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Correlation constraints and the Bloch geometry of two qubits
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We present an inequality on the purity of a bipartite state depending solely on the length difference of the
local Bloch vectors. For two qubits this inequality is tight for all marginal states and so extends the previously
known solution for the two-qubit marginal problem. With this inequality we construct a three-dimensional Bloch
model of the two-qubit quantum state space in terms of Bloch lengths, providing a pleasing visualization of this
high-dimensional state space. This allows to characterize quantum states by a strongly reduced set of parameters
and to investigate the interplay between local properties of the marginal systems and global properties encoded
in the correlations.
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I. INTRODUCTION

The investigation of fundamental bounds in the form of
entropy inequalities, limiting the distribution of information
within a multipartite system, marked the birth of information
theory as a field of study [1]. In the same way, the exploration
of fundamental limitations on the distribution of quantum
information within a system lies at the core of the rapidly
evolving field of quantum information theory. Analogous re-
sults to classical information theory were found for the von
Neumann entropy [2–4], but at the same time there remain
many open questions [5,6].

Moreover, these are not the only known constraints to
the distribution of quantum information within a system.
Monogamy relations bound the shared entanglement that a
party can have with other parties and thus ultimately limit the
set of attainable quantum states [7–17].

The classical probability space is described geometrically
by a simplex of the corresponding dimension. While the lat-
ter geometrically is fairly regular, the quantum state space
becomes a highly complex object that admits no simple de-
scription [18,19]. Ultimately the characterization of attainable
quantum states is linked to the famous quantum marginal
problem, investigating the compatibility between local and
global eigenvalues of a state [20,21].

In this work we present a constraint of the purity of any
bipartite quantum state, based solely on the difference of the
local Bloch lengths, i.e., the Hilbert-Schmidt distance of the
marginal states to the normalized identity. For two qubits
this constraint is tight for all possible marginal states, thus

*smorelli@bcamath.org
†jens.siewert@ehu.eus

extending the previously known solution for the marginal
problem for two qubits [22]. The bound can be interpreted
as an improved constraint on the linear entropy of a bipartite
system, as the linear entropy has a one-to-one correspondence
to the Bloch lengths and also be extended to a constraint of
the local Bloch lengths of pure tripartite states.

We then use this inequality to construct a three-
dimensional model for the state space of two qubits, where
we use the two local Bloch lengths and the correlation ten-
sor length as the coordinates. This allows to characterize
important properties of states based on a very reduced set
of parameters. In the model we further identify regions of
special interest, such as purely entangled and purely separable
regions. It is worthwhile mentioning here that all our discus-
sion and results are based on the lengths of Bloch vectors,
which are directly accessible in experiments, and because of
their local unitary invariance, are particularly interesting in
the context of the arising field of randomized measurements
[23–25].

II. QUANTUM STATE SPACE AND THE BLOCH
REPRESENTATION

In what is known as the Bloch representation, density op-
erators of qubits are parametrized by the Pauli matrices σx, σy,
σz, and the identity 12

ρ = 1
2 (12 + x σx + y σy + z σz ), (1)

where x, y, and z are real numbers satisfying x2 + y2 + z2 � 1
[26,27]. Hence, the state space Q2 of a qubit can be identified
with a three-dimensional ball of radius 1 about the origin,
with a one-to-one correspondence between Bloch vectors v =
(x, y, z) and states ρ.
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Unfortunately, the Bloch ball falls short of giving an ex-
tensive comprehension of the state space of quantum systems
not because of shortcomings of the geometric model, but
because the system of a single qubit itself is too elementary to
exhibit all the complex features of a general quantum system.
Looking at higher-dimensional systems gives a richer and
more diverse structure of the quantum state space and its geo-
metrical representation, e.g., Refs. [18,19,28–35]. The Bloch
representation exists also for higher-dimensional systems. We
call a basis {μi}d2−1

i=0 satisfying μ0 = 1d and Tr(μiμ
†
j ) = dδi j

a Bloch basis [36]. Every state of a d-dimensional system can
be expanded in such a basis as

ρ = 1

d

⎛
⎝1d +

d2−1∑
i=1

viμi

⎞
⎠, (2)

where we do not include v0 = 1 in the definition of the
Bloch vector v. While the Bloch vector itself clearly depends
on the Bloch basis, the length of the Bloch vector ‖v‖2 =√

dTr(ρ2) − 1 is independent of the choice of Bloch basis as
well as state basis, as this quantity is unitarily invariant. To
reflect the fact that no basis choice with corresponding Bloch
vector is needed to define this quantity, we will refer to it
simply as Bloch length. From now on, if not stated otherwise,
all norms of vectors will be the two-norm and we omit the
subscript.

As interesting and complex as these single systems are,
they still lack an essential property: they are unable to display
correlations [37] between different parties of a more com-
plex quantum system. Steps in that direction were taken in
Refs. [38–40]. One can extend local Bloch bases to a product
basis of a multipartite system, retaining the party structure of
the system. Let {μA

i } and {μB
j } be Bloch bases for the systems

A and B of equal dimension d . Then {μA
i ⊗ μB

j } is a Bloch
basis for the joint system and every state can be expressed as

ρAB = 1

d2

(
1d2 +

∑
i

aiμ
A
i ⊗ 1d +

∑
j

b j1d ⊗ μB
j

+
∑
i, j

ti jμ
A
i ⊗ μB

j

)
. (3)

The local Bloch vectors a and b encode all the information
of the local states ρA = TrB(ρAB) and ρB = TrA(ρAB), respec-
tively. Correlations [37] are encoded in the correlation tensor
TAB. These concepts can be straightforwardly generalized for
multipartite systems. Here and in the following we consider
only systems of equal local dimensions, but all concepts are
also well defined for systems of arbitrary local dimensions.

III. PURITY CONSTRAINT FROM SECTOR DIFFERENCE

An immediate consequence of the Schmidt decomposition
is that for every pure bipartite quantum state the marginal
states are equal up to local unitaries. This means that if the
eigenvalues of the marginals are equal, there exists no non-
trivial constraint for the purity of the global state. However,
if the marginals have different eigenvalues no pure state is
compatible with those constraints. Therefore, there exists a

purity constraint based on the difference of the local states.
The following theorem gives an upper bound on the purity of
a bipartite quantum state based solely on the difference of the
local Bloch lengths. For qubits this bound is tight.

Theorem 1. For any bipartite state ρAB with equal local
dimension d it holds that

dTr
(
ρ2

AB

)
� d −

√
2d

∣∣‖a‖ − ‖b‖∣∣ + ∣∣‖a‖ − ‖b‖∣∣2
, (4)

where a and b are the local Bloch vectors of ρA = TrB(ρAB)
and ρB = TrA(ρAB), respectively, and ‖ · ‖ denotes the
two-norm.

Proof. Denote by � = |‖a‖ − ‖b‖|. Note that any state
with eigenvalues λ = 1 − �/

√
2d , 1 − λ = �/

√
2d , and

λ j = 0 ( j > 2) satisfies the inequality. Assume now that there
exist a state ρ such that dTr(ρ2) > d − √

2d� + �2. Its pu-
rity Tr(ρ2) � λ2 + (1 − λ)2 can only exceed the bound of
Eq. (4) if its leading eigenvalue satisfies λ > 1 − �/

√
2d .

Therefore, it must hold that 1 − λ < �/
√

2d . Any state can
be written as

ρ = λ|ψ〉〈ψ | + (1 − λ)σ, (5)

where |ψ〉 is the eigenvector of the eigenvalue λ and σ the
sum of the projectors of the remaining eigenvectors in the or-
thogonal subspace. Since all quantities in Eq. (4) are invariant
under local unitary operations, we can choose any local basis
to prove the statement. Writing this state in the Schmidt basis
of |ψ〉, we find

ρA = λρψ + (1 − λ)σA, (6)

ρB = λρψ + (1 − λ)σB, (7)

with equal marginals ρψ = TrB(|ψ〉〈ψ |) = TrA(|ψ〉〈ψ |).
Now it follows

1 − λ <
1√
2d

|‖a‖ − ‖b‖| (8)

= 1√
2d

|‖dρA − 1‖HS − ‖dρB − 1‖HS| (9)

� 1√
2
‖ρA − ρB‖HS (10)

= 1 − λ√
2

‖σA − σB‖HS (11)

� 1 − λ, (12)

where ‖M‖HS =
√

Tr(M†M ) denotes the Hilbert-Schmidt
or Frobenius norm. For the last inequality we use ‖σA −
σB‖HS �

√
2, which follows immediately from the positivity

of the matrices. However, this is a contradiction, therefore, the
assumption that there exists a state ρ violating the inequality
is wrong. �

This bound improves the previously known bound follow-
ing from the triangle inequality of the linear entropy, see
Fig. 1. Remarkable is the fact that for qubits this inequality
is not only tight with respect to the difference |‖a‖ − ‖b‖|,
but actually for all values of ‖a‖ and ‖b‖, see Eq. (22) for
a family of states that saturate the inequality. However, the
local Bloch length describes the state of the marginal qubits
uniquely up to local unitaries, which clearly do not change
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FIG. 1. The maximal value of Tr(ρ2) plotted against the differ-
ence �(ρ ) = |‖a‖ − ‖b‖| for d = 2. The bound of Eq. (4) is shown
in blue and the bound following from the triangle inequality of the
linear entropy in orange.

any of the quantities in the relation. This means, that, for every
two marginal states, there exists a global state compatible with
them that saturates the inequality. So we give at the same
time a more extensive answer to the pure two-qubit marginal
problem and a physically meaningful interpretation of the
solution of the general two-qubit marginal problem [22]. We
are able to exactly quantify the maximum purity of any global
state compatible with any two given marginals (or, in fact,
only the difference of their local Bloch lengths).

A direct consequence of this inequality is that for any pure
tripartite state of equal local dimension it holds that the three
local Bloch lengths satisfy

‖c‖2 � d − 1 −
√

2d
∣∣‖a‖ − ‖b‖∣∣ + ∣∣‖a‖ − ‖b‖∣∣2

. (13)

This can be seen by noting that for a pure three-party state it
holds that Tr(ρ2

AB) = Tr(ρ2
C ) and inserting this into Eq. (4).

For qubits this relation can be simplified to the known
inequality

‖a‖ + ‖c‖ � 1 + ‖b‖, (14)

following directly from the solution of the n-qubit marginal
problem [41,42]. It is saturated by states of the form

|ψ〉 =
√

x − y

2
|001〉 +

√
1 + y

2
|010〉 +

√
1 − x

2
|100〉. (15)

While conceptually different, this constraint can be
compared to the famous Coffman-Kundu-Wootters relation
(CKW) [7]. The states that saturate this relation for three
qubits form a strict subset of the states saturating CKW. This
means that CKW is sharp in a larger region than this novel
constraint, thus proving it to be weaker than CKW. At the
same time Eq. (13) holds in all finite dimensions, opening an
exciting avenue for the study of high-dimensional multipartite
quantum systems.

IV. THREE-DIMENSIONAL MODEL FOR TWO QUBITS

By taking tensor products of the Pauli matrices, this matrix
basis for the density operators of a single qubit can be ex-
tended to a product basis of the composite space of multiple
qubits. That is, every two-qubit state can be expanded in the

product Pauli basis

ρAB = 1

4

(
14 +

∑
i

aiσi ⊗ 12 +
∑

j

b j12 ⊗ σ j

+
∑
i, j

ti jσi ⊗ σ j

)
, (16)

where i, j = x, y, z and ai = 〈σi ⊗ 12〉 ≡ Tr(ρ σi ⊗ 12), b j =
〈12 ⊗ σ j〉, and ti j = 〈σi ⊗ σ j〉. The state space of a two-qubit
system is now characterized by 15 real parameters and can
thus be identified with a region in R15. While the condition∑

i a2
i + ∑

j b2
j + ∑

i, j t2
i j � 3 is still necessary to describe a

state, it is not sufficient any longer, see Refs. [38,43] for
necessary and sufficient criteria. While points of this object
are bijectively mapped to quantum states, the high dimen-
sionality makes it sometimes difficult to work with and limits
its usefulness for visualizations. Moreover, a full description
of the quantum state is often not desired, rather than general
constraints on physically relevant quantities, such as purities
and entropies. In the following we focus on a more restricted
set of parameters to construct a lower-dimensional model of
the quantum state space of a two-qubit system. We compress
the local information of each subsystem into a single coordi-
nate. The state of a qubit is characterized uniquely up to local
unitaries by its purity, or alternatively, the length of its Bloch
vector. With this choice we obtain our first two coordinates

x = ‖a‖ :=
√∑

i

a2
i , y = ‖b‖ :=

√∑
j

b2
j, (17)

as the local Bloch lengths, i.e., the length of the Bloch vector
of the reduced state in the corresponding subsystem. Finally,
the last coordinate describes the strength of (classical and
quantum) correlation between the local states. As the third
coordinate we choose

z = ‖TAB‖ :=
√∑

i, j

t2
i j, (18)

the remaining length of the global Bloch vector not encoded
in the local Bloch vectors, which we call the correlation tensor
length ‖TAB‖.

With these reduced coordinates we can describe the set
of points (‖a‖, ‖b‖, ‖TAB‖) attainable by quantum states. In
addition to the positivity of the entries, the set is completely
characterized by the inequalities

‖TAB‖ � ‖a‖ + ‖b‖ − 1, (19)

‖TAB‖2 � 3 + ‖a‖2 + ‖b‖2 − 4‖a‖‖b‖ − 4|‖a‖ − ‖b‖|,
(20)

in the sense that all quantum states are mapped into the set
defined by the inequalities and for every point satisfying both
inequalities there exists at least one state that is mapped to it.

Equation (19) was already proven in Ref. [44] and Eq. (20)
follows directly from Eq. (4) using the identity d2Tr(ρ2

AB) =
1 + ‖a‖2 + ‖b‖2 + ‖TAB‖2. Equation (19) cuts out the lower
corner of the Bloch model, depicted in blue in Fig. 2. It is
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FIG. 2. The model of the Bloch body Q2×2, depending on the lo-
cal Bloch lengths ‖a‖, ‖b‖, and the correlation tensor length ‖TAB‖.
It is restricted from below by Eq. (19) in blue and from above by
Eq. (20) in orange.

saturated by states of the form

ρlb(p, q) = p |0〉〈0| ⊗ 1/2 + q 1/2 ⊗ |0〉〈0|
+ (1 − p − q)|00〉〈00|, (21)

see Ref. [44] for more details. Equation (20) gives an upper
bound, shown in orange in Fig. 2. It is saturated by states of
the form

ρub(p, q) = p|φ(q)〉〈φ(q)| + (1 − p)|i j〉〈i j|, (22)

where |φ(q)〉 = √
q|00〉 + √

1 − q|11〉 and i �= j ∈ {0, 1}. It
follows that ‖a‖ = 1 − 2p j − 2pq, ‖b‖ = 1 − 2pi − 2pq,
and |‖a‖ − ‖b‖| = 2p. Since Tr(ρub(p, q)2) = 1 − 2p + 2p2,
Eq. (4), as well as Eq. (20), are saturated. The coordinates
are length preserving, the length of the global Bloch vector
is

√
‖a‖2 + ‖b‖2 + ‖TAB‖2, so the distance from the origin

in our model remains the Bloch length. The resulting shape
is convex with flat and curved surfaces. Since, for pure states
‖a‖ = ‖b‖, all pure states lie on a circular arc of radius

√
3

spanning from (0, 0,
√

3), representing maximally entangled
states, to (1,1,1), representing product states. This forms the
ridge of the model shown in Fig. 2. The maximally mixed state
14/4 is mapped to the origin. The model has three“artificial”
boundaries since the norms we consider are always nonnega-
tive. In this sense, the boundaries where one coordinate is zero
are not considered surfaces of the model.

The upper boundary consists of rank-2 states, they turn
out to be exactly the states maximizing the entanglement for
given mixedness of the subsystems discussed later. The lower
boundary consists of states of rank 3. So all boundaries are
occupied only by states of reduced rank. The converse does
not hold, i.e., there are states of rank 2 and rank 3 that are
mapped to the interior. However, all the states that map to the
interior of the ball with radius 1/3 around the origin are of full
rank.

The classical state space of a system with d outcomes is
the set of all probability vectors of size d and is described by
a simplex Sd−1. This set can be identified with the set of diag-
onal quantum states of the same size. For a two-bit classical
system, the states, corresponding to diagonal quantum states,
form a three-dimensional subset in the quantum states space in
form of the simplex S3, or tetrahedron. Using a parametriza-
tion in the Pauli matrices (〈σz ⊗ 12〉, 〈12 ⊗ σz〉, 〈σz ⊗ σz〉),
this tetrahedron corresponds to the convex hull of the points
(1,1,1), (−1,−1, 1), (−1, 1,−1), and (1,−1,−1). The in-
tersection with the positive octant is inscribed in our model,
described by the convex hull of the points (1,1,1), (1,0,0),
(0,1,0), (0,0,1), and (0,0,0). Looking closely at Eq. (4) one
notices a remarkable fact: The inequality is saturated every-
where and depends only on the difference of the local Bloch
lengths. However, since the trace is invariant under unitary
transformations, this means that all boundary states with equal
local Bloch length difference have the same distance from the
origin. In fact, we notice that the states on the lower edge
ρlb(p, 0) = p |00〉〈00| + (1 − p) |0〉〈0| ⊗ 1/2 form exactly
the states on the boundary if rotated by the entangling unitary

U (θ ) = cos θ (|00〉〈00| + |11〉〈11|) + sin θ (|11〉〈00|
− |00〉〈11|) + |01〉〈01| + |10〉〈10|. (23)

Therefore, our model is obtained by rotating the classical
probability space about the axis (1,−1, 0), visualizing the
fact that all quantum states can be obtained by an appropriate
unitary rotation of a positive and normalized diagonal matrix.

V. ENTANGLED AND SEPARABLE REGIONS

One interesting question is to locate entangled states in
this picture. The z axis shows the correlation between the
two subsystems. This correlation is the sum of the classical
and the quantum correlations, see Ref. [45]. Although states
mapping to the same point in the model have the same amount
of correlation, the respective parts of classical and quantum
correlation might differ considerably. Therefore, separable
and entangled states will not map into two disjointed regions.
Nevertheless there can be regions where only entangled or
only separable states map into.

It is shown that the condition SL(ρAB) < max
{SL(ρA), SL(ρB)} on the linear entropy SL(ρ) = 1 − Tr(ρ2)
implies that the state is entangled [46]. Using SL(ρA/B) =
1 − 1/2(1 + ‖a/b‖2) and SL(ρAB) = 1 − 1/4(1 + ‖a‖2 +
‖b‖2 + ‖TAB‖2) this can be translated into Bloch lengths [47]

‖TAB‖2 > 1 − |‖a‖2 − ‖b‖2| . (24)

This is a sufficient condition for entanglement, but it is
not necessary. For example, the Werner states [48] for two
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FIG. 3. Entangled and separable region in our model. The purely
entangled region defined by Eq. (24) is shown in orange, being
mapped into this region is already a sufficient condition for entan-
glement. In blue there is the separable ball of radius 1/

√
3 that is

extended to the purely separable region defined by Eq. (26) shown
in green. For every point in the area in between there exists both an
entangled and a separable state mapping to that point. So these are,
in fact, the strongest criteria for separability and entanglement that
can be found in this model.

qubits, ρW(p) = p|φ+〉〈φ+| + (1 − p)1/4 are entangled for
every p > 1/3 or ‖TAB‖ > 1/

√
3. Since ‖a‖ = ‖b‖ = 0, the

inequality would only detect entanglement for ‖TAB‖ > 1.
Nonetheless it is the largest possible entangled region as,
e.g., the state ρcc = 1/2(|00〉〈00| + |11〉〈11| is separable with
‖a‖ = ‖b‖ = 0 and ‖TAB‖ = 1. It was shown that separable
states can achieve equality in Eq. (24) for all values of ‖a‖ and
‖b‖ [47]. In Fig. 3 this region is shown in orange. A necessary
condition for the violation of a Bell inequality of Clause-
Horne-Shimony-Holt (CHSH) form is given by ‖TAB‖ > 1
[49].

A sufficient condition for separability was found by the
authors of Refs. [50,51] in the form of a separable ball around
the maximally mixed state. A state is separable if

‖a‖2 + ‖b‖2 + ‖TAB‖2 � 1
3 . (25)

This relation defines a ball of separable states of radius 1/
√

3
around the origin, shown in blue in Fig. 3.

However, this is not the largest separable set, i.e., a set
where only separable states are mapped to. In fact, the

inequality

‖TAB‖ �

⎧⎪⎪⎨
⎪⎪⎩

√
1
6 [2 − 3(‖a‖ + ‖b‖)2], ‖a‖ + ‖b‖ � 2

3 ,

1 − ‖a‖ − ‖b‖, 2
3 < ‖a‖ + ‖b‖ � 1,

‖a‖ + ‖b‖ − 1, 1 < ‖a‖ + ‖b‖,
(26)

is a sufficient condition for the separability of a state and the
strongest sufficient condition formulated in terms of ‖a‖, ‖b‖,
and ‖TAB‖. A derivation of this inequality can be found in the
Appendix. This extended region is shown in green in Fig. 3.

VI. MAXIMALLY ENTANGLED MIXED STATES

When trying to maximize the entanglement of a state under
certain restrictions two families of states are of particular
interest. The first family consists of states that maximize
the entanglement for a fixed global purity, referred to as
maximally entangled mixed states (MEMS) [52–54]. For a
two-qubit system they are of the form

ρMEMS(x, θ ) = x(|00〉〈00| + |11〉〈11|)
+ (1 − 2x − θ )|01〉〈01| + θ/2(|00〉
+ |11〉)(〈00| + 〈11|). (27)

FIG. 4. Maximally entangled states with respect to some purity
constraint. The states maximizing the concurrence for a given purity
(MEMS) are shown in red, they start at the separable region with the
state ρ ′ and continue in a straight line to the state ρ ′′. Here they bend
and continue (not in a straight line) until the maximally entangled
state. The states maximizing the concurrence for a given mixedness
of the marginals (MEMMS) correspond to the states on the boundary
of our model and are shown in orange.
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The entanglement, quantified by the Wootters concurrence
[55], becomes C(ρMEMS) = θ for these states. For 0 �
C(ρMEMS) � 2/3 it is maximized by x = 1/3 − θ/2 and in the
model the states have coordinates (1/3, 1/3,

√
2θ2 + 1/9).

For 2/3 � C(ρMEMS) � 1 the states that maximize the concur-
rence are those with x = 0 and have coordinates (1 − θ, 1 −
θ,

√
1 − 4θ + 6θ2).

In Fig. 4 they are depicted in red, where three special
cases are highlighted: the state ρ ′ = ρMEMS(1/3, 0) is the only
unentangled state of this family located at the boundary of the
separable region. The state ρ ′′ = ρMEMS(0, 2/3) connects the
two different pieces and incidentally also sits on the bound-
ary of the entangled region. Finally the state ρMEMS(0, 1) =
|φ+〉〈φ+| maximizes the overall entanglement.

The other family of interest are maximally entangled states
with fixed marginal mixedness (MEMMS) [56,57]. That is,
they maximize the two-qubit concurrence [55] for given local
Bloch lengths ‖a‖ and ‖b‖. The states in Eq. (22) representing
the upper boundary of our model of the state space are exactly
the MEMMS for two qubits. They are shown in orange in
Fig. 4.

VII. CONCLUSION

We introduced an inequality that relates the length of the
local with global Bloch vector that is provably tight for qubits
and provides deeper insight for qudits. By visualizing the
three relevant quantities we provide an instructive represen-
tation of physically relevant properties in higher-dimensional
state spaces. Beyond aesthetic and didactic value, we believe
that such simple relations will provide an important tool in
the study of complex many-body systems, where complete in-
formation about the quantum state is unattainable for reasons
of both experimental and theoretical complexity. One may
expect that a deeper understanding of relations between sector
lengths in multipartite systems may help to derive physically
relevant correlation constraints and thus make the action of the
quantum marginal problem more transparent. The solution of

the simplest case presented in this work gives a first indication
of the path toward that objective. While our inequality is not
necessarily tight in higher dimensions it remains a valuable
tool, and strengthening the inequality is an open problem
that will further broaden the application of this research
program.
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APPENDIX: SEPARABILITY FROM BLOCH LENGTHS

Here we prove that

‖TAB‖ �

⎧⎪⎨
⎪⎩

√
1
6 [2 − 3(‖a‖ + ‖b‖)2], ‖a‖ + ‖b‖ � 2

3 ,

1 − ‖a‖ − ‖b‖, 2
3 < ‖a‖ + ‖b‖ � 1,

‖a‖ + ‖b‖ − 1, 1 < ‖a‖ + ‖b‖,

is a sufficient criteria for separability.
Note that, through local unitary rotations, the marginals of

every state can be diagonalized. That is, after a local basis
change every state can be expanded in a Pauli product basis as

ρAB = 1

4

(
14 + aZσZ ⊗ 12 + bZ12 ⊗ σZ +

∑
X,Y,Z

ci jσi ⊗ σ j

)

= 1

4

⎛
⎜⎜⎜⎝

1 + aZ + bZ + cZZ cXZ − icY Z cZX − icZY cXX − cYY − icXY − icY X

cXZ + icY Z 1 + aZ − bZ − cZZ cXX + cYY − icXY + icY X −cZX + icZY

cZX + icZY cXX + cYY + icXY − icY X 1 − aZ + bZ − cZZ −cXZ + icY Z

cXX − cYY + icXY + icY X −cZX − icZY −cXZ − icY Z 1 − aZ − bZ + cZZ

⎞
⎟⎟⎟⎠,

(A1)

where aZ , bZ � 0.
Consider first the case aZ + bZ > 1. We know that cZZ �

aZ + bZ − 1 = ‖a‖ + ‖b‖ − 1. Therefore, states satisfying
‖TAB‖ = ‖a‖ + ‖b‖ − 1 are diagonal and thus separable.
Now, recall that negativity under partial transpose is a
necessary and sufficient condition for two qubits to be en-
tangled and let ρ
 be the partial transpose of ρ. Note

that |ρ12| = |ρ34| = |ρ21| = |ρ43| and |ρ13| = |ρ24| = |ρ31| =
|ρ42| and all remain unchanged under the partial transposition.
Hence ρ11ρ44 � |ρ14|2 and ρ22ρ33 � |ρ23|2 are necessary and
sufficient for positivity after partial transpose, equivalently,

(1 + cZZ )2 − (aZ + bZ )2 � (cXX + cYY )2 + (cXY − cY X )2,

(1 − cZZ )2 − (aZ − bZ )2 � (cXX − cYY )2 + (cXY + cY X )2.
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Hence the stronger conditions

(1 + cZZ )2 − (aZ + bZ )2 � 2
(
c2

XX + c2
YY + c2

XY + c2
Y X

)
,

(1 − cZZ )2 − (aZ − bZ )2 � 2
(
c2

XX + c2
YY + c2

XY + c2
Y X

)
,

are sufficient for separability and finally also

‖TAB‖2 � 1
2 ± cZZ + 3

2 c2
ZZ − 1

2 (aZ ± bZ )2 (A2)

for both signs. Choosing cZZ negative we can just take the
positive sign. Minimizing over cZZ gives cZZ = −1/3 for
aZ + bZ � 2/3 and cZZ = aZ + bZ − 1 for aZ + bZ > 2/3,

resulting in ‖TAB‖ �
√

1
6 (2 − 3(‖a‖ + ‖b‖)2) and ‖TAB‖ �

1 − ‖a‖ − ‖b‖, respectively.
To see that this is indeed the optimal bound, choose

cZZ = aZ + bZ − 1 and cXX = cYY = ε/2. This state is en-
tangled for every ε � 0. For the case aZ + bZ � 2/3
take cZZ = 1/3 and cXX = cYY = 1/9 − (aZ + bZ )2/4 + ε �
1/9 − (aZ − bZ )2/4, which is an entangled state for all ε > 0.
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[18] I. Bengtsson and K. Życzkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement, 2nd ed. (Cambridge
University Press, Cambridge, England, 2017).

[19] I. Bengtsson, S. Weis, and K. Życzkowski, Geometry of the Set
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