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Geometrical optimization of spin clusters for the preservation of quantum coherence
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We investigate the influence of geometry on the preservation of quantum coherence in spin clusters subjected
to a thermal environment. Assuming weak interspin coupling, we explore the various buffer network configura-
tions that can be embedded in a plane. Our findings reveal that the connectivity of the buffer network is crucial
in determining the preservation duration of quantum coherence in an individual central spin. Specifically, we
observe that the maximal planar graph yields the longest preservation time for a given number of buffer spins.
Interestingly, our results demonstrate that the preservation time does not consistently increase with an increasing
number of buffer spins. Employing a quantum master equation in our simulations, we further demonstrate that a
tetrahedral geometry comprising a four-spin buffer network provides optimal protection against environmental
effects.
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I. INTRODUCTION

Quantum coherence plays a vital role in a wide range
of quantum technologies [1], including quantum comput-
ing [2,3], quantum sensing [4], quantum metrology [5], and
quantum cryptography [6]. Moreover, investigating quan-
tum coherence holds tremendous potential for enhancing
our understanding of the underlying physics of living sys-
tems [7]. However, the presence of environmental noise and
the detrimental effects of decoherence pose substantial chal-
lenges [8,9].

Noise can arise from various sources, such as thermal
fluctuations, electromagnetic radiation, and interactions with
neighboring particles. To address this challenge, several
strategies have been proposed. These encompass intention-
ally introducing supplementary noise during the coupling
process [10], using periodical kicks [11], implementing a
non-Hermitian driving potential [12], employing correlated
channels for interaction [13], leveraging topological edge
states [14–16], and integrating auxiliary atoms [17] or even
surfaces [18] to safeguard coherence [17].

The existing strategies for protecting coherence in artificial
systems predominantly rely on external drives [11], the pres-
ence of spontaneously occurring coherence [17], localization
on edge states or positioning near surfaces [18], sophisticated
interaction control methods [13], or tailored noise control
techniques [10]. In contrast, nature appears to have discovered
a simpler solution by leveraging the arrangement and con-
nectivity of molecular networks, as argued in light-harvesting
complexes containing chromophores. Although the presence
and beneficial effects of quantum coherence in such biological
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systems are still a subject of debate, we propose a theoretical
exploration to identify ideal molecular geometries for coher-
ence protection. By doing so, we aim to guide the engineering
of artificial molecules or materials that can store quantum co-
herence. Our approach holds the potential to shed light on the
lifetime and possible existence of quantum coherence under
physiological conditions in nature. Our studies may be further
complemented by quantum chemistry calculations to assess
the energetic stability of these artificial quantum networks and
search for their natural analogs.

We have a specific focus on investigating the influence of
geometrical degrees of freedom on the preservation of quan-
tum coherence within the core of an atomic cluster, where
the atoms are assumed to be two-level systems, modeled as
spin-1/2 particles. In order to achieve this objective, we thor-
oughly examine spin-star networks to evaluate the efficacy of
peripheral spins as protective barriers, shielding the central
spin from its surrounding environment. The subnetwork, com-
prised of these peripheral spins known as the buffer network,
serves as an intermediary layer that adeptly absorbs and dis-
sipates environmental noise, while simultaneously upholding
the coherence of the central spin. The utilization of buffer net-
works holds significant potential for applications in quantum
computation, quantum sensing, and the study of biological
molecules [19,20]. Our findings carry practical implications
for various applications that demand long-lived coherent spin
states, including quantum memories [21], quantum magne-
tometry [22], quantum control and computation [23,24], and
biomedical imaging [25].

The paper is structured as follows. Section II presents an
overview of the model employed in this study. In Sec. III, we
examine buffer networks with varying numbers of spins and
connectivities, and present our findings. Lastly, in Sec. IV, we
summarize our conclusions based on the results obtained.
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FIG. 1. A central spin surrounded by four buffer spins, each
one in its own thermal environment at temperature T . To illustrate
how the central spin has negligible interaction with the environment,
while the buffer spins can have frequent interactions, the thermal
environment is depicted as a molecular bath. This system can be
effectively viewed as a composite open quantum system, where the
central spin is isolated from the environment, and the buffer spins
each have their own local thermal dissipation channel.

II. MODEL SYSTEM

A. Spin-star network with different topologies

Consider a cluster of N + 1 spins that consists of a central
spin surrounded by a buffer network, as illustrated in Fig. 1.
Each buffer spin is individually connected to a thermal bath,
while the central spin does not engage in direct interactions
with the environment. Our objective is to analyze the im-
pact of buffer network size and topology on the coherence
of the central spin. To achieve this, we focus on buffer net-
works that can be represented as planar graphs. We explore
various scenarios by considering different numbers of buffer
spins, ranging from the two extremes: (i) no coupling between
buffer spins, and (ii) pairwise interactions between all nearest-
neighbor buffer spins (see Fig. 2).

For the sake of simplicity, we assume that all spins are
identical with a magnitude of 1/2. When subjected to a mag-
netic field aligned along the quantization axis z, an energy
difference denoted by h̄ω emerges between the lower state
|0〉 (spin-up) and the upper state |1〉 (spin-down), enabling a
two-level description.

The buffer spins are brought into thermal equilibrium with
the surrounding environment at an inverse temperature β,
while the central spin is initially prepared in a maximally
coherent superposition state. Then, the initial cluster state can
be represented as a product state,

ρ(0) = |0〉 + |1〉√
2

⊗ ρ⊗n
th . (1)

We take h̄ = 1. The thermal state of the buffer spins is defined
as

ρth = e−β ω
2 σ̂z

Z , (2)

where σz = |0〉 〈0| − |1〉 〈1| represents the Pauli-z operator
and Z = 2 cosh[β ω/2] denotes the partition function. Here,

FIG. 2. Depiction of extreme geometries for central spin-buffer
spin networks for N = 2, 3, 4, 5, and 6 buffer spins. The central spin,
depicted in orange (light) color, is isolated from the environment,
yet it is coupled to the blue (dark) colored buffer spins, which have
local thermal dissipation pathways. For a particular number of buffer
spins, N , we consider all the feasible buffer networks that can be
embedded in a plane. Two extreme cases are depicted here: (left
column) no connectivity and (right column) maximum connectivity
within the buffer spin network.

we assume the Boltzmann constant kB to be equal to 1. The
total Hamiltonian of the spin cluster reads as an XX central
spin model [26–30], which is a simplified case of general
Richardson-Gaudin spin cluster models [31],

Ĥ =
N+1∑
i=1

ω

2
σ̂ (i)

z +
∑
i �= j

gi j
(
σ̂ (i)

x σ̂ ( j)
x + σ̂ (i)

y σ̂ ( j)
y

)
. (3)

We take h̄ = 1. The Pauli spin-1/2 operators for the ith spin
are denoted by σ (i)

x , σ (i)
y , and σ (i)

z , and the interaction strength
between the spin pair (i, j) is represented by gi j . The central
spin, labeled by “1,” is coupled to the buffer spins at strength
g1 j = g �= 0 in all geometries under consideration. On the
other hand, each buffer network is defined by a different array
of coupling constants consisting of zero or g values, which can
be represented by a planar graph. That is to say, the coupling
constants between buffer spins can be drawn in the plane
so that buffer spins and their nonzero coupling constants are
represented by vertices and edges, respectively, and no two
edges of the resulting graph intersect at a point other than a
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vertex. The maximum number of edges between the vertices
corresponding to the buffer spins in such a graph is 3N − 6,
in the case of N � 3 buffer spins. This means that the array of
coupling constants between buffer spins cannot include more
than 3N − 6 nonzero values. Hence, the number of possible
geometries for a cluster of N + 1 spins becomes

M =
3N−6∑
k=0

(
E
k

)
, (4)

where E = N (N − 1)/2 is the number of edges for a complete
graph. Figure 2 shows two extreme geometries, contributing
to this sum, for N = 2, 3, 4, and 5 and N = 6 buffer spins rep-
resenting the buffer network; k classifies the buffer network
geometries with respect to the number of edges in them. The
left geometry corresponds to the k = 0 term, whereas the right
geometry corresponds to one of the k = 3N − 6 terms, which
allows putting the central spin right in the middle of the bulk
network.

B. Open system dynamics

We describe the open quantum system dynamics of the
spin-star network by the following Lindblad master equa-
tion [32],

ρ̇(t ) = −i
[
Ĥ , ρ(t )

] + D(ρ(t )), (5)

where h̄ is taken to be 1 and the unitary contribution to the
dynamics is provided by the self-Hamiltonian of the system
given in Eq. (3).

By assuming weakly coupled buffer spins, local thermal
dissipation channels are described by the dissipator in Eq. (5),
which reads

D(ρ) =
N+1∑
i=2

γi[1 + n(ω)]

{
σ̂−

i ρ(t )σ̂+
i − 1

2
[σ̂+

i σ̂−
i , ρ(t )]

}

+
N+1∑
i=2

γin(ω)

{
σ̂+

i ρ(t )σ̂−
i − 1

2
[σ̂−

i σ̂+
i , ρ(t )]

}
, (6)

where n(ω) is the Planck distribution at the spin resonance
frequency ω, σ̂± are the Pauli spin ladder operators, and γi =
γ is the coupling constant between the environment and the
ith buffer spin, taken to be homogeneous for each buffer spin
independent of the network structure for simplicity.

To determine whether the dissipator (6) achieves local ther-
malization in our simulations, we compare the reduced spin

states ρi = tr j1··· jn [ρ], jk �= i, with the local thermal state ρth

using two different measures. The first measure is the relative
entropy, defined as

S(ρ‖σ ) = tr[ρ log2 ρ] − tr[ρ log2 σ ]. (7)

The second measure is the trace distance, which can be
reduced to

T (ρ, σ ) = 1
2 tr[

√
(ρ − σ )2], (8)

for the Hermitian matrices ρ and σ .
For a given number of buffer spins N , we investigate the

open system dynamics of M different spin clusters and search
for the geometry that optimizes the protection of the cen-
tral spin coherence. For this aim, we quantify the quantum
coherence possessed in the reduced state of the central spin
ρ1 = tr2···n+1[ρ] by the l1 norm of coherence [33] that equals
to the sum of the magnitude of all the off-diagonal elements
of a given density matrix,

CL1 (ρ) =
∑
i �= j

|ρi j |. (9)

CL1 neglects the signs of distinct coherences in the basis
of {|0〉 , |1〉} and takes them into account independently of
each other. Another measure of coherence that we utilize to
determine the amount of coherence in the central spin is the
relative entropy of coherence [33],

CRE[ρ] = min
ς∈IC

(S[ρ‖ς ]) = S[ρ‖ρd ], (10)

where the minimum is taken over the set of incoherent states
(IC) that are diagonal in the basis {|0〉 , |1〉} and ρd is the
diagonal part of the density matrix ρ. CRE measures the distin-
guishability of a density matrix with a modified copy which is
subjected to a full dephasing process.

III. RESULTS

A. Simulation results

The simulations were performed by using scientific
PYTHON packages along with key libraries from QUTIP [34].
The spin transition frequency ω was taken as the time and
energy scale (such that ω = 1) and dimensionless scaled
parameters were used in the simulations. Particularly, the
interspin coupling strength g and the bath dissipation rate γ

were taken to be 0.002 and 0.0005, respectively. The temper-
ature of the environment (T = β−1) was taken as 0.4. The

TABLE I. The dimensionless time for which the relative entropy S(·‖·), the trace distance T (·‖·), the relative entropy of coherence CRE(·),
or the L1 norm of coherence CL1 (·) become always inferior to 10−4 at the center of spin cluster for the parameters ω = 1, g = 0.002, γ =
0.0005, and T = 0.4. The left and right columns compare the same quantity for the left and right geometries depicted in Fig. 2, which
correspond to vanishing and maximal connectivities in the buffer network, respectively. The initial state of the buffer spins is a maximally
coherent superposition state.

N + 1 S(ρ1‖ρth ) T (ρ1, ρth ) CRE(ρ1) CL1 (ρ1)

3 20640 24210 20630 23710 38970 46680 41770 50150
4 17270 29870 16870 29730 32310 58320 34590 62020
5 14990 32930 14250 32360 27250 64660 29600 66870
6 13460 25440 12410 24800 24410 48070 25820 52010
7 12930 19410 11030 17780 23260 35320 23260 37450
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TABLE II. The mean value of the relative entropy S(·‖·), the trace distance T (·‖·), the relative entropy of coherence CRE(·), or the L1

norm of coherence CL1 (·) of the central spin from time t1 = 29 000 to time t2 = 30 000 for the parameters ω = 1, g = 0.002, γ = 0.0005,
and T = 0.4. The left and right columns compare the same quantity for the left and right geometries depicted in Fig. 2, which correspond to
vanishing and maximal connectivities in the buffer network, respectively.

N + 1 S(ρ1‖ρth ) T (ρ1, ρth ) CRE(ρ1) CL1 (ρ1)

3 1.13×10−6 1.46×10−5 1.12×10−6 1.33×10−5 4.60×10−4 1.80×10−3 9.17×10−4 3.54×10−3

4 9.60×10−8 1.12×10−4 9.35×10−8 1.07×10−4 1.36×10−4 5.07×10−3 2.68×10−4 1.01×10−2

5 8.26×10−9 2.54 × 10−4 6.73×10−9 2.14 × 10−4 3.89×10−5 7.38 × 10−3 7.25×10−5 1.42 × 10−2

6 1.83×10−9 2.47×10−5 5.04×10−10 2.07×10−5 1.54×10−5 2.29×10−3 1.94×10−5 4.41×10−3

7 1.35×10−9 9.41×10−7 5.32×10−11 4.35×10−7 1.17×10−5 3.89×10−4 6.32×10−6 6.39×10−4

simulations were continued until the quantum coherence of
the central spin vanished. Specifically, we record the time
after which the quantum coherence is always inferior to 10−4.
The buffer spins are in a thermal initial state at the same
temperature as their local bath (T = 0.4).

Our simulations showed that the dissipator (6) provides
local thermalization for both central and buffer spins. For this
aim, we compared the steady-state spin states ρi(∞) with the
local thermal state ρth using the relative entropy and the trace
distance. Additionally, we identified the thermalization time
at which the relative entropy between the reduced spin states
and ρth diminishes. The findings regarding the central spin
are summarized in the first two columns of Table I for the
geometries depicted in Fig. 2. The table also presents the times
at which the relative entropy of coherence vanishes. Notably,
the disappearance of CRE(ρ1) consistently occurs later than
S(ρ1‖ρth ), indicating that complete decoherence occurs after
the populations have reached equilibrium values.

Our findings demonstrate a correlation between the pro-
tection time of quantum coherence in the central spin and
the connectivity of the buffer network, considering a specific
number of buffer spins. We observe that the network with
maximal planar graph embedding yields the longest protec-
tion time. To illustrate this, Table I presents a comparison
of the protection time for different cluster sizes, depicted in
Fig. 2, with left and right geometries representing minimal
and maximal connectivity in the buffer network, respectively.
Additionally, Fig. 3 depicts the time-dependent behavior of
central spin quantum coherence in four-buffer spin networks
with tetrahedral and square geometries. Notably, the former
exhibits a longer survival time for quantum coherence. Thus,
our conclusion is that a higher number of buffer spin inter-
actions results in a more effective protective shell around the
central spin.

In the scenario of vanishing connectivity, we observe a
continuous decrease in quantum coherence as the number of
buffer spins increases. This is expected since each buffer spin
introduces an additional local thermalization channel, thereby
accelerating the thermalization process. However, the behav-
ior of protection time differs in the maximal connectivity
scenario. It does not increase monotonically with the number
of buffer spins in the cluster. The optimal protection against
environmental decoherence, as indicated in the last column
of Table I, is achieved by a four-spin buffer network with a
tetrahedral geometry.

Furthermore, Table II provides the mean value of quantum
coherence in the central spin. The mean value is calculated

between t1 = 29 000 and t2 = 30 000, which corresponds to
the thermalization time of a single spin initially in a max-
imally coherent superposition state within a thermal bath,
as depicted in Fig. 4. According to Table II, the tetrahe-
dral geometry with four buffer spins yields the highest mean
coherence value. The oscillations appearing in Fig. 3 arise
from the closed-system dynamics. The interspin interaction
affects the coherence of the central spin periodically. When
we connect buffer spins to their local heat baths, these os-
cillations diminish over time, reducing their amplitudes. We
have also checked the case of the pure dephasing channel and
the conclusion remains the same (see Appendix A). Finally,
alternative combinations of the coupling constant and the dis-
sipative rate were explored, as depicted in Appendix B.

B. Physical mechanism of coherence protection

The erasure of quantum coherence has been a subject
of extensive discussion in the context of quantum computa-
tion, primarily as a means to efficiently reset quantum bits
before executing quantum algorithms [35–39]. Landauer’s

FIG. 3. The behavior of the L1 norm of coherence CL1 (·) for
four-buffer spin networks with respect to dimensionless time t for
the parameters ω = 1, g = 0.002, γ = 0.0005, and T = 0.4. We
use logarithmic scales for both vertical and horizontal axes. Two
geometries are compared here. The first one is the tetrahedral buffer
network which seems to be the best candidate to preserve coherence
according to the results in Tables I and II. The second one is a square
buffer network, which is another planar graph with one less edge
than the first. The solid (red) and the dash-dotted (green) curves
illustrate the quantum coherence found in the central (A) and buffer
(B) spins in the tetrahedral geometry. The dashed (dark blue) and
pointed (black) curves represent the quantum coherence localized in
the central (C) and buffer (D) spins in the square geometry.
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FIG. 4. The behavior of the L1 norm of coherence CL1 (·) for a
single spin connected to a thermal bath with respect to dimensionless
time t . The initial state of the single spin is a maximally coherent
superposition state. The time for which the L1 norm of coherence
becomes inferior to 10−4 is given by the vertically dotted gray line.
The parameters are taken as ω = 1 and T = 0.4.

pioneering ideas and erasure protocol have undergone both
experimental and theoretical scrutiny [40–42]. In this study,
we focus on the simplest scenario in which the coherence of a
qubit diminishes due to the process of thermalization, similar
to the scenario outlined in Ref. [43].

Information erasure, often referred to as “bit reset,” rep-
resents a critical operation occurring between successive
thermodynamic cycles, enabling feedback control of sub-
systems. Nevertheless, it is imperative to acknowledge that
this operation entails a significant energy exchange between
the subsystem and its surrounding thermal bath, a concept
consistent with Landauer’s principle. This principle sets a
lower bound on the amount of heat dissipation required for

information erasure, thus establishing a close connection be-
tween the energy cost and the reduction in entropy within the
subsystem.

Wang’s work [43] introduces an inequality for the dissi-
pated energy, which imposes a lower limit more stringent
than that of Landauer’s classical formulation. This further
underscores the energy-intensive nature of information era-
sure, frequently surpassing the information gain divided by
the inverse of the temperature. It is noteworthy that a more
rapid decline in coherence results in a heightened heat transfer
during the erasure process.

In our specific system, we can make a comparative anal-
ysis of the energy transfer between a configuration lacking
coupling between buffer spins and one that incorporates such
coupling. Our investigation centers on the assessment of the
local energy current within our system, which is defined as
follows,

J (t ) = tr

(
Hs

d

dt
ρs(t )

)
. (11)

In this equation, Hs = ωσz/2 represents the Hamiltonian
and ρs represents the density matrix for the central spin. The
total heat exchange in and out of the central spin can be
calculated by

Q(t ) =
∫ t

0
J (τ )dτ. (12)

To illustrate how the buffer-central spins network structure
influences the coherence protection time in the central spin,
we consider the different geometries of Fig. 2. Figure 5 ex-
hibits a time delay in the exchange of the same amount of
heat with the central spin when the buffer spins are coupled.

FIG. 5. Heat current as defined in Eq. (12) with respect to dimensionless time t . The solid red curve corresponds to the case in which there
is no coupling between the buffer spins. The dotted blue curve illustrates the case with coupling between buffer spins. (a) Two-buffer spin
network. (b) Three-buffer spin network. (c) Four-buffer spin network. (d) Five-buffer spin network.
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TABLE III. The dimensionless time for which the relative entropy S(·‖·), the trace distance T (·‖·), the relative entropy of coherence
CRE(·), or the L1 norm of coherence CL1 (·) become always inferior to 10−4 at the center of spin cluster for the parameters ω = 1, g = 0.002,
γd = 0.000 59, and T = 0.4. The left and right columns compare the same quantity for the left and right geometries depicted in Fig. 2, which
correspond to vanishing and maximal connectivity in the buffer network, respectively. The initial state of the buffer spins is a maximally
coherent superposition state. The results are for the pure dephasing channel.

N + 1 S(ρ1‖ρth ) T (ρ1, ρth ) CRE(ρ1) CL1 (ρ1)

3 6890 9990 6890 9990 13600 20440 15120 22210
4 6930 13600 6930 13600 13780 27160 15090 29520
5 7130 16960 7130 16960 13830 33770 15010 36700
6 7060 13540 7060 13540 13760 27380 14840 29810
7 6800 13020 6800 13020 13540 26530 14800 28900

The time delay in exchanging the same amount of heat energy
in the transient regime results in a delay in achieving the
minimum energy transfer essential for erasing the coherence
within the central qubit. In our specific case, the energy cost
(Ec) of coherence erasure is given by

Ec = tr[Hs(ρfin − ρint )] = −0.42, (13)

where ρint and ρfin are respectively the initial and the final
density matrix of the central spin [43]. As it can be observed
in Fig. 5, all the heat-exchange curves corresponding to the
different geometries are converging to Ec. The current anal-
ysis serves to elucidate the underlying physical principles
supporting our approach to preserving coherence. From an
analytical standpoint, it remains an open question to deter-
mine which network geometry, involving buffer and central
spins, is most effective in delaying the heat exchange required
to erase the coherence within the central spin. However, we
have systematically conducted a numerical investigation, and
the tetrahedral geometry has emerged as the most favorable
choice.

IV. CONCLUSION

In this study, we have examined the influence of buffer
network size and topology on the preservation of quantum
coherence in a central spin. Our analysis has specifically
concentrated on weak interspin coupling, considering buffer
networks that can be embedded in a plane without intersecting
edges. The results have yielded a noteworthy observation: the
preservation time of quantum coherence does not exhibit a
consistent increase with the addition of more buffer spins in

the cluster. Remarkably, we have identified that a four-spin
buffer network, characterized by maximum connectivity and
adopting a tetrahedral geometry, provides the most effective
means of preserving quantum coherence against the pertur-
bations arising from the thermal environment. This finding
highlights the significance of carefully optimizing the buffer
network’s structural features to enhance the protection of
quantum coherence in practical applications.

Notably, this tetrahedral geometry is frequently observed
in natural molecules, such as water-ice systems in hexagonal
phases [44], magnetic spin-ice substances [45], and phosphate
molecules in Posner’s clusters [20]. It is worth mentioning
that our simplified model does not fully account for such com-
plex molecules. Nevertheless, the correspondence between the
tetrahedral network and the optimal geometry holds potential
significance for both understanding biochemical processes
and advancing artificial quantum technologies.

APPENDIX A: ALTERNATIVE NOISE MODEL

The case of the pure dephasing channel has also been
checked. The dissipator in Eq. (6) has been changed to

D(ρ) =
N+1∑
i=2

γd
[
σ̂ z

i ρ(t )σ̂ z
i − ρ(t )

]
, (A1)

where γd is the dephasing rate. We considered different de-
phasing rates. The Tables III and IV are reported for γd =
0.000 59. The conclusion of tetrahedral geometry of buffer
qubits offering the best protection against decoherence re-
mained robust in the case of a dephasing environment as well.

TABLE IV. The mean value of the relative entropy S(·‖·), the trace distance T (·‖·), the relative entropy of coherence CRE(·), or the L1

norm of coherence CL1 (·) of the central spin from time t1 = 29 000 to time t2 = 30 000 for the parameters ω = 1, g = 0.002, γd = 0.000 59,
and T = 0.4. The left and right columns compare the same quantity for the left and right geometries depicted in Fig. 2, which correspond to
vanishing and maximal connectivities in the buffer network, respectively. The results are for the pure dephasing channel.

N + 1 S(ρ1‖ρth ) T (ρ1, ρth ) CRE(ρ1) CL1 (ρ1)

3 4.00×10−14 2.34×10−11 7.87×10−15 2.34×10−11 5.25×10−8 2.66×10−6 8.92×10−8 5.33×10−6

4 3.03×10−11 1.15×10−8 2.95×10−11 1.15×10−8 5.81×10−5 2.05×10−6 2.98×10−6 1.16×10−4

5 1.48×10−11 2.68 × 10−7 1.46×10−11 2.68 × 10−7 2.05×10−6 2.75 × 10−4 4.09×10−6 5.51 × 10−4

6 5.59×10−15 1.09×10−8 1.64×10−15 1.09×10−8 3.03×10−8 5.48×10−5 4.02×10−8 1.10×10−4

7 7.09×10−16 6.53×10−9 1.85×10−16 6.53×10−9 5.53×10−9 4.21×10−5 1.11×10−8 8.42×10−5
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FIG. 6. (a) Mean value of the L1 norm from time t1 = 29 000 to time t2 = 30 000 with respect to the coupling constant g and the dissipative
constant γ . The graph corresponds to the tetrahedral geometry (four-spin network with maximal connectivity in Fig. 2). (b) Difference of the
L1 norm mean values from time t1 = 29 000 to time t2 = 30 000 with respect to the coupling constant g and the dissipative constant γ . The
graph represents the L1 norm difference between the three-spin network and the four-spin network with maximum connectivity (see Fig. 2).

APPENDIX B: PARAMETER DEPENDENCE
OF THE MODEL

In this paper, specific coupling constants, denoted as g for
the interspin coupling and γ for coupling with the environ-
ment, were set at 0.002 and 0.0005 respectively. We further
explored variations in coupling constants in the context of
a four-buffer spin network arranged in a tetrahedral geom-
etry, as illustrated in Fig. 6(a). Interestingly, we observed

that changes in these coupling constants had minimal impact
on the behavior of the L1 norm. Moreover, our analysis in
Fig. 6(b) confirmed that our key findings remained consistent
across different coupling scenarios. Specifically, we compared
the L1 norm of the tetrahedral geometry with that of a three-
buffer spin network. The L1 norm of the tetrahedral geometry
consistently exceeded that of the three-buffer spin network.
This underscores the robustness of our main conclusion across
various coupling constant settings.
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