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Error tradeoff relation for estimating the unitary-shift parameter of a relativistic spin-1/2 particle
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The purpose of this paper is to discuss the existence of a nontrivial tradeoff relation for estimating two unitary-
shift parameters in a relativistic spin-1/2 system. It is shown that any moving observer cannot estimate two
parameters simultaneously, even though a parametric model is classical in the rest frame. This transition from the
classical model to a genuine quantum model is investigated analytically using a one-parameter family of quantum
Fisher information matrices. This paper proposes to use an indicator that can not only detect the existence of a
tradeoff relation but can also evaluate its strength. Based on the proposed indicator, this paper investigates the
nature of the tradeoff relation in detail.
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I. INTRODUCTION

Incompatibility for estimating multiple parameters is one
of the intrinsic natures of quantum estimation theory [1–3].
Any two parameters encoded in a quantum state cannot be
estimated simultaneously with the minimum estimation error,
and hence one faces the tradeoff relation. This is because
an optimal measurement for one parameter prohibits us to
estimate the other parameter with the best estimation accuracy
and vice versa. In the worst case, the optimal measurement for
one parameter could not estimate the other at all. This extreme
case is connected to the uncertainty relation formulated in the
framework of quantum estimation theory [2,4–7]. Up to now,
incompatibility has been addressed in various models ranging
from abstract mathematical models to physical models [8–16].

Relativistic quantum estimation is a relatively new topic in
quantum estimation theory, although the pioneering work [17]
appeared about a quarter century ago. In these studies, rela-
tivistic metrology has been shown to be a potential resource
for quantum advantage due to relativistic quantum theory
[18–21]. It seems, however, that incompatibility in relativistic
estimation has not been explored so far. In particular, there
is no previous study that investigates how incompatibility
changes for different moving observers. This paper’s main
achievement is to progress in this line of research.

We take a specific model for a relativistic spin-1/2 particle
which was studied in Ref. [22]. In this model, we set up a
classical-like Gaussian wave packet in the rest frame, and we
wish to estimate the unitary-shift parameters for the x and y
directions. Since there is no correlation between the two di-
rections, one can perform a precise position measurement
for each direction. Hence, there exists no tradeoff relation
that gives rise to incompatibility upon estimating two dif-
ferent parameters. However, a moving observer along the
z direction sees this state distorted due to the Wigner rotation
[23,24]. When the observer accesses the position degrees of
freedom only, the reduced state becomes a mixed state due
to the information loss regarding the spin of the particle. In
Ref. [22], we showed this model does not satisfy the so-called

weak-commutativity condition [25,26]. Therefore, one cannot
estimate two parameters simultaneously even in the asymp-
totic limit. Yet, we could not discuss a tradeoff relation since
we only analyzed the symmetric logarithmic derivative (SLD)
Cramér-Rao (CR) bound.

In this paper, we propose to use the one-parameter fam-
ily of quantum CR bounds to evaluate the tradeoff relation
between two diagonal components for the mean-square-error
(MSE) matrix [27,28]. By combining the SLD CR bound and
one-parameter family of quantum CR bounds, we define an
indicator of the existence of the tradeoff relation. If this indi-
cator is positive, we definitely conclude that there is a tradeoff
relation. In this way, the proposed indicator can witness the
existence of a tradeoff relation. Furthermore, the value of the
indicator corresponds to the strength of the tradeoff relation
and hence it serves as more than just a witness. We apply this
incompatibility witness to our relativistic model, and we show
that any moving observer cannot estimate two parameters
simultaneously. In other words, incompatibility is inevitable
no matter how slow the observer is.

The outline of this paper is as follows. In Sec. II, we
give a physical mode in the rest frame. Next, we derive the
momentum representation of the wave function in the mov-
ing frame. We also give parametric models in the rest frame
and the moving frame. Section III introduces an indicator of
tradeoff relation ω. We show that we can conclude that there
exists a tradeoff relation when the indicator ω is positive.
Next, we show that the indicator ω is always positive when
the observer’s velocity is nonzero if the λ in the λ logarithmic
derivative (λLD) Fisher information matrix is in an appropri-
ate range. Sections IV and V give a discussion and conclusion,
respectively. The Appendixes give supplemental information
for the calculations in detail.

II. MODEL AND λLD FISHER INFORMATION MATRIX

In our previous study [22], we investigated a two-parameter
unitary-shift model of a relativistic spin-1/2 particle. We ana-
lyzed the estimation accuracy limit by a lower bound based on
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the SLD CR bound. Because the SLD CR bound is not attain-
able due to incompatibility, we could not address the question
of a tradeoff relation in full detail. To proceed with further
discussion, we employ the idea of combining two different
quantum CR bounds, the SLD and right logarithmic derivative
(RLD) CR bounds, which was proposed in Ref. [29]. The
previous method does not work for this model since the RLD
Fisher information matrix does not exist for our model. In
this paper, we extend this method by using another type of
quantum Fisher information matrix called the λLD Fisher
information matrix [27,28]. We will show that we can detect
and discuss the strength of a tradeoff between estimation error
for two different parameters.

A. Physical model

This section briefly summarizes a physical model used in
our previous study. See Ref. [22] for more in detail. Consider a
spin-1/2 relativistic particle with the rest mass m and assume
that its spin is down in the rest frame. The wave function is
set as an isotropic Gaussian function with the spread κ in
the x and y directions, and a plane wave function is chosen
for the z direction. To discuss a relativistic effect, consider
an observer who is moving along the z axis with a constant
velocity V . To give the largest relativistic effect, the z direction
is chosen for the observer’s motion [30]. Natural units, i.e.,
h̄ = 1 and c = 1, will be used unless otherwise stated.

To apply the Wigner rotation later, it is convenient to de-
scribe the particle in the momentum representation. The state
vector in the rest frame is given by

|�↓〉 =
∫

d3 pϕ0(p1)ϕ0(p2)δ(p3) | �p,↓〉 , (1)

where δ(p3) denotes the Dirac delta function and ϕ0(t ) is the
Gaussian function:

ϕ0(t ) = κ1/2

π1/4
e− 1

2 κ2t2
. (2)

We remind that the κ is the spread in the coordinate represen-
tation. In the above expression (1), we denote the spatial part
of the four-momentum vector by �p, that is, �p = (p1, p2, p3).

B. Parametric model: Rest frame

A two-parameter unitary-shift model in the rest frame is
defined as follows. Define a unitary transformation generated
by the momentum operators in the x and y directions, p̂1 and
p̂2, by

U (θ ) = e−i p̂1θ1−i p̂2θ2 . (3)

This unitary-shift operator encodes two parameters (θ1, θ2) in
the x and y directions of the wave function. By applying U (θ )
to the state vector |�↓〉, we define the pure state model:

Mrest = {ρθ | θ = (θ1, θ2) ⊂ R2}, (4)

where ρθ is

ρθ = U (θ ) |�↓〉 〈�↓|U †(θ ). (5)

C. State in the moving frame

We next discuss the state vector in the moving frame. In
our model, the state vector in the rest frame is in a spin-down
state, |�↓(θ )〉 = U (θ ) |�↓〉. The state vector in the moving
frame is given by the Wigner rotation [23,24] U (�) with �

the Lorentz transformation on the state as

|��(θ )〉 = U (�) |�↓(θ )〉 =
∑

σ=↓,↑

∣∣ψ�
σ (θ )

〉 |σ 〉 , (6)

where |ψ�
σ (θ )〉 are

|ψ�
σ (θ )〉 =

∫
d3 p

√
(�p)0

p0
Fθ, σ (p1, p2)δ(p3) |� �p〉 , (7)

Fθ, ↓(p1, p2) = ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2 cos
α(| �p |)

2
, (8)

Fθ, ↑(p1, p2) = −ϕ0(p1)ϕ0(p2)e−ip1θ1−ip2θ2 eiφ(p1, p2 )

× sin
α(| �p |)

2
, (9)

| �p | =
√

(p1)2 + (p2)2,

eiφ(p1, p2 ) = p1

| �p | + i
p2

| �p | ,

cos α(| �p |) =
√

m2 + | �p |2 + m cosh χ√
m2 + | �p |2 cosh χ + m

, (10)

sin α(| �p |) = − | �p | sinh χ√
m2 + | �p |2 cosh χ + m

, (11)

χ = tanh−1(V ). (12)

When the observer’s velocity V is not zero, i.e., when the
observer is moving, Fθ, ↑(p1, p2) �= 0 holds. Therefore, the
particle spin “rotates.” We give a brief summary of the deriva-
tions of Eqs. (6)–(9) in Appendix A 2 and the full detailed
account is given in Ref. [22].

D. Parametric model: Moving frame

The parametric model defined by the state vector in the
moving frame |��(θ )〉 = U (�) |�↓(θ )〉 is unitary equivalent
to the model in the rest frame. Hence, all the properties remain
the same. To introduce a relativistic effect of the Wigner
rotation on the model, we take the partial trace over the spin
degree of freedom [22]. This corresponds to the situation
where the moving observer accesses the position degree of
freedom only. The parametric model is then defined as

M� = {ρ�(θ )|θ = (θ1, θ2) ∈ R2}, (13)

where

ρ�(θ ) = trσ |��(θ )〉 〈��(θ )|
= |ψ�

↓ (θ )〉 〈ψ�
↓ (θ )| + |ψ�

↑ (θ )〉 〈ψ�
↑ (θ )| . (14)

It is worth reminding ourselves that the vectors |ψ�
σ (θ )〉 are

not normalized. Their normalized vectors will be denoted
by |ψ̄�

σ (θ )〉. We have a remark for this model. First, the
parametric state in the model (13) is not full rank. Thus,
the RLDs do not exist in this singular model. Next, the
state vectors |ψ�

↑ (θ )〉 and |ψ�
↓ (θ )〉 are orthogonal [22], i.e.,
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FIG. 1. Numerically calculated peak position at z = 0 (x3 = 0)
as a function of the observer’s velocity V at mκ = 0.1, 0.5, and 1. The
m and κ are the rest mass of the particle and the spread of the wave
function, respectively. The velocity V and mκ are dimensionless in
the natural units. The peak is derived from the first derivative of the
probability density. The length has the dimension of the inverse of the
energy in the natural units. When mκ = 1, for example, the spread
κ is equal to the Compton wavelength of the particle.

〈ψ�
↑ (θ )|ψ�

↓ (θ )〉 = 0. This model is expressed by the statisti-
cal mixture of the two orthogonal state vectors; hence, it is a
rank 2 model.

To get a physical insight into the model, let us briefly
discuss the probability density of the spin-up state in the
coordinate representation. As for the probability density of
the spin-up state for the nonzero observer’s velocity, i.e., V �=
0, we can show that | 〈x|ψ̄�

↑ (θ )〉 |2 has rotational symmetry
around the center of the original Gaussian wave packet. If
V �= 0, we have two peaks in the particle’s probability den-
sity, and this addition of the other peak makes it difficult to
make a position estimation [22]. See Appendix A 3 for the
derivation. Figure 1 shows the peak position of the spin-up
state, | 〈x|ψ̄�

↑ (θ = 0)〉 |, from the z axis as a function of the
observer’s velocity V . The numerical calculation indicates
that the peak position is about the same as mκ . For the same
particle, the peak position is determined by the spread κ .

E. λLD Fisher information matrix

Let us quickly review the λLD and the λLD Fisher infor-
mation matrix [27,28]. The λLD is a one-parameter family of
logarithmic derivatives, which is defined by a solution of the
following equation:

∂ρθ

∂θ j
= 1 + λ

2
ρθLλ, j (θ ) + 1 − λ

2
Lλ, j (θ )ρθ , (15)

where −1 � λ � 1. By using the λLD, the (i, j) component
of the λLD Fisher information matrix Jλ(θ ) is defined by

Jλ,i j (θ ) = 1 + λ

2
tr[ρθLλ, j (θ )L†

λ,i(θ )] + 1 − λ

2

× tr[ρθL†
λ,i(θ )Lλ, j (θ )]. (16)

By definition, we see that λ = 0 corresponds to the SLD and
λ = 1 does to the RLD. (λ = −1 is the so-called left logarith-
mic derivative.) As the model M� is not full rank, the λLD
is not uniquely defined. However, the λLD Fisher information
matrix is uniquely defined. A derivation of the λLD and λLD
Fisher information matrix for a rank deficient model is given
in Appendix B.

With using the formula Eq. (B16) given in Appendix B, we
can calculate the λLD Fisher information matrix for the model
(13). Since the model is still unitary, there is not parametric
dependence on the quantum Fisher information matrix. In the
following discussion, we will omit the parameter θ .

The λLD Fisher information matrix Jλ is obtained as

Jλ = 2

κ2(1 − λ2)(1 − λ2ξ 2)

×
(

1 − ζ 2 − λ2ξ 2 −iλζ 2ξ

iλζ 2ξ 1 − ζ 2 − λ2ξ 2

)
, (17)

where ζ and ξ are defined by1

ζ =
√

2m3κ3V
∫ ∞

0
dt

t3

√
1 + t2 + √

1 − V 2
e−m2κ2t2

, (18)

ξ = m2κ2
∫ ∞

0
dt

2t (1 + √
1 + t2

√
1 − V 2)√

1 + t2 + √
1 − V 2

e−m2κ2t2
. (19)

The inverse of the λLD Fisher information matrix, J−1
λ , is

given by

J −1
λ = κ2

2

1 − λ2

(1 − ζ 2)2 − λ2ξ 2

×
(

1 − ζ 2 − λ2ξ 2 iλζ 2ξ

−iλζ 2ξ 1 − ζ 2 − λ2ξ 2

)
. (20)

In the following, we express the (i, j) component of the in-
verse of the λLD Fisher information matrix, J −1

λ , as

[J −1
λ ]i j = J−1

λ,i j . (21)

We obtain the inverse of the SLD and the RLD Fisher informa-
tion matrices, J −1

S and J −1
R , when λ = 0 and 1, respectively.

We see that J −1
R is a zero matrix, i.e., the RLD CR inequality

gives a trivial bound. The inverse of the SLD Fisher informa-
tion matrix J −1

S is obtained as

J −1
S = κ2

2(1 − ζ 2)

(
1 0
0 1

)
. (22)

This recovers the result of Ref. [22]. Lastly, we observe that
the λLD Fisher information matrix is symmetric with respect
to two parameters θ1 and θ2. This is because of rotational
symmetry in the parametric model.

1In Ref. [22], the integral ζ was defined as a different symbol η.
The correspondence to the current paper is ζ = √

2κη.
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FIG. 2. A conceptual diagram showing cases with and without
intersection points of the SLD and λLD CR bounds. The dots show
the points A, B, and C. The λLD CR bounds 1 and 2 are examples
of positive and negative ωs, respectively. If ω is positive, ω′ is also
positive. When ω is positive, we can conclude that there exists a
tradeoff relation because the SLD and the λLD CR bounds intersect.

III. TRADEOFF RELATION FOR ESTIMATION ERROR
OF UNITARY-SHIFT PARAMETERS

A. Indicator of the tradeoff relation

In order to discuss a tradeoff relation, we introduce an
indicator of tradeoff relation ω derived from our way of quan-
tifying a tradeoff relation. The ω is a quantity that not only
guarantees the existence of a tradeoff relationship but also
quantifies the strength of it. In particular, if ω is positive, we
can conclude the existence of a tradeoff relationship. Further,
the larger the positive value for the ω is, the more significant
the tradeoff relation becomes.

Before moving to the definition of the indicator ω, let
us first discuss the logic of determining a tradeoff relation
presented in Ref. [29] by extending it to the λLD Fisher in-
formation matrix. We will focus on two-parameter estimation,
which is not necessarily a unitary-shift model. We denote the
MSE matrix for a locally unbiased estimator by V = [Vi j].
(We omit the dependence on the estimator and measurement
since it is not important here.) A graphical illustration of the
indicator ω is given in Fig. 2. In this figure, we consider a spe-
cial case where the SLD and the λLD bounds are symmetric
about V11 and V22.

(1) By a tradeoff relation, we mean a product type of
inequality between the (1,1) and (2,2) components of the MSE
matrix. That is, V11V22 is bounded below by some constant.

(2) When one wishes to estimate one of the parameters,
say θ1, it is known that we can perform a measurement that
attains V11 = J−1

S,11.2 However, this optimal estimation strategy

2We remark that the ultimate limit to estimate θ1 is given by the
(1,1) component of the inverse of the SLD Fisher information matrix,
J−1

S,11, but not by (JS,11)−1 unless the SLD Fisher information matrix is
diagonal. See Sec. 5 of Ref. [31] for a detailed account of the matter.

for θ1 cannot estimate θ2 in general, and hence V22 formally
diverges. The same conclusion holds for estimating θ2. The
SLD CR inequality V � J−1

S alone does not give any useful
tradeoff relation since we only have(

V11 − J−1
S,11

)(
V22 − J−1

S,22

)
> 0. (23)

The upper square region gives the allowed region for the
diagonal components of the MSE in Fig. 2.

(3) We next consider the λLD CR inequality V � J−1
λ in

addition. Suppose that the λLD CR bound is represented by
the dashed curve in Fig. 2. The SLD and the λLD CR bounds
have two intersection points in this case. (One of them is given
by point A.) We then conclude that the tradeoff relation exists,
since the allowed region is set by the combination of two CR
bounds (the darker region in Fig. 2).

(4) If the λLD CR bound is represented by the dashed-
dotted curve in Fig. 2, on the other hand, two bounds do
not have any intersection. In this case, we cannot conclude
whether a tradeoff relation exists or not.

These motivate us to define the quantities ω and ω′ that are
shown in Fig. 2. Points A and A′ are the intersection points of
the boundaries of the λLD (dashed line) and SLD (dotted line)
CR bounds. The indicator ω is defined by the V22 component
of point A minus B which is equal to J−1

S,22. When the λLD
and the SLD bounds do not intersect, on the other hand, the
indicator ω is given by C minus B, which is negative. The
other quantity ω′ in Fig. 2 is also calculated in the same way.

As shown in Appendix C, the indicators ω and ω′ are
formally defined by

ω =
∣∣ImJ−1

λ,12

∣∣2 − (
J−1

S,11 − J−1
λ,11

)(
J−1

S,22 − J−1
λ,22

)
J−1

S,11 − J−1
λ,11

, (24)

ω′ =
∣∣ImJ−1

λ,12

∣∣2 − (
J−1

S,11 − J−1
λ,11

)(
J−1

S,22 − J−1
λ,22

)
J−1

S,22 − J−1
λ,22

. (25)

Since in our model J−1
S,11 = J−1

S,22 and J−1
λ,11 = J−1

λ,22 hold, we
have ω = ω′. Hereafter, we use ω only. As the quantum Fisher
information matrices are a function of the spread κ and the
velocity of the observer V , the indicator also depends on them
in addition to the choice of λ ∈ (−1, 1). From Eqs. (20), (22),
and (24), we have an explicit expression of ω(λ, κ,V ):

ω(λ, κ,V ) = κ2

2(1 − ζ 2)

λ2(1 − ζ 2)2 − ξ 2[λ2(1 − ζ 2) + ζ 2]2

ξ 2[λ2(1 − ζ 2) + ζ 2] − (1 − ζ 2)2
.

(26)

We set the allowed range of λ as 0 < λ < 1 hereafter because
ω(λ, κ,V ) = ω(−λ, κ,V ) holds.

B. Existence of the tradeoff relation

We are ready to state the main result of this paper. For any
spread of the wave function κ > 0 and in any moving frame,
a nontrivial tradeoff relation exists, which is jointly specified
by the SLD and λLD CR bounds, as long as the λ is smaller
than the threshold value Eq. (27). In other words, any moving
observer cannot estimate two parameters simultaneously, and
the diagonal components of the MSE matrix can only take
values in the darker region of Fig. 2.
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FIG. 3. Numerically calculated ω(λ, κ,V ) plotted as a function
of λ for mκ = 1 and V = 1 (relativistic limit). The dotted line shows
the line for ω(λ, κ,V ) = 0. The λ is dimensionless by definition.

This result can be proven by the following reasoning. First,
the indicator ω(λ, κ,V ) is a continuous function of λ. Second,
this is a monotonically decreasing function of λ ∈ (0, 1) for
any given spread κ > 0 and for any given observer’s velocity
V ∈ (0, 1] (Appendix E 1). Third, this has different signs at
two end points λ = 0, 1. In particular, the limit λ → 0 is
always positive (Appendix E 2), and the other limit λ → 1
is always negative (Appendix E 3). Last, there always exists
a unique solution λ∗ ∈ (0, 1) that satisfies ω(λ∗, κ,V ) = 0
for any κ > 0 and V ∈ (0, 1]. Hence, we conclude that a
tradeoff relation exists for our physical model in an arbitrary
moving frame, no matter how slow the observer’s velocity is.
Figure 3 shows a numerically calculated ω(λ, κ,V ) plotted
as a function of λ for mκ = 1 and V = 1 (relativistic limit).
This figure shows the above mathematical statements. The
intersection point between the curve ω(λ, κ,V ) and the line
ω = 0 corresponds to the unique solution λ∗.

We remark that there exists no tradeoff relation in the rest
frame. This is because the parametric model in the rest frame
is classical [22]. Indeed, in the present analysis ζ = 0 and
ξ = 1 hold in the limit V → 0. This gives ω(λ, κ,V = 0) =
−κ2λ2/2 in the rest frame limit. Thus, we cannot conclude
the existence of a tradeoff relation since this is negative. (See
also discussion in Sec. IV A.) This means that we can estimate
two parameters simultaneously in the rest frame. However,
any observer in the moving frame cannot do this due to the
existence of the tradeoff relation. We stress that the existence
of the tradeoff relation is inevitable for any moving observer.

Another interesting finding is that the tradeoff relation
becomes the most significant in the limit of λ → 0. This
may not be expected, since the case λ = 0 corresponds to the
SLD Fisher information matrix. Thereby, one knows that it is
impossible to detect a tradeoff relation. The resolution to this
counterintuitive result will be discussed in Sec. IV B.

C. Solution λ∗

We next turn our attention to the unique solution λ∗ for
the equation ω(λ, κ,V ) = 0. We have shown that there exists
a λ∗ ∈ (0, 1) that is a unique solution of ω(λ∗, κ,V ) = 0 for

FIG. 4. Numerically calculated λ∗ plotted as a function of V for
four different spreads of the wave function. V and λ∗ are dimension-
less in the natural units.

any κ > 0 and any V ∈ (0, 1]. This is because the ω(λ, κ,V )
is a monotonically decreasing function of λ and because
ω(0, κ,V ) and ω(1, κ,V ) are always positive and negative,
respectively. Using the SLD CR bound and λLD CR bound
with any λ ∈ (0, λ∗), we can conclude the existence of a
tradeoff relation.

In fact, it is possible to solve the equation ω(λ, κ,V ) = 0
for λ as a function of ξ and ζ . As shown in Appendix E 4, the
unique solution λ∗ is expressed as

λ∗(κ,V ) = 1

2ξ

⎛
⎝1 −

√
1 − 4ξ 2ζ 2

1 − ζ 2

⎞
⎠. (27)

Figure 4 shows the result of the numerical calculation of λ∗
plotted as a function of V for four different values of the
spread of the wave function. Let us analyze the properties
of the solution λ∗. First, we see from Fig. 4 that λ∗ becomes
smaller for slower velocities of the observer. In the rest frame
limit V → 0, we have λ∗ = 0 because ζ = 0 at V = 0. This is
expected since no tradeoff relation exists in the rest frame.

Second, λ∗ is a convex upward function of V up to when
mκ is approximately less than 0.5. Otherwise, λ∗ is a mono-
tonically increasing function of V for larger values of the wave
function spread κ . The appearance of peaks for small values
of κ is not clear to us, in particular the existence of the velocity
V that gives the maximum of λ∗. However, we point out that
λ is the parameter for the λLD Fisher information matrix and
is purely a mathematical quantity. The indicator ω is a more
important quantity than λ, which is just a parameter because
the ω directly indicates the strength of the tradeoff relation.
We also discuss this point in the next remark regarding the
relativistic limit.

Last, Fig. 4 shows that λ∗ is close to zero at the relativistic
limit V = 1 when κ � 1. The following relation supports this
sudden drop:

lim
κ→0

λ∗(κ, 1) = 0. (28)

It also explains the appearance of peaks for small κ .
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A proof for Eq. (28) is given as follows. At the relativistic
limit V = 1 and in the limit of κ → 0, we have ζ → √

2π/4
and ξ → 0 (see Appendix F). We apply the Taylor expansion
for small ξ for λ∗ as follows:

λ∗ = 1

2ξ

∞∑
n=1

(2n − 3)!!

n!2n

(
4ξ 2ζ 2

1 − ζ 2

)n

, (29)

where

(2n − 3)!! = (2n − 3)(2n − 5) · · · 3 · 1, (−1)!! = 1.

(30)

The first order in ξ is thus given by ζ 2ξ/(1 − ζ 2). Therefore,
at V = 1, Eq. (28) holds.

IV. DISCUSSION

A. Comparison to the rest frame

The parametric model in the rest frame Mrest, Eq. (4) is
classical. This is because the reference state is a Gaussian
state which is a product of two Gaussian functions of p1

and p2. Furthermore, the generators of the unitary model, p̂1

and p̂2, commute, and the best estimate is obtained by the
position measurement of each of x and y independently in
the rest frame. By this optimal measurement, one can show
that the MSE matrix is equal to the inverse of the SLD Fisher
information matrix.

On the other hand, the model in the moving frame, M�

[Eq. (13)], would change from a classical to a nonclassical
nontrivial model since the wave function after the Lorentz
boost changes to a more complicated form due to the ob-
server’s motion. This change results from taking the partial
trace of the entangled state generated by the Wigner rotation.
Mathematically, this corresponds to the action of a completely
positive and trace-preserving (CPTP) map on the initial clas-
sical state. Here, the spin degree of freedom plays the role of
an environment in the standard terminology of quantum infor-
mation theory. Thus, the moving observer faces estimating a
“noisy” state caused by this CPTP map.

While this is a mathematical fact, it is highly nontrivial that
an application of such a CPTP map on a “classical” state gives
rise to the tradeoff relation. This tradeoff relation prohibits any
moving observer from estimating the two parameters simul-
taneously. The only possibility to avoid incompatibility is to
measure not only the position of the particle but also the spin.

Lastly, let us examine the rest frame limit. We excluded
the case V = 0 in the above analysis, corresponding to a non-
moving observer. By definition, two integrals Eqs. (18) and
(19) are evaluated analytically as ζ = 0 and ξ = 1 hold in the
limit V → 0. This results in ω(λ, κ,V = 0) = −κ2λ2/2 < 0
as mentioned earlier. Thereby, we cannot conclude the ex-
istence of a tradeoff relation. The unique solution λ∗ (27)
becomes zero in this limit. The other explanation is that the
λLD Fisher information matrix becomes proportional to the
SLD Fisher information matrix in this limit. Thus, there is no
way to evaluate a tradeoff relation for any λ.

B. Strength of the tradeoff relation

As explained in Fig. 2, when the indicator ω is positive,
we can conclude that a tradeoff relation exists. Indeed we
have shown that this is true for any given spread of the
wave function, κ > 0, and any given velocity of the observer
0 < V � 1. The tradeoff relation is most substantial in the
limit of λ → 0 while at λ = 0, by definition, the λLD Fisher
information matrix is equal to the SLD Fisher information
matrix. As we stressed before, the SLD Fisher information
alone cannot determine the existence of a tradeoff relation.
This counterintuitive result is explained as follows.

The key quantity in our analysis is the indicator ω, Eq. (24).
This quantity is defined by the ratio between the differences
between two quantum Fisher information matrices. Thus, this
ratio can be finite even when each difference becomes zero.
To see this point more clearly, we rewrite the numerator and
denominator of Eq. (24) as

− det
(
J−1

S − J−1
λ

)
, 1

2 tr
(
J−1

S − J−1
λ

)
, (31)

respectively. These alternative expressions are true since both
quantum Fisher information matrices have symmetry and the
off diagonal components of the J−1

λ are purely imaginary. It is
true that in the limit λ → 0, both terms in Eq. (31), trJ−1

S and
trJ−1

λ , become zero. However, their ratio does have a mean-
ingful limit. In the present case, both terms are proportional to
λ2; hence, we have the following well-defined limit:

lim
λ→0

ω(λ, κ,V ) = κ2

2(1 − ζ 2)

ξ 2ζ 2

(1 − ζ 2)2 − ξ 2ζ 2
. (32)

C. Dependence on spread of wave function κ

Next, we discuss the role of the spread of the wave function
in the rest frame. Intuitively, the smaller κ is, the better the
estimate is. This is because a wave function with a sharper
peak enables us to estimate the unitary shift more accurately.
Indeed, this is so in the rest frame, in which the inverse of the
SLD Fisher information matrix is given by J−1

S = κ2/2I with
I the identity matrix. Thus, the infinitely sharp wave function
(Dirac delta function) gives estimation precision with infinite
accuracy. However, we show that this small value of κ does
not necessarily give a better estimate in the moving frame. In
fact, using a sharper wave function can face a more significant
tradeoff relation.

In passing we note that a similar conclusion was obtained
in a different problem when estimating gravitational redshift
based on the quantum field theory in curved-space time [32].
In particular, this reference showed that sharper peaks are
always better. The limit of spread κ → 0 is also properly
discussed. However, the current paper only concerns a finite
width for simplicity. In Fig. 5, we plot the maximum strength
of the tradeoff relation ω(λ = 0, κ,V ), Eq. (32), as a function
of mκ for four different velocities of a moving observer. From
Fig. 5, we see that ω(λ = 0, κ,V ) has a one peak at some
value of the spread κ∗. The peak positions depend on the
velocity V . We observe that the dependence on the velocity
is monotonically increasing, that is, the faster the observer
moves, the larger κ∗ is. This results in more significant trade-
off relations.
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FIG. 5. Numerically calculated ω(0, κ,V ) plotted as a function
of mκ at V = 0.85, 0.9, 0.95, and 1.

It is counterintuitive that the tradeoff relation can be the
most significant with a specific spread of the wave function
in the rest frame. We expect that this phenomenon has some-
thing to do with the separation distance between the peaks of
the spin-down and the spin-up wave functions. We have no
physically clear explanation for this result at this moment.

V. CONCLUSION

We investigated the tradeoff relation to estimate the
unitary-shift parameters for a moving observer. The model
considered in this paper was studied, but we were unable to
discuss a tradeoff relation in our previous study [22]. This was
because only the SLD CR bound was analyzed previously. In
this paper, we extend the idea of combining different types
of quantum Fisher information matrices, which was proposed
in Ref. [29]. This was done by combining the standard SLD
CR bound and the λLD CR bound to evaluate the proposed
indicator ω, Eq. (24).

By the proposed method using the indicator ω, we proved a
nontrivial tradeoff relation for any moving observer. Further,
this existence of the tradeoff relation was analyzed in detail,
in particular its dependence on the physical parameters such
as the spread of the wave function and the velocity of the
observer.

Before closing the paper, we wish to emphasize the ver-
satility of the proposed indicator in the sense that it can be
applied to any parametric model to discuss a tradeoff relation.
This method is simple since we only need to calculate the
λLD Fisher information matrix. We plan to extend it to a
multiple-parameter model in future work. Application to other
physical models is also an interesting topic.
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APPENDIX A: WAVE FUNCTION IN THE MOVING FRAME

We briefly summarize the Wigner rotation to derive the
state vector in a moving frame. For more detailed derivation,
see Ref. [22].

1. Lorentz transformation

Let � be a Lorentz transformation from the rest frame to
the moving frame:

� =

⎛
⎜⎜⎝

cosh χ 0 0 − sinh χ

0 1 0 0
0 0 1 0

− sinh χ 0 0 cosh χ

⎞
⎟⎟⎠, (A1)

cosh χ = 1√
1 − V 2

, sinh χ = V√
1 − V 2

, (A2)

where V is the velocity of the observer, We assume that the
observer’s motion is along the z axis. The four-momentum of
the particle is transformed as

�p = ((�p)0, (�p)1, (�p)2, (�p)3) ≡ ((�p)0,
−→
�p).

(A3)

Here we define the spatial part of the four-momentum by
−→
�p.

By the above Lorentz transformation
−→
�p is

−→
�p =

⎛
⎝ 3∑

μ=0

�1
μ pμ,

3∑
μ=0

�2
μ pμ,

3∑
μ=0

�3
μ pμ

⎞
⎠

= (p1, p2,−p0 sinh χ ), (A4)

where p0 =
√

m2 + | �p |2 and | �p |2 = (p1)2 + (p2)2.

2. State in the moving frame: Wigner rotation

The state vector in the moving frame is related to that in
the rest frame by a unitary transformation U (�) [23,24]. For
a spin-1/2 particle with a mass m, this relation is given as

U (�) |p, σ 〉 =
√

(�p)0

p0

∑
σ ′=↓,↑

D
( 1

2 )
σ ′,σ [W (�, p)] |�p, σ 〉 ,

(A5)

where D
( 1

2 )
σ ′,σ [W (�, p)] is the spin-1/2 representation of a

three-dimensional rotational group that is determined by
W (�, p) = L−1(�p)�L(p) with L(p) defined below. In the
Wigner rotation description of the Lorentz transformation,
the essential part is to use the spatial part of W (�, p).
This then gives a rotation on the Pauli spin by the standard
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correspondence (see for example Ref. [33]). We choose
L(p) = [Li

j (p)] as the one given in Ref. [24]:

Li
j (p) = δi j + (

√
m2 + | �p | 2 − m)pi pj

m| �p | 2
,

Li
0(p) = pi

m
,

L0
0(p) =

√
m2 + | �p | 2

m
.

By setting �p = (p1, p2, 0) for our model, we obtain
W (�, p) as

[W (�, p)]0
0 = 1,

[W (�, p)]1
0 = [W (�, p)]0

1 = 0,

[W (�, p)]2
0 = [W (�, p)]0

2 = 0,

[W (�, p)]3
0 = [W (�, p)]0

3 = 0,

[W (�, p)]1
1 = [W (�, p)]2

2 = p0[m(p1)2 + p0(p2)2] sinh2 χ + | �p |2[(p1)2 cosh χ + (p2)2]

| �p |2[(p0)2 sinh2 χ + | �p |2]
,

[W (�, p)]2
1 = [W (�, p)]1

2 = − p1 p2(cosh χ − 1)(p0 − m)

| �p |2(p0 cosh χ + m)
,

[W (�, p)]3
1 = −[W (�, p)]1

3 = − p1 sinh χ

p0 cosh χ + m
,

[W (�, p)]3
2 = −[W (�, p)]2

3 = − p2 sinh χ

p0 cosh χ + m
,

[W (�, p)]3
3 = p0 + m cosh χ

m + p0 cosh χ
.

We next define a 3 × 3 real matrix [R(�, p)] jk by the spatial
part of W (�, p) as

[R(�, p)] jk = [W (�, p)] j
k, ( j, k = 1, 2, 3).

We now convert this three-dimensional rotation matrix into
the spin-1/2 representation to get the desired Wigner rotation.
This can be done by decomposing R(�, p) into three Euler
angles as follows (in fact, we only need two angles in our
example; a direct calculation can show this):

R(�, p) = Rz(−φ)Ry(α)Rz(φ), (A6)

where

Ry(α) =
⎛
⎝cos α 0 − sin α

0 1 0
sin α 0 cos α

⎞
⎠,

R3(φ) =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠.

We finally obtain

D( 1
2 )(W (�, p)) = ei φ

2 σ3 e−i α
2 σ2 e−i φ

2 σ3

=
(

cos α
2 −eiφ sin α

2
e−iφ sin α

2 cos α
2

)
. (A7)

This D( 1
2 )[W (�, p)] gives Eqs. (6)–(9) after straightforward

calculations.

3. Wave function after boost in the x representation

In this section, we prove that the spin-up probability den-
sity has rotational symmetry around the peak of the original
Gaussian wave packet. To see this symmetry, we can set
θ = 0. The state vector after the Lorentz boost |ψ�

σ (θ = 0)〉
is expressed as

|ψ�
σ (θ = 0)〉 =

∫
d3 p

√
(�p)0

p0
Fθ=0, σ (p1, p2)δ(p3) |−→�p〉 .

Then, its Fourier transform is

〈x|ψ�
↑ (θ = 0)〉 =

∫
d3 p

√
(�p)0

p0
Fθ=0, ↑(p1, p2)δ(p3) 〈x|−→�p〉

= −
√

2

1 − ξ

κ

(2π )2

√
cosh χ

∫
d p1d p2e− 1

2 κ2[(p1 )2+(p2 )2]+iφ(p1, p2 ) sin
α(| �p |)

2
e−ip1x1−ip2x2−i

√
(p1 )2+(p2 )2+m2 sinh χx3

.

To execute the integration, we switch to the polar coordinate
(p,�) from the (p1, p2) coordinate. Then, the integration over
� is expressed by

∫ 2π

0
d�ei�e−ip1x1−ip2x2 =

∫ 2π

0
d�ei�e−ip(x1 cos �+x2 sin �).

(A8)

We use

p1 = p cos �, p2 = p sin �. (A9)

Let us express x1 and x2 as follows:

x1 = r cos δ, x2 = r sin δ, (A10)
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where r =
√

(x1)2 + (x2)2. By a straightforward calculation,
Eq. (A8) is expressed as follows:∫ 2π

0
d�ei�e−ip1x1−ip2x2 =

∫ 2π

0
d�e−ipr cos(�−δ)+i�

= 2eiδ
∫ π

0
d� cos �e−ipr cos �.

Using the Hasen-Bessel formula,

Jn(x) = 1

π in

∫ π

0
dθ cos nθ eix cos θ , (A11)

where Jn(x) is a Bessel function of the nth kind, we have∫ π

0
d�ei�e−ip1x1−ip2x2 = −2π ieiδJ1(| �p |r). (A12)

Substituting this expression into the Fourier transform gives

〈x|ψ�
↑ (θ = 0)〉 = i

√
2

1 − ξ

κ

2π

√
cosh χeiδ

∫ ∞

0
d ppe− 1

2 κ2 p2

× J1(pr) sin
α(p)

2
e−ip0x3 sinh χ .

Therefore, we see that | 〈x|ψ�
↑ (θ = 0)〉 |2 has an axial sym-

metry around the z axis in the x-y plane because it does not
depend on the angle δ.

APPENDIX B: λLD FOR AN n-PARAMETER
RANK DEFICIENT MODEL

Consider the general p-parameter model which is not nec-
essarily full rank:

M = {ρθ |θ = (θ1, θ2, · · · , θp) ∈ �}, (B1)

where rank ρθ = r � d = dim H for all θ ∈ �. We derive
the λLD Fisher information matrix at θ . In the following,
we drop θ since we are only concerned with the fixed θ .
To proceed with our calculation, we introduce the following
index convention.

(1) α, β, γ , · · · for {1, 2, · · · , d}: All indices.
(2) i, j, k, · · · for {1, 2, · · · , r}: Support of ρθ .
(3) a, b, c, · · · for {r + 1, · · · , d}: Kernel of ρθ .
(4) m, n, · · · for the parameter index.

Consider the eigenvalue decomposition of the state ρ as

ρ =
r∑

i=1

ρi |ei〉 〈ei| . (B2)

If we use ρa = 0 (zero eigenvalue for a = r + 1, . . . , d) for
the kernel space of ρ, we can also write

ρ =
d∑

α=1

ρα |eα〉 〈eα| , (B3)

by appropriate orthonormal vectors 〈ea| for the kernel space.
The λLD for θn is defined by a solution to

∂nρ = 1 + λ

2
ρLn + 1 − λ

2
Lnρ, (B4)

where

∂n = ∂

∂θn
. (B5)

We expand Ln in the |eα〉 basis as

Ln =
d∑

α,β=1

l (n)
α,β |eα〉 〈eβ | . (B6)

The coefficients l (n)
α,β are determined by

〈eα|∂nρ|eβ〉 =
[

1 + λ

2
ρα + 1 − λ

2
ρβ

]
l (n)
α,β . (B7)

This equation determines l (n)
α,β for α, β /∈ {r + 1, · · · , d} only:

λα,β =
{

1+λ
2 ρα + 1−λ

2 ρβ for α, β /∈ {r + 1, · · · , d},
indetermined otherwise.

(B8)
For convenience, we denote λ±

i = 1±λ
2 ρi, then we have

λi,a = λ+
i , (B9)

λa,i = λ−
i . (B10)

The λLD Ln is obtained as

Ln =
∑′

α,β
λ−1

α,β |eα〉 〈eα|∂nρ|eβ〉 〈eβ | , (B11)

where the prime indicates summing over α, β /∈ {r +
1, · · · , d}. By using the projectors Pi = |ei〉 〈ei| (i =
1, 2, . . . , r), we can express

Ln =
r∑

i=1

(λ+
i ) −1Pi∂nρ +

r∑
j=1

(λ−
j )−1∂nρPj +

r∑
i, j=1

[(λi, j )
−1 − (λ+

i )−1 − (λ−
j )−1]Pi∂nρPj . (B12)

We obtain an alternative expression by substituting Eq. (B2):

Ln =
r∑

i=1

∂nρi

ρi
+

r∑
i=1

(λ+
i ) −1 |ei〉 〈∂nei| +

r∑
i=1

(λ−
i ) −1 |∂nei〉 〈ei| +

r∑
i, j=1

[(λi, j )
−1 − (λ+

i )−1]ρi 〈∂nei|e j〉 |ei〉 〈e j |

+
r∑

i, j=1

[(λi, j )
−1 − (λ−

i )−1]ρ j 〈ei|∂ne j〉 |ei〉 〈e j | . (B13)

By its definition Eq. (16), the (m, n) component of the λLD Fisher information matrix Jλ,mn is calculated by

Jλ,mn = tr(∂nρL†
m). (B14)
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The final expression for Jλ,mn is

Jλ,mn =
r∑

i=1

(λ+
i ) −1 〈ei|∂nρ∂mρ|ei〉 +

r∑
i=1

(λ−
i ) −1 〈ei|∂mρ∂nρ|ei〉 +

r∑
i, j=1

[(λi, j )
−1 − (λ+

i )−1 − (λ−
j )−1] 〈ei|∂nρ|e j〉 〈e j |∂mρ|ei〉 .

(B15)

With further calculation, we have

Jλ,mn =
r∑

i=1

∂nρi∂mρi

ρi
+

r∑
i=1

(λ+
i ) −1(ρi )

2 〈∂nei|∂mei〉 +
r∑

i=1

(λ−
i ) −1(ρi )

2 〈∂mei|∂nei〉

+
r∑

i, j=1

[(λi, j )
−1(ρi − ρ j )

2 − (λ+
i )−1(ρi )

2 − (λ−
j )−1(ρ j )

2] 〈ei|∂ne j〉 〈∂me j |ei〉 . (B16)

APPENDIX C: CRAMÉR-RAO BOUND DETERMINED
BY SLD AND λLD CR BOUNDS

In this section, we explain the basic idea of the proposed
method to determine the existence of a tradeoff relation. Then,
we define the indicators ω and ω′, Eqs. (C7) and (24), of
witnessing the existence of a tradeoff relation. For simplicity,
we consider a special case of two-parameter models whose
quantum Fisher information matrix is symmetric with respect
to the index as an example. The generalization to a nonsym-
metric case is straightforward.

Suppose we have obtained the λLD CR inequality for the
MSE matrix: V � J−1

λ . Note that λ = 0 case corresponds to
the SLD CR inequality as a special case. Let Vii (i = 1, 2) be
the diagonal components of V, then the SLD CR inequality
gives two independent inequalities:

Vii � J−1
S,ii (i = 1, 2). (C1)

The allowed region for (V11, V22) is represented by an upper
half square region on the V11V22 plane. For example, we plot
this region by the light gray region in Fig. 6. Next, we fix a
particular value of λ �= 0 and consider the matrix inequality
V − J−1

λ � 0. By taking the determinant of this inequality,
we have(

V 11 − J−1
λ,11

)(
V 22 − J−1

λ,22

) − [
V12 − Re

(
J−1

λ,12

)]
× [

V21 − Re
(
J−1

λ,21

)] − ∣∣Im(J−1
λ,12)

∣∣2 � 0. (C2)

This inequality implies that the diagonal components, which
are of our interest, must satisfy the following relation:(

V 11 − J−1
λ,11

)(
V 22 − J−1

λ,22

)
�

∣∣Im(
J−1

λ,12

)∣∣2
. (C3)

A similar derivation of Eq. (C3) is given in Appendix A of
[29]. We now have two possibilities when considering two
regions allowed by the SLD and the λLD CR inequalities.
The first case is when the boundary for the inequality Eq. (C3)
intersects the boundary lines of the SLD CR inequality. The
first case is shown in Fig. 6. The other case is when there is
no intersection between two boundaries. This second case is
shown in Fig. 7.

In the first case (the SLD and the λLD CR bounds have
intersections), we can narrow the region with the diagonal
components of the MSE matrix V11 and V22. The allowed
region by the two CR inequalities is shown by the dark gray
region in Fig. 6. In this case, we conclude the existence of

a tradeoff relation. For the second case, on the other hand,
one cannot obtain any useful information from the two CR
inequalities, since the SLD CR bound completely dominates
the λLD CR bound. We shall define the indicator ω and ω′
by the length of the lines BA and BA′ in Fig. 6, respectively.
A graphical explanation of the indicators ω and ω′ is given
in Figs. 6 and 7. When the indicator ω is positive, we can
confirm that a tradeoff relation exists. To put our idea into the
equation, note that the boundary given by the λLD CR bound
is expressed as

(
V 11 − J−1

λ,11

)(
V 22 − J−1

λ,22

) = ∣∣Im(
J−1

λ,12

)∣∣2
(C4)

whereas the boundary given by the SLD which is the dotted
line in Fig. 6 is expressed as

V 11 = J−1
S,11, V 11 = J−1

S,22. (C5)

A

B

FIG. 6. The case of ω > 0 and ω′ > 0. The intersection of the
SLD and the λ bounds (darker gray) is not the same as the SLD or
λLD bounds.
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FIG. 7. The case of ω < 0 and ω′ < 0. The intersection of the
SLD and the λ bounds (darker gray) is the same as the SLD bounds.

The V22 component of the intersection A (Fig. 6) is given by
the V 22 at J−1

S,11. Hence, we have

V 22|V 11=J−1
S,11

=
∣∣ImJ−1

λ,12

∣∣2

J−1
S,11 − J−1

λ,11

+ J−1
λ,22. (C6)

As can be seen in Fig. 6, an explicit expression of point A is
A = (J−1

S,11, J−1
S,22). We can define the indicator ω by subtract-

ing J−1
S,22 from the right-hand side of (C6):

ω =
∣∣ImJ−1

λ,12

∣∣2 − (
J−1

S,11 − J−1
λ,11

)(
J−1

S,22 − J−1
λ,22

)
J−1

S,11 − J−1
λ,11

. (C7)

The V11 component of the intersection A′ (Fig. 6) is given by
the V 11 at J−1

S,22. We have

V 11|V 22=J−1
S,22

=
∣∣ImJ−1

λ,12

∣∣2

J−1
S,22 − J−1

λ,22

+ J−1
λ,11. (C8)

By a similar consideration, ω′ is obtained as

ω′ =
∣∣ImJ−1

λ,12

∣∣2 − (
J−1

S,11 − J−1
λ,11

)(
J−1

S,11 − J−1
λ,11

)
J−1

S,22 − J−1
λ,22

. (C9)

Since the numerators of the indicators ω and ω′ are the same,
if ω = 0 holds, ω′ holds, and vice versa.

APPENDIX D: PROOF OF � = (1 − ζ2 )/ξ > 1

This section provides the proofs of the inequalities used
in this paper. Note that the integral ξ is always positive, then
� = (1 − ζ 2)/ξ > 1 implies the following inequality:

1 − ζ 2 > ξ ⇒ 1 − ζ 2 > 0. (D1)

We first show the following relation between ξ and ζ :

ξ +
√

2ζ

κ ′V
= 1 +

√
π

2κ ′ eκ ′2
erfc(κ ′), (D2)

where κ ′ = mκ , and erfc(x) denotes the complementary error
function.

This is shown by first substituting explicit expressions of ξ

[Eq. (18)] and ζ [Eq. (19)] into the left-hand side of Eq. (D2).
Then, the definition of the complementary error function gives

ξ +
√

2ζ

κ ′V
= κ ′2

∫ ∞

0
dt2t

√
1 + t2e−κ ′2t2

(D3)

= 1 +
√

π

2κ ′ eκ ′2
erfc(κ ′). (D4)

�
Next, we show that � = (1 − ζ 2)/ξ > 1 holds for any κ > 0
and 0 < V � 1.

Proof

Let us define T by

T = 1 − ζ 2 − ξ . (D5)

Then, T > 0 is a necessary and sufficient condition for (1 −
ζ 2)/ξ > 1, since ξ is always positive by definition. To show
T > 0, we show ζ 2 + ξ < 1 instead because T > 0 ⇐⇒
ζ 2 + ξ < 1.

By the definition of ζ , Eq. (18),

ζ =
√

2V
∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2 + √

1 − V 2
, (D6)

we obtain the following inequality for ζ :

√
2V

∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2 + 1

� ζ �
√

2V
∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2

.

The integrations in the inequality above are explicitly
written as ∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2 + 1

=
√

π

4
eκ ′2

erfc(κ ′), (D7)

∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2

= κ ′

2
+

√
π

4
eκ ′2

(1 − 2κ ′2) erfc(κ ′).

(D8)

Then, we have the following inequalities regarding ζ 2 and ξ :

ζ 2 � π

8
Ve2κ ′2

[erfc(κ ′)]2 � π

8
e2κ ′2

[erfc(κ ′)]2, (D9)

ξ � −
√

2

κ ′

[
κ ′
√

2
+

√
2π

4
eκ ′2

(1 − 2κ ′2) erfc(κ ′)
]

+ 1 +
√

π

2κ ′ eκ ′2
erfc(κ ′)

= √
πκ ′eκ ′2

erfc(κ ′). (D10)

We use Eq. (D2) to derive Eq. (D10). Therefore, we obtain an
inequality for ζ 2 + ξ :

ζ 2 + ξ � π

8
e2κ ′2

[erfc(κ ′)]2 + √
πκ ′eκ ′2

erfc(κ ′). (D11)
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We can show that the right-hand side of the inequality above
is a monotonically increasing function of κ ′. Next, we check
if ζ 2 + ξ � 1 holds when κ ′ � 1. By using the asymptotic
expansion of the complementary error function erfc(x),

erfc(x) = e−x2

√
πx

∞∑
n=0

(−1)n (2n − 1)!!

2nx2n
.

For κ ′ � 1, we have

π

8
e2κ ′2

[erfc(κ ′)]2 = 1

8κ ′2 + O
(

1

κ ′4

)
,

√
πκ ′eκ ′2

erfc(κ ′) = 1 − 1

2κ ′2 + O
(

1

κ ′4

)
. (D12)

Thus, for κ ′ � 1, we obtain

ζ 2 + ξ <
π

8
e2κ ′2

[erfc(κ ′)]2 + √
πκ ′eκ ′2

erfc(κ ′)

= 1 − 3

8κ ′2 + O(
1

κ ′4 ). (D13)

The inequality ζ 2 + ξ < 1 holds for any κ ′ > 0 and V ∈ (0,1],
where κ ′ = mκ .

Therefore,

� = 1 − ζ 2

ξ
> 1 (D14)

is proven. �

APPENDIX E: INDICATOR ω AND THE SOLUTION
OF ω(λ, κ,V ) = 0

In this section, we give supplemental materials regarding
our method to confirm the existence of the tradeoff relation.
We give the properties of the indicator ω.

1. ω: A decreasing function of λ for any given κ and V

We show that ω(λ, κ,V ) is a monotonically decreasing
function of λ for any κ > 0 and any V ∈ (0, 1].

Proof

For any given κ > 0 and for any given V ∈ (0, 1], the first
derivative of the right-hand side of Eq. (26) with respect to λ

is calculated as

∂ω(λ, κ,V )

∂λ
= − λ(aλ4 + bλ2 + c)

{ζ 4 − ζ 2[(1 − λ2)ξ 2 + 2] − λ2ξ 2 + 1}2
,

(E1)

where

a = ξ 4(1 − ζ 2)2,

b = −2ξ 2(1 − ζ 2)[(1 − ζ 2)2 − ξ 2ζ 2],

c = −2
√

2ζ 6(2ξ 2 + 1) + ζ 4(ξ 4 + 5ξ 2 + 3)

− 4ζ 2(ξ 2 + 1) + 1.

From these, we are to show that the first derivative of
ω(λ, κ,V ) with respect to λ is negative. We just need to check
if aλ4 + bλ2 + c > 0 holds since the denominator is positive.

We show here that the inequality as2 + bs + c > 0, where
s = λ2. By definition, s ∈ (0, 1). Since a > 0, as2 + bs + c >

0 holds if and only if its discriminant is negative, i.e., D < 0.
The discriminant D is explicitly written as

D = −4ζ 2ξ 6(1 − ζ 2)3(�2 − 1). (E2)

As shown in Appendix D, � = (1 − ζ 2)/ξ > 1 and � > 1
hold, and hence D < 0 holds, i.e., aλ4 + bλ2 + c > 0 (a > 0)
holds. Hence, the first derivative of ω(λ, κ,V ) with respect
to λ, the right-hand side of Eq. (E1), is always negative.
The indicator ω(λ, κ,V ) is a strictly monotonically decreas-
ing function of λ for any given κ > 0 and for any given
V ∈ (0, 1]. �

2. Positivity of ω(0, κ,V )

Let us define a limit ω(0, κ,V ) by

ω(0, κ,V ) = lim
λ→0

ω(λ, κ,V ). (E3)

From Eq. (26), we have

ω(0, κ,V ) = κ2ζ 4

2ξ�(�2 − ζ 2)
, (E4)

where

� = 1 − ζ 2

ξ
. (E5)

As given in Appendix D, � > 1 and 1 − ζ 2 > 0 hold. We
have � − ζ 2 > 0 using these inequalities. Therefore,

ω(0, κ,V ) > 0 (E6)

holds for any κ > 0 and V ∈ (0, 1]. We remark that the case
of V = 0 (the rest frame) is excluded.

3. Negativity of ω(1, κ,V )

Next, we investigate the other limit, λ → 1. Let us define a
limit ω(1, κ,V ) by

ω(1, κ,V ) = lim
λ→1

ω(λ, κ,V ). (E7)

From the explicit expression of ω(λ, κ,V ), i.e., Eq. (26),
ω(1, κ,V ) is expressed as

ω(1, κ,V ) = − κ2

2(1 − ζ 2)
. (E8)

As shown in Appendix D, 1 − ζ 2 > 0 holds. Hence, we have

ω(1, κ,V ) < 0, (E9)

for any κ > 0 and V ∈ (0, 1].

4. Solution λ� for ω(λ, κ,V ) = 0

In the following, we are to derive the solution for
ω(λ, κ,V ) = 0. To be precise, let us also check the denom-
inator of Eq. (26). Beside the trivial factor κ2/2(1 − ζ 2), it is
expressed as

ξ 2

[
λ2(1 − ζ 2) + ζ 2 − (1 − ζ 2)2

ξ 2

]
. (E10)
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The first term λ2(1 − ζ 2) + ζ 2 is evaluated as

λ2(1 − ζ 2) + ζ 2 < 1 − ζ 2 + ζ 2 = 1. (E11)

We use λ2 < 1. We also know � = (1 − ζ 2)/ξ > 1. There-
fore, the denominator of the right-hand side of Eq. (26) is
always negative.

Therefore, ω(λ, κ,V ) = 0 holds, if and only if the numer-
ator is zero. We then need to solve

λ2(1 − ζ 2)2 − ξ 2[λ2(1 − ζ 2) + ζ 2]2 = 0. (E12)

By factoring the numerator Eq. (E12), we obtain an equivalent
condition for ω(λ∗, κ,V ) = 0 as follows:

{(1 − ζ 2)λ∗ + ξ [(λ∗)2(1 − ζ 2) + ζ 2]}

× {(1 − ζ 2)λ∗ − ξ [(λ∗)2(1 − ζ 2) + ζ 2]} = 0. (E13)

From 1 − ζ 2 > 0 and 0 < ξ � 1 for any κ > 0 and V ∈(0, 1],
the following inequality holds:

(1 − ζ 2)λ∗ + ξ [(λ∗)2(1 − ζ 2) + ζ 2] > 0. (E14)

Therefore, Eq. (E13) reduces to

(1 − ζ 2)λ∗ − ξ [(λ∗)2(1 − ζ 2) + ζ 2] = 0

⇔ ξ (1 − ζ 2)(λ∗)2 − (1 − ζ 2)λ∗ + ξζ 2 = 0.

The solutions of the equation, λ∗
±, are given by

λ∗
± = 1

2ξ

⎛
⎝1 ±

√
1 − 4ξ 2ζ 2

1 − ζ 2

⎞
⎠. (E15)

In the limit of κ → 0 when V = 1, ξ approaches zero. Hence,
λ∗

+|V =1 diverges. As we know that there is a unique solution,

we take the λ∗
− as the solution:

λ∗ = 1

2ξ

⎛
⎝1 −

√
1 − 4ξ 2ζ 2

1 − ζ 2

⎞
⎠. (E16)

�

APPENDIX F: RELATIVISTIC LIMIT

In this Appendix, we analyze the relativistic limit (V = 1).
First, we have

ζ =
√

2V
∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2 + √

1 − V 2
, (F1)

where κ ′ = mκ . By setting V = 1 and using the definition of
the complementary error function, we obtain

ζrel =
√

2
∫ ∞

0
dt

κ ′3t3e−κ ′2t2

√
1 + t2

(F2)

= κ ′
√

2
+

√
2π

4
eκ ′2

(1 − 2κ ′2) erfc(κ ′). (F3)

The other function ξ in the relativistic limit is also obtained as

ξrel = √
πκ ′eκ ′2

erfc(κ ′). (F4)

We can easily verify that ζrel is a monotonically decreasing
function of κ ′ by the property of the complementary error
function. We can also show the following limits:

lim
κ ′→0

ζrel =
√

2π

4
, (F5)

lim
κ ′→∞

ζrel = 0. (F6)

Similarly, ξrel is a monotonically increasing function of κ ′ and
its limits are

lim
κ ′→0

ξrel = 0, (F7)

lim
κ ′→∞

ξrel = 1. (F8)
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