [31–34]. The approach in Ref. [31] involves
catalyzing the algorithm so that its evolution mimics a Heisen-
berg model in a delocalized phase, which demonstrates a
speedup in finding the ground state of the random-field Ising
model due to gap amplification, with promising scalability
indications.

It is worth noting that the advantages mentioned above
can be offset by the costs of implementing and operating
qudits in real quantum applications. The universal gate set
for qudits consists of single-qudit gates in the SU(d ) group
and entangling two-qudit gates [35–37]. Recent efforts have
demonstrated that the universal qudit gate set and their coher-
ent control can be implemented in superconducting transmons
[38–40], photonic circuits [41], and trapped ions [42,43].
However, implementing high-fidelity qudit-based circuits also
presents challenges, mainly due to the increased complexity in
the design, fabrication, and control of quantum systems with
higher dimensions.

Towards improving the fidelity of qudit circuits, one di-
rection could be to explore some algebraic relations between
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qudit circuits for the purpose of circuit compression and
optimization, which would result in more fault-resilient per-
formance. Similar exploration for the qubit-based circuits
has recently become quite active [44–51]. For example, the
Yang-Baxter equation (YBE), which was originally intro-
duced in theoretical physics [52] and statistical mechanics
[53], has recently been shown to have connections to topo-
logical entanglement, quantum entanglement, and quantum
computational universality [54–61]. For example, proposals
have been reported for efficiently checking YBE in quantum
devices [60,62,63]. In our previous work [59], we proved
that for some model systems, the two-qubit time propagator
Rθ,δ , parametrized by a rotation angle θ and a phase δ, bears
a similar algebraic form to the SU(2) solution of the YBE.
Therefore, the turnover relationship (1.1) can hold as long
as certain algebraic relations between the parameters on both
sides are satisfied. Remarkably, this turnover relation can be
utilized to compress the corresponding time evolution circuit
to a depth that scales linearly with respect to the number of
qubits:

R1(α) R3(γ)
R2(β)

=
R5(ε)

R4(δ) R6(ζ) (1.1)

This observation then opens the question of whether these
turnover relations can be generalized for quantum circuits
with higher dimensions. Mathematically, there have been
discussions on finding the high-dimension solutions to the
generalized YBE [64–68]; however, numerical searching of
these high-dimension solutions can be challenging. So far,
in addition to the SU(2) solutions, only an 8 × 8 solution to
a generalized YBE has been reported and used to generate
the Greenberger-Horne-Zeillinger states [68]. In this paper,
as an exploratory effort in this direction, we primarily focus
on establishing a similar turnover relation that can be utilized
for the efficient quantum simulation of the quantum time
dynamics of the one-dimensional spin-1 Heisenberg model.
In particular, a natural mapping of the spin-1 system’s states
onto the qutrit states leading to more straightforward or ef-
ficient quantum simulations allows us to efficiently search
for (1) the existence of rigorous algebraic conditions for the
similar turnover relations to hold and (2) a numerically ef-
ficient approach that can provide imprecise but sufficiently
accurate turnover circuits in the absence of rigorous algebraic
relations.

In the following sections, we first define some notations
that will be used in this paper. Then, we show for some sim-
ple models that rigorous turnover relations do exist. Finally,
for models without rigorous turnover relations, we propose
a numerical recipe to achieve inexact but accurate enough
qutrit circuit substitutes. The numerical recipe and the cor-
responding error analysis are provided for the three-qutrit
circuit simulating the time dynamics of a three-site spin-1
Heisenberg model. We conclude this paper by offering some
remarks on our future effort.

II. NOTATIONS AND SPIN ALGEBRA

The closed-system dynamics of a one-dimensional array of
level-d variables is realized by U (dN ) unitary matrices, where

N denotes the size of the system. Throughout this paper,
however, we specifically treat qudits as spin s = (d − 1)/2
quantum states and consider their time evolution with certain
bilinear spin Hamiltonians.

We recall that for d = 2, s = 1/2 the spin operators, satis-
fying the SU(2) commutation algebra

[Sx, Sy] = iSz, [Sy, Sz] = iSx, [Sz, Sx] = iSy, (2.1)

are halves of the Pauli matrices:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.2)

The SU(2) algebra allows a quadratic Casimir invariant:

(Sx )2 + (Sy)2 + (Sz )2 = s(s + 1)1. (2.3)

For three-level systems (d = 3, s = 1) the z-basis represen-
tation of the spin-1 operators becomes

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ = 1√

2
(X ⊕ 0 + 0 ⊕ X ), (2.4)

Sy = 1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ = 1√

2
(Y ⊕ 0 + 0 ⊕ Y ), (2.5)

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ = (Z ⊕ 0 + 0 ⊕ Z ). (2.6)

As an alternative to (2.4), (2.5), and (2.6), it is sometimes
more convenient to use the adjoint representation of the spin
operators [69]:

S̃x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠ = 0 ⊕ (−Y ), (2.7)

S̃y =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ = PyS̃xP†

y , (2.8)

S̃z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠ = PzS̃

xP†
z (2.9)

with permutation matrices Py and Pz given by

Py =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, Pz =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, (2.10)

and

(S̃x )2 = diag(0, 1, 1), (2.11)

(S̃y)2 = diag(1, 0, 1), (2.12)

(S̃z )2 = diag(1, 1, 0). (2.13)
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Similar to the SU(2) cases, {S̃x, S̃y, S̃z} follows the commuta-
tion algebra

[S̃x, S̃y] = iS̃z, [S̃y, S̃z] = iS̃x, [S̃z, S̃x] = iS̃y (2.14)

The two representations {Sx, Sy, Sz} and {S̃x, S̃y, S̃z} are con-
nected through the basis change between spherical and
Cartesian coordinates:

S̃a = U+SaU †
+, a = x, y, z (2.15)

with

U± = 1√
2

⎛
⎝−1 0 ±1

+i 0 ±i
0

√
2 0

⎞
⎠. (2.16)

The basis change (2.15) does not affect the algebraic rela-
tions and the circuit substitutes established in the following
sections.

Some algebraic relations of the spin-1 operators are worth
mentioning. For example, for n � 1, we have⎧⎪⎪⎨

⎪⎪⎩
(S̃a)2n = (S̃a)2

(S̃a)2n+1 = S̃a

S̃aS̃bS̃a = 03

for a �= b ∈ {x, y, z}, (2.17)

which implies

Ux(α) = exp (−iαS̃x ⊗ S̃x )

= I9 − i sin(α)(S̃x ⊗ S̃x ) − 2 sin2

(
α

2

)
(S̃x ⊗ S̃x )2

=

⎛
⎜⎜⎝

I3 03 03

03 I3 − 2
(

sin
(

α
2

)
S̃x

)2
sin(α)S̃x

03 − sin(α)S̃x I3 − 2
(

sin
(

α
2

)
S̃x

)2

⎞
⎟⎟⎠,

(2.18)

Uy(α) = exp (−iαS̃y ⊗ S̃y)

= I9 − i sin(α)(S̃y ⊗ S̃y) − 2 sin2
(α

2

)
(S̃y ⊗ S̃y)2

=

⎛
⎜⎜⎝

I3 − 2
(

sin
(

α
2

)
S̃y

)2
03 sin(α)S̃y

03 I3 03

− sin(α)S̃y 03 I3 − 2
(

sin
(

α
2

)
S̃y

)2

⎞
⎟⎟⎠,

(2.19)

Uz(α) = exp (−iαS̃z ⊗ S̃z )

= I9 − i sin(α)(S̃z ⊗ S̃z ) − 2 sin2

(
α

2

)
(S̃z ⊗ S̃z )2

=

⎛
⎜⎜⎝

I3 − 2
(

sin
(

α
2

)
S̃z

)2
sin(α)S̃z 03

− sin(α)S̃z I3 − 2
(

sin
(

α
2

)
S̃z

)2
03

03 03 I3

⎞
⎟⎟⎠,

(2.20)

where Im denotes an m × m identity matrix and 0m denotes an
m × m zero matrix. Notably, from (2.8) and (2.9)

Uy(α) =
Py

Ux(α)
Py

†

Py P ,y
†

(2.21)

Uz(α) =
Pz

Ux(α)
Pz

†

Pz P .z
†

(2.22)

A more interesting feature of Ua(α) with a ∈ {x, y, z} is that

Ua(α)
Ua(α)

=
Ua(α)

U
.

a(α) (2.23)

III. YANG-BAXTER-LIKE RELATIONS IN THE QUTRIT
CIRCUIT

This section aims to search Yang-Baxter-type identities for
qutrit circuits. Specifically, this means establishing a (33 × 33)
matrix relation of the following type:

[R1(α) ⊗ I3][I3 ⊗ R2(β )][R3(γ ) ⊗ I3]

= [I3 ⊗ R4(δ)][R5(ε) ⊗ I3][I3 ⊗ R6(ζ )] (3.1)

where the Greek letters α–ζ collectively denote continuous
rotations that parametrize two-qutrit operators Rn, defined as
a product of Ua’s (a ∈ {x, y, z}). The rotation angles on the
left-hand side (LHS) of (3.1) are unrestricted; we require that
for all values of α, β, and γ there should be a value of δ, ε,
and ζ that satisfies (3.1). The parameters are typically related
via unclosed expressions involving trigonometric functions,
derived from elementwise equalities of (3.1). In the following
subsections, we describe analytical and numerical methods to
establish (3.1) with various Rn’s.

A. Simple turnover identities

We start from the simple case where Rn = Ua for a ∈
{x, y, z}. If all the rotations are same, then by directly applying
(2.23) to the LHS or right-hand side (RHS) of (3.1), we
obtained the following YBEs relationships:

(1) LHS:

Ua(α) Ua(α)
Ua(α)

=
Ua(2α)

Ua(α)
=

Ua(2α)
U

.a(α)

(2) RHS:

.

Ua(α)
Ua(α) Ua(α)

=
Ua(α)

Ua(2α)
=

Ua(α)
Ua(2α)

(3) LHS = RHS:

.

Ua(α) Ua(α)
Ua(2α)

=
Ua(2α)

Ua(α) Ua(α)

For more general cases where the rotations are not neces-
sarily same, as explicitly shown in Appendix A, as long as the
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following conditions are satisfied,{
α + γ = ε + 2kπ

δ + ζ = β + 2kπ
, k ∈ Z, (3.2)

the identity (3.1) holds for all Ua (a = x, y, z). This can also
be understood as an immediate consequence of the qubit rela-
tions. See Appendix B for the explanation.

The bonus identities can also be obtained from a simple
observation: The spin matrices expressed in the adjoint repre-
sentation also satisfy, for example,

U †
±S̃yU± = 1√

2
(−S̃z ∓ S̃x ). (3.3)

Other cyclic relations can further be obtained by utilizing (2.8)
and (2.9). It can be shown that

V †
±S̃xV± = 1√

2
(−S̃y ± S̃z ), (3.4)

\vskip3pt

W †
±S̃zW± = 1√

2
(+S̃x ∓ S̃y) (3.5)

with

V± = 1√
2

⎛
⎝ 0 +i ±i

0 ∓1 +1√
2 0 0

⎞
⎠, (3.6)

W± = 1√
2

⎛
⎝∓1 +1 0

0 0
√

2
+i ±i 0

⎞
⎠. (3.7)

Since the Yang-Baxter identity (3.1) is independent of the
basis, it implies that Rn(θ ) ≡ exp[iθ (Sa ± Sb) ⊗ (Sa ± Sb)]
with any a �= b ∈ {x, y, z} also satisfies (3.1).

In the same way, we can derive the identity (3.1) for the
following set of extended operators: Rn(θ ) = exp[iθ (Sx ±
Sy ± Sz ) ⊗ (Sx ± Sy ± Sz )] with any choice of ± factors. This
starts with observing the conjugation relation,

M†
±± S̃z M±± = 1√

3
(S̃x ∓ S̃y ± S̃z ), (3.8)

where

Ms1s2 = 1√
6

⎛
⎝−s1

√
3i

√
3i 0

−s2 i −s1s2 i 2i
s2

√
2 s1s2

√
2

√
2

⎞
⎠ (3.9)

for s1, s2 ∈ {±1}. Note that the unitarity holds for M±±, as for
the other matrices in (2.16), (3.6), and (3.7). Thus, any fixed
combination of (Sx ± Sy ± Sz ) can replace all Sz that appear
in the circuit identity (3.1) through Rn = Uz if we insert the
resolution of identity

M±±M†
±± = I3

wherever needed.
The discussion so far has established the Yang-Baxter-type

circuit relations (3.1) for the simple cases where it is assumed
that all R operators have the same form

Rn = Usxsysz (3.10)

and depend on a single continuous parameter, i.e.,

Usxsysz (α) ≡ exp

⎡
⎢⎣−iα

⎛
⎝ ∑

a∈{x,y,z}
saSa

⎞
⎠

⊗2
⎤
⎥⎦ (3.11)

where sx, sy, sz ∈ {+1, 0,−1}.

B. Numerical methods for approximate identities

We remark that when establishing the circuit identity (3.1)
analytically, numerical validation serves as a useful and ef-
ficient strategy to verify its correctness. This step involves
evaluating the following expression:

‖(R1(α) ⊗ I3)(I3 ⊗ R2(β ))(R3(γ ) ⊗ I3)

− (I3 ⊗ R4(δ))(R5(ε) ⊗ I3)(I3 ⊗ R6(ζ ))‖ < ε (3.12)

with a sufficiently small value of ε. The values for α, β, γ , and
δ are repeatedly sampled from a uniform distribution while ε

and ζ follow from the constraint (3.2).
This numerical approach holds a broader range of ap-

plications and offers advantages in establishing approximate
identities. While exact turnover relations may be specific to
certain Hamiltonians, there are chances to develop approxi-
mate relations with tolerable levels of infidelity for a wider
class of Hamiltonians. Such relations can lead to the com-
pression of circuit depth, thus enhancing the overall fidelity
of Trotter circuits running on imperfect hardware. We explore
this scenario in the current section, using a concrete example
of the spin-1 XY Hamiltonian on three qutrits:

HXY = −J
2∑

i=0

(
S̃x

i S̃x
i+1 + S̃y

i S̃y
i+1

)
. (3.13)

The time evolution unitary of this Hamiltonian system can
be written as

e−itHXY = eiJt
∑2

i=0(S̃x
i ⊗S̃x

i+1+S̃y
i ⊗S̃y

i+1 ) (3.14)

for which we consider a few available Trotter forms, and
numerically explore if the approximate turnover relation (3.1)
holds. Specifically, for each Trotterization scheme, we evalu-
ate WL(θL ) and WR(θR), both representing unitary operators
for one Trotter step and its corresponding turnover coun-
terpart, respectively. Afterwards, we minimize the infidelity
between WL and WR,

C(θL, θR) = 1 − 1

(33)2
‖tr (WLW †

R )‖2, (3.15)

by optimizing θR for randomly selected values of θL. Note
that the error analysis in (3.15) is state independent, and the
fidelity function 1

36 ‖tr (WLW †
R )‖2 is equivalent to the mean

overlap function which is a reasonable figure of merit to
quantify coherent errors.

The specific configurations of unitary pairs, (WL,WR), that
we compute to minimize the infidelity (3.15) for, are sum-
marized in Fig. 1. Each row in the figure is related to the
respective Trotter scheme for (3.14), described below:

T1 = lim
nb→∞

(
U1,2

y (θ )U0,1
y (θ )U1,2

x (θ )U0,1
x (θ )

)nb
, (3.16)

T2 = lim
nb→∞

(
U1,2

y (θ )U1,2
x (θ )U0,1

y (θ )U0,1
x (θ )

)nb
, (3.17)
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FIG. 1. A list of qutrit unitary pairs WL (θ, · · · , θ ) and WR(θR), for which we test the approximate circuit relations through numerical
minimization of the infidelity function (3.15). The top six rows correspond to the circuit reflection for different Trotter schemes (3.16)–(3.21).
While the unitaries in the bottom row are shown to be identical through (2.23), under the parameter constraint of (3.2), their equivalence is
also tested numerically as a proxy to measure numerical deviations and limitations of optimizers.

T3 = lim
nb→∞

(
U1,2

x+y(θ )U0,1
x+y(θ )

)nb
, (3.18)

T4 = lim
nb→∞

(
U0,1

y (θ )U1,2
x (θ )U1,2

y (θ )U0,1
x (θ )

)nb
, (3.19)

T5 = lim
nb→∞

(
U1,2

y (θ )U1,2
x (θ )U0,1

x+y(θ )
)nb

, (3.20)

T6 = lim
nb→∞

(
U0,1

y (θ )U1,2
x+y(θ )U0,1

x (θ )
)nb

, (3.21)

where θ = t/nb and

U i, j
x (θ ) = exp

(−iθ S̃x
i ⊗ S̃x

j

)
,

U i, j
y (θ ) = exp

(−iθ S̃y
i ⊗ S̃y

j

)
,

U i, j
x+y(θ ) = exp

(−iθ
(
S̃x

i ⊗ S̃x
j + S̃y

i ⊗ S̃y
j

))
.

(3.22)
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FIG. 2. The minimized infidelity, log10 minθR C(θ, · · · , θ, θR ), is obtained through parameter optimization of θR across various spin
couplings J ∈ {0.1, 0.55, 1.0} and Trotter schemes T ∈ {T1, T2, · · · , T6}. The displayed values are on the logarithmic base 10 scale. Circuit
diagrams of parametrized unitaries WL (θ, · · · , θ ) and WR(θR ) for each Trotter scheme are shown in Fig. 1. The parameter optimization was
performed using the BFGS algorithm. We consider the minimized infidelity to be reasonably low if it closely matches the “lower bound,”
which solely accounts for the numerical inaccuracy of the exact identity (3.23).

Although the Trotter unitaries live on a one-dimensional slice
of the θL-parameter space, i.e., θL = (θ, θ, · · · ), it is necessary
to treat all components of θR independently in order to achieve
a reasonably high fidelity. Therefore, we conduct numerical
optimization for θR with the following configuration:

min
θR

C(θ, · · · , θ, θR) = max
θR

‖tr [WL(θ, · · · , θ )W †
R (θR)]‖2.

More generally, we consider numerical optimization using
respective products of nb > 1 instances of WL and WR.

Our optimization results for infidelity are depicted in
Fig. 2 across different values of spin-spin coupling J ∈
{0.10, 0.55, 1.00}. Each panel is associated with specific J
values and displays the minimized infidelities on a logarith-
mic scale for different Trotter schemes {T1, · · · , T6}, covering
a range of repetition numbers 1 � nb � 5. When bench-
marking the infidelities between mirror-symmetric pairs of
different candidate unitaries, it is necessary to establish a
lower bound result that can represent practical expectations
for the optimum, taking into account numerical deviations
and limitations of optimizers. We achieve this through the
following exact-in-principle circuit identity:

U1,2
y (θ )U0,1

y (θ )U1,2
x (θ )U0,1

x (θ )

= U0,1
y (μ)U1,2

y (σ )U0,1
x (ζ )U1,2

x (λ), (3.23)

where μ, σ , ζ , and λ should in principle be equal to θ ,
illustrated in the bottom row of Fig. 1. It is derived from
the repeated application of the exact turnover relation (2.23).
Therefore, its minimized infidelities should vanish ideally,
i.e., minθR C(θL, θR) = 0 for any θL, but are realistically sus-
tained through the numerical optimizer at values ranging from
10−7 to 10−14 across different setups of J and nb, as depicted
in Fig. 2.

In the upper six rows of Fig. 1, the reflection pairs of
unitaries are strategically arranged so that their repeated appli-
cation within the Trotter circuit leads to a substantial reduction
in the total gate count. For instance, let us consider the Trotter
scheme T1 and its corresponding unitaries. The initial con-
figuration involves 4 Ux and Uy operations for every Trotter
step, summing up to a total of 4n gates. However, by re-
placing every alternating WL(θ, · · · , θ ) with WR(μ, σ, ζ , λ) at

precomputed values of μ, σ , ζ , and λ, it becomes possible to
condense (n − 1) gates within intermediate Trotter layers due
to subsequent applications of the same unitaries, namely,

U i, j
a (θ1)U i, j

a (θ2) = U i, j
a (θ1 + θ2) with a ∈ {x, y}. (3.24)

This results in a reduced count of (3n + 1) gates.
It is worth noting that further circuit compression is pos-

sible, but its feasibility depends on the numerical accuracy of
the optimizer and the value of J . Consider the T3 compression
scheme, as illustrated in Eq. (3.18). Continuous compression
could reduce the circuit depth to O(1) if the turnover relation
is exact. However, as observed in Fig. 2, such compression
becomes possible only for J = 0.1, nb = 2 and J = 0.55,
nb = 2, whose infidelity is even lower than that for the ex-
act turnover identity. Since nb is flexible in this context, a
direct comparison between two compression schemes with
different nb values is inadequate. Another comparison must
be conducted concerning the “numerical performance” of the
analytically exact turnover relations. Figure 3 provides an
example of two compression schemes with different nb values
tested for J = 1.0. Despite Fig. 2 indicating a minor difference
in infidelities between T2 with nb = 5 and T3 with nb = 2,
which are 10−8.67 and 10−7.55 respectively, the former is lower
and the latter is higher than the numerical infidelities for the
exact turnover relations at their respective nb values. This
discrepancy results in a noticeable difference in actual perfor-
mance under the noiseless simulation, leading to significantly
better accuracy for the T2 scheme at nb = 5.

Hence, to attain a computational advantage with the Trotter
unitary, we select T ∈ {T1, · · · , T6} and 1 � nb � 5 based
on initial calculations in Fig. 2, then apply the approximate
relation W nb

L � W nb
R for every alternate set of nb Trotter steps.

While replacing W nb
L with W nb

R may increase the overall in-
fidelity of the Trotter circuit, the approximation error has a
negligible impact when we use T and nb, whose correspond-
ing infidelity from Fig. 2 stays at a level similar to the lower
bound (3.23), i.e., the last column in each panel of Fig. 2.

Utilizing the infidelity metric outlined in (3.15), we derived
a precise lower bound (see Appendix C) for the infidelity
across multiple trotter steps compared to a single trotter step:
Cnb (θL, θR) � 1 − (1 − C1)nb , where C1 is the infidelity for one
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FIG. 3. The return probability (3.25) of the spin-1 XY model on a
three-site lattice, starting and ending at the state |202〉, is displayed as
a function of time within 0 � t < 5. The spin coupling is set at J =
1.0. The best Trotter scheme (T2, nb = 5) as from Fig. 2 is compared
to another scheme (T3, nb = 2), with its data points represented as
red and green dots.

Trotter step and nb denotes the exact number of trotter steps.
The sharpness of this lower bound incentivizes the minimizer
to actively pursue it in each optimization process involving
nb trotter steps. Consequently, deviations from this lower
bound signal deficiencies in the minimizer’s performance. As
a precautionary measure, trotter forms associated with values
significantly distant from this lower bound are deliberately
excluded when choosing T ∈ T1, . . . , T6.

As a pilot application, we evaluate the returning probability
of the three-qutrit system as a function of time:

p(t ) = ‖〈202|e−itHXY |202〉‖2 (3.25)

with the coupling constant J = 0.1, 0.55, 1.0. See the blue
curve in Fig. 4 for the exact time evolution within 0 � t < 5.
Let us consider a Trotterization of (3.13) with the step size
θ = 0.025, resulting in a total of 200 steps. To employ the

above circuit compression strategy, it is crucial to select an
appropriate Trotter scheme based on the benchmarking out-
comes in Fig. 2. For example, we find that for J = 0.55,
choosing T = T3 and nb = 2 corresponds to a sufficiently
low infidelity, 10−10.27, even less than the numerical infidelity
(10−9.53) of the analytically exact turnover relation. We then
impose the approximate reflection relation W 2

L � W 2
R sequen-

tially, by skipping the initial WL and then substituting the
following W 2

L with W 2
R . This process repeats by skipping the

subsequent WL and replacing the next W 2
L with W 2

R , until no
more W 2

L remains. For 200 Trotter blocks, the substitution
is performed 66 times, leading to the consolidation of 132
Ux+y gates. We show the noiseless simulation results from the
approximately compressed circuits as red triangles in Fig. 4.
They demonstrate strong agreement, which is beneficial since
it maintains the same level of numerical accuracy while reduc-
ing the usage of quantum resources on a qutrit-based quantum
computer. All simulations for exact quantum time dynamics
and its Trotterized version shown in Fig. 3 have been per-
formed using the QUTIP package [70,71].

IV. CONCLUSION AND OUTLOOK

In this paper, we extended the discussion of searching for
Yang-Baxter-like turnover relations to qudit-based quantum
computing. We explored certain algebraic properties of spin-1
operators and found rigorous Yang-Baxter-like turnover re-
lations for simple qudit models. Regarding more complex
qudit models, advanced algebraic relations are challenging to
resolve rigorously, but a preliminary and plausible strategy is
briefly discussed, based on the conjugation relation between
the spin-1 operators. Nevertheless, since large-scale quantum
simulation often requires an inexact but sufficiently accu-
rate quantum simulation, we also placed an emphasis on the
numerical exploration of advanced relations for the spin-1 sys-
tem. As a demonstration, we examined the spin-1 XY model
and numerically explored advanced circuit turnover relations
in the quantum simulation of time dynamics. In particular,
we designed a pool of circuit fragment turnover pairs using

FIG. 4. The return probability (3.25) of the spin-1 XY model on a three-site lattice, starting and ending at the state |202〉, is shown
as a function of time within 0 � t < 5. Each plot corresponds to respective spin couplings J = 0.1, 0.55, 1.0. The dynamic simulation is
represented as the blue line. We employ the Trotterization of the time-evolution operator (3.14) over 200 steps, with a corresponding step
size of θ = 0.025. Then we apply the circuit compression strategy detailed in Sec. III B to reduce the number of gates. For Trotter schemes
(T3, nb = 2), (T2, nb = 4), and (T2, nb = 5), the resulting data points are indicated by small red dots. More generally, for a (T3, nb = 2) Trotter
circuit with more than n > 3 steps, the approximate count of reduced gates is 2n/3. For a (T2, nb = 4) Trotter circuit with more than n > 4
steps, the approximate count of reduced gates is �2n/5� − 1. For a (T2, nb = 5) Trotter circuit with more than n > 5 steps, the approximate
count of reduced gates is n/3 − 1 when n is a multiple of 6, and 2�n/6� otherwise.
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various Trotterization schemes and numerically examined
their fidelity to screen out potential turnover pairs that could
be utilized to optimize the deep circuit corresponding to many
Trotter steps in the quantum dynamics simulations. Prelim-
inary numerical demonstrations were given on the quantum
simulation of the three-qutrit XY model, where the results
from our proposed numerical scheme showed great agreement
with the exact curve. Remarkably, our numerical scheme can
be considered as a prototype of a machine learning process
to be integrated into qubit control [72] and circuit compila-
tion and optimization [73] and to improve our Yang-Baxter
compiler QuYBE [56]. Specifically, the circuit optimization
strategy can be boiled down to a combinatorial problem of
searching for and performing circuit fragment turnovers in a
given circuit with a layered structure, a task that can also be
greatly facilitated by high-performance computing hardware
and brute-force search methods. Further studies in this direc-
tion are now underway. Our eventual goal is to develop an
efficient parallel Yang-Baxter compiler such as QuYBE [56],
which can be used for the compression of a variety of quantum
circuits, with the initial target on quantum dynamics circuits.
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APPENDIX A: DERIVATION OF THE TURNOVER
IDENTITIES WITH Ux, Uy, AND Uz

Let a = x and

Ux(α) =

⎛
⎜⎜⎝

I3 03 03

03 I3 − 2
(

sin
(

α
2

)
S̃x

)2
sin(α)S̃x

03 − sin(α)S̃x I3 − 2
(

sin
(

α
2

)
S̃x

)2

⎞
⎟⎟⎠

(A1)

=

⎛
⎜⎝

I3 03 03

03 Aα Bα

03 −Bα Aα

⎞
⎟⎠ (A2)

where we denote

Aα = I3 − 2

(
sin

(
α

2

)
S̃x

)2

, (A3)

Bα = sin(α)S̃x. (A4)

Now taking the LHS of (3.1) and replace Rn with Ux, it is
straightforward to show that

(Ux(α) ⊗ I3)(I3 ⊗Ux(β ))(Ux(γ ) ⊗ I3) =

⎛
⎜⎝

I9 09 09

09 Aα ⊗ I3 Bα ⊗ I3

09 −Bα ⊗ I3 Aα ⊗ I3

⎞
⎟⎠

⎛
⎜⎝
Ux(β ) 09 09

09 Ux(β ) 09

09 09 Ux(β )

⎞
⎟⎠

⎛
⎜⎝

I9 09 09

09 Aγ ⊗ I3 Bγ ⊗ I3

09 −Bγ ⊗ I3 Aγ ⊗ I3

⎞
⎟⎠

=

⎛
⎜⎝
Ux(β ) 09 09

09 C D

09 −D C,

⎞
⎟⎠ (A5)

with

C = (Aα ⊗ I3)Ux(β )(Aγ ⊗ I3) − (Bα ⊗ I3)Ux(β )(Bγ ⊗ I3), (A6)

D = (Aα ⊗ I3)Ux(β )(Bγ ⊗ I3) + (Bα ⊗ I3)Ux(β )(Aγ ⊗ I3). (A7)

Similarly, for the RHS of (3.1), we have

(
I3 ⊗ Ux(δ)

)(
Ux(ε) ⊗ I3

)(
I3 ⊗ Ux(ζ )

) =

⎛
⎜⎝
Ux(δ) 09 09

09 Ux(δ) 09

09 09 Ux(δ)

⎞
⎟⎠

⎛
⎜⎝

I3 03 03

03 Aε Bε

03 −Bε Aε

⎞
⎟⎠

⎛
⎜⎝
Ux(ζ ) 09 09

09 Ux(ζ ) 09

09 09 Ux(ζ )

⎞
⎟⎠

=

⎛
⎜⎝
Ux(δ + ζ ) 09 09

09 Ux(δ)AεUx(ζ ) Ux(δ)BεUx(ζ )

09 −Ux(δ)BεUx(ζ ) Ux(δ)AεUx(ζ )

⎞
⎟⎠. (A8)
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Comparing (A5) with (A8), for (3.1) to hold, the following conditions need to be satisfied:

Ux(β ) = Ux(δ + ζ ), (A9)

C = Ux(δ)AεUx(ζ ), (A10)

D = Ux(δ)BεUx(ζ ). (A11)

It is easy to see that (A9) is satisfied as long as

β + 2kπ = δ + ζ , k ∈ Z. (A12)

In (A10)

(Aα ⊗ I3)Ux(β )(Aγ ⊗ I3)

=
(

I9 − 2 sin2

(
α

2

)
(S̃x )2 ⊗ I3)

)(
I9 − i sin(β )(S̃x ⊗ S̃x ) − 2 sin2

(
β

2

)
(S̃x ⊗ S̃x )2

)(
I9 − 2 sin2

(
γ

2

)
(S̃x )2 ⊗ I3)

)

= I9 + (cos(α) cos(γ ) − 1)(S̃x ⊗ I3)2 − i cos(α) sin(β ) cos(γ )(S̃x ⊗ S̃x ) − 2 cos(α) sin2

(
β

2

)
cos(γ )(S̃x ⊗ S̃x )2, (A13)

(Bα ⊗ I3)Ux(β )(Bγ ⊗ I3)

= (sin(α)(S̃x ⊗ I3))

(
I9 − i sin(β )(S̃x ⊗ S̃x ) − 2 sin2

(
β

2

)
(S̃x ⊗ S̃x )2

)
(sin(γ )(S̃x ⊗ I3))

= sin(α) sin(γ )(S̃x ⊗ I3)2 − i sin(α) sin(β ) sin(γ )(S̃x ⊗ S̃x ) − 2 sin(α) sin2

(
β

2

)
sin(γ )(S̃x ⊗ S̃x )2 (A14)

⇒ C = I9 + (cos(α + γ ) − 1)(S̃x ⊗ I3)2 − i cos(α + γ ) sin(β )(S̃x ⊗ S̃x ) − cos(α + γ )(cos(β ) − 1)(S̃x ⊗ S̃x )2, (A15)

Ux(δ)AεUx(ζ ) =
(

I9 − i sin(δ)(S̃x ⊗ S̃x ) − 2 sin2

(
δ

2

)
(S̃x ⊗ S̃x )2

)(
I9 − 2 sin2

(
ε

2

)
(S̃x )2 ⊗ I3)

)

×
(

I9 − i sin(ζ )(S̃x ⊗ S̃x ) − 2 sin2

(
ζ

2

)
(S̃x ⊗ S̃x )2

)

= I9 + (cos(ε) − 1)(S̃x ⊗ I3)2 − i cos(ε) sin(δ + ζ )(S̃x ⊗ S̃x ) + cos(ε)(cos(δ + ζ ) − 1)(S̃x ⊗ S̃x )2. (A16)

Similarly, in (A11)

(Aα ⊗ I3)Ux(β )(Bγ ⊗ I3)

=
(

I9 − 2 sin2

(
α

2

)
(S̃x )2 ⊗ I3)

)(
I9 − i sin(β )(S̃x ⊗ S̃x ) − 2 sin2

(
β

2

)
(S̃x ⊗ S̃x )2

)
(sin(γ )(S̃x ⊗ I3))

= cos(α) sin(γ )(S̃x ⊗ I3) − i cos(α) sin(β ) sin(γ )((S̃x )2 ⊗ S̃x ) − 2 cos(α) sin2

(
β

2

)
sin(γ )(S̃x ⊗ (S̃x )2), (A17)

(Bα ⊗ I3)Ux(β )(Aγ ⊗ I3)

= (sin(α)(S̃x ⊗ I3))

(
I9 − i sin(β )(S̃x ⊗ S̃x ) − 2 sin2

(
β

2

)
(S̃x ⊗ S̃x )2

)
(I9 − 2 sin2(

γ

2
)(S̃x )2 ⊗ I3))

= sin(α) cos(γ )(S̃x ⊗ I3) − i sin(α) sin(β ) cos(γ )((S̃x )2 ⊗ S̃x ) − 2 sin(α) sin2

(
β

2

)
cos(γ )(S̃x ⊗ (S̃x )2) (A18)

⇒ D = sin(α + γ )(S̃x ⊗ I3) − i sin(α + γ ) sin(β )((S̃x )2 ⊗ S̃x ) + sin(α + γ )(cos(β ) − 1)(S̃x ⊗ (S̃x )2), (A19)

Ux(δ)BεUx(ζ )

=
(

I9 − i sin(δ)(S̃x ⊗ S̃x ) − 2 sin2

(
δ

2

)
(S̃x ⊗ S̃x )2

)
(sin(ε)(S̃x ⊗ I3))

(
I9 − i sin(ζ )(S̃x ⊗ S̃x ) − 2 sin2

(
ζ

2

)
(S̃x ⊗ S̃x )2

)

= sin(ε)(S̃x ⊗ I3) − i sin(ε) sin(δ + ζ )((S̃x )2 ⊗ S̃x ) + sin(ε)(cos(δ + ζ ) − 1)(S̃x ⊗ (S̃x )2). (A20)

After a term-by-term comparison, one can see that the following conditions need to be satisfied,{
α + γ = ε + 2kπ

δ + ζ = β + 2kπ
, k ∈ Z, (A21)
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for the following equation to hold:

(Ux(α) ⊗ I3)(I3 ⊗ Ux(β ))(Ux(γ ) ⊗ I3) = (I3 ⊗ Ux(δ))(Ux(ε) ⊗ I3)(I3 ⊗ Ux(ζ )). (A22)

From (2.21) a further proof can be obtained for a = y:

(Uy(α) ⊗ I3)(I3 ⊗ Uy(β ))(Uy(γ ) ⊗ I3)

= ((Py ⊗ Py ⊗ I3)(Ux(α) ⊗ I3)(Py ⊗ Py ⊗ I3))((I3 ⊗ Py ⊗ Py)(I3 ⊗ Ux(β ))(I3 ⊗ Py ⊗ Py))

× ((Py ⊗ Py ⊗ I3)(Ux(γ ) ⊗ I3)(Py ⊗ Py ⊗ I3))

= (Py ⊗ Py ⊗ Py)(Ux(α) ⊗ I3)(I3 ⊗ Ux(β ))(Ux(γ ) ⊗ I3)(Py ⊗ Py ⊗ Py)

= (Py ⊗ Py ⊗ Py)(I3 ⊗ Ux(δ))(Ux(ε) ⊗ I3)(I3 ⊗ Ux(ζ ))(Py ⊗ Py ⊗ Py)

= ((I3 ⊗ Py ⊗ Py)(I3 ⊗ Ux(β ))(I3 ⊗ Py ⊗ Py))((Py ⊗ Py ⊗ I3)(Ux(α) ⊗ I3)(Py ⊗ Py ⊗ I3))

((I3 ⊗ Py ⊗ Py)(I3 ⊗ Ux(β ))(I3 ⊗ Py ⊗ Py))

= (I3 ⊗ Uy(δ))(Uy(ε) ⊗ I3)(I3 ⊗ Uy(ζ )). (A23)

A similar process can be followed from (2.22) for the proof for a = z.

APPENDIX B: QUTRIT IDENTITIES FROM QUBIT IDENTITIES

The adjoint spin-1 matrices S̃a can be seen as a 2 × 2 block embedding of Pauli Y into a 3 × 3 matrix, implying that the
unitaries Ua primarily affect only two levels of the qutrit. We can build a permutation P that separates the spectator levels from
the levels actively involved in the unitary operations.

Taking S̃x as an example, from (2.7) we have

P =
(

4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 6 4 11 12 15 19 20 16 21 22 10 13 14 17 23 24 18

)

which rearranges all three-qutrit states into the follow-
ing direct sum between subspaces: |000〉 ⊕ |00a〉 ⊕ |0a0〉 ⊕
|0ab〉 ⊕ |a00〉 ⊕ |a0b〉 ⊕ |ab0〉 ⊕ |abc〉 with a, b, c ∈ {1, 2}.
Such permutation decomposes the two-qutrit unitary action
Ux into the direct sum 11 ⊕ exp(−iαY1) ⊕ exp(−iαY2) ⊕
exp(−iαY1 ⊗ Y2) where Y1,2 act on effective “qubits” obtained
from restricting qutrits onto the two levels |1〉 and |2〉.

Applying the above permutation to the qutrit turnover re-
lation for Ux, both sides of (2.23) take a block-diagonal form
corresponding to some circuit identities on effective two-level
systems.

(1) |000〉: The identity 1 = 1 holds trivially.
(2) |00a〉: e−iαY3 = e−iδY3 e−iζY3 .
(3) |0a0〉: e−iαY2 e−iβY2 e−iγY2 = e−iδY2 e−iεY2 e−iζY2 .
(4) |a00〉: e−iαY1 e−iγY1 = e−iεY1 .
(5) |a0b〉: e−iαY1 e−iβY3 e−iγY1 = e−iδY3 e−iεY1 e−iζY3 .
(6) |0ab〉: e−iαY2 e−iβY2⊗Y3 e−iγY2 = e−iδY2⊗Y3 e−iεY2 e−iζY2⊗Y3 .
(7) |ab0〉: e−iαY1⊗Y2 e−iβY2 e−iγY1⊗Y2 = e−iδY2 e−iεY1⊗Y2 e−iζY2 .
(8) |abc〉: It returns the qubit turnover relation of [59].
The relations on |00a〉, |0a0〉, |a00〉, and |a0b〉 sub-

spaces are obviously true if the circuit parameters satisfy
(3.2). The |0ab〉 and |ab0〉 relations are also straightforward
to verify since [e−iuYi , e−ivYi⊗Yj ] = 0. The only remain-
ing nontrivial circuit relation comes from the subspace
|abc〉, equivalent to the “qubit” turnover relation shown in
Ref. [59].

APPENDIX C: LOWER BOUND OF THE INFIDELITY
IN MULTIPLE TROTTER STEPS

In Fig. 2, we reported the numerical infidelities that
we obtained from minimization. To evaluate the quality of
the minimization which may compromise the infidelity, we
can compute the lower bound of the infidelity. Similar to
Eq. (3.15), given a Trotter scheme, for nb Trotter steps, the
infidelity can be generalized to

Cnb (θL, θR) = 1 − 1

(33)2nb
‖tr [(WL )nb (W †

R )nb]‖2. (C1)

If WLW †
R is positive semidefinite (which can be generally true

when WLW †
R → I), we then have

tr [(WL )nb (W †
R )nb] = tr [(WLW †

R )nb]

� [tr (WLW †
R )]nb, (C2)

and the lower bound of (C1) can be expressed as

Cnb � 1 −
[

1

(33)2
‖tr (WLW †

R )‖2

]nb

= 1 − (1 − C1)nb . (C3)
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Here C1 is the infidelity for one Trotter step. Now based
on the computed lower bounds, we can evaluate the min-
imized infidelities reported in Fig. 2. In particular, if the

minimized infidelity is far away from the computed lower
bound such as T3 (nb � 3), the minimization becomes
deficient.
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