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We present experimentally and numerically accessible quantities that can be used to differentiate among
various families of random entangled states. To this end, we analyze the entanglement properties of bipartite
reduced states of a tripartite pure state. We introduce a ratio of simple polynomials of low-order moments of
the partially transposed reduced density matrix, and we show that this ratio takes well-defined values in the
thermodynamic limit for various families of entangled states. This allows us to sharply distinguish entanglement
phases in a way that can be understood from a quantum information perspective based on the spectrum of the
partially transposed density matrix. We analyze in particular the entanglement phase diagram of Haar-random
states, states resulting from the evolution of chaotic Hamiltonians, stabilizer states (which are outputs of
Clifford circuits), matrix-product states, and fermionic Gaussian states. We show that for Haar-random states, the
resulting phase diagram resembles the one obtained via the negativity, and that for all the cases mentioned above,
a very distinctive behavior is observed. Our results can be used to experimentally test necessary conditions for
different types of mixed-state randomness in quantum states formed in quantum computers and programmable
quantum simulators.
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I. INTRODUCTION

Many-body quantum states and quantum phases, as pre-
pared today in equilibrium or nonequilibrium dynamics on
experimental quantum devices [1], can be characterized and
classified according to their entanglement properties. Re-
cent examples of interest include the study of “entanglement
phases” appearing in ensembles of Haar-random induced
mixed states [2–6], and the measurement-driven “entangle-
ment transition” in hybrid quantum circuits [7,8], where a
volume to area-law “entanglement transition” is observed as
a function of the measurement rate. In a broader context, this
leads to the challenge of identifying observables allowing to
distinguish entanglement phases, playing essentially the role
of “entanglement order parameters” in entanglement phase
diagrams, and the development of experimentally accessible
protocols to measure these quantities on present quantum
devices.

In the present work, we address this problem in the con-
text of random many-body quantum states, with a focus on
entanglement properties of bipartite reduced states of a tri-
partite pure state. These quantum states include Haar-random
states resulting from evolution of chaotic Hamiltonians, sta-
bilizer states as outputs of Clifford circuits, matrix-product
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states, and fermionic Gaussian states. As observables, which
distinguish sharply between different entanglement phases,
we introduce the ratio of simple polynomials of low-order
moments of the partially transposed reduced density matrix
[9–13], and we show that this ratio takes on well-defined
values in the thermodynamic limit for various families of
entangled states. Besides providing a convenient tool in nu-
merical studies [14–16], such observables are experimentally
accessible, in particular within the randomized measurement
toolbox [12,17,18], paving the way to an experimental explo-
ration of entanglement phases and phase diagrams.

The outline of the remainder of the paper is the following.
In Sec. II we present a summary of our findings. In particular,
we introduce the quantity r2 and its generalizations, which
are central in our studies of entanglement phases. Despite the
simplicity of these quantities, which are ratios of polynomials
of moments of the partially transposed bipartite state, we show
that they capture the entanglement structure of Haar-random
induced mixed states in Sec. III and extend the analysis to
pseudo Haar-random induced mixed states in Sec. IV. In
Secs. V, VI, and VII we show that r2 displays a very dif-
ferent behavior for random, but not Haar-random, states, that
it allows us to observe the transition to Haar-random states,
and that it is capable of identifying other quantum resources.
We comment on experimental possibilities to access r2 in
Sec. VIII. Finally, in Sec. IX, we analyze the power of r2

for detecting entanglement. The manuscript ends with a short
summary in Sec. X.
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FIG. 1. Summary of our results and the structure of our paper. Middle panel: In Sec. III, we show that r̃2 takes well-defined values in
the three different entangled phases of Haar-random states [2]. As shown in Ref. [2], in each of the entanglement phases, the probability
distribution of the spectrum P(λ) of the partial transpose operator ρ� has a characteristic shape, as depicted in the figure. As shown in
Sec. III B, the behavior of r2 can be related to the shape of P(λ). In particular, when r2 = 1, we can understand the positions of the peaks.
Side panels (other classes of states): For random but not Haar-random states, a very different behavior of r2 is observed. For stabilizer
states (Sec. V), using the decomposition from Eq. (16) (shown here as a cartoon; see also Ref. [19]), we obtain r2 = 1. For fermionic
Gaussian states (Sec. VII), we obtain exponentially large (or small) values of r̃2. Whereas the evolution under Clifford gates (Matchgates)
can be simulated classically efficiently, the addition of resourceful T -gates (SWAPs) makes the computation universal, respectively. We show
in Sec. VII how r̃2 changes from the typical values for fermionic Gaussian states towards the value obtained for Haar-random states, as the
number of SWAP gates is increased. For states generated via dynamics from the Rydberg PXP model (Sec. VI), the values of r̃2 resemble the
ones obtained for random matrix-product states (MPSs) if the dynamics is “scarred,” and the ones of Haar-random states if the dynamics is
ergodic. For random MPSs, we observe a region with r̃2 < 1.

II. PRELIMINARIES AND SUMMARY OF RESULTS

We first introduce our notation and recall previous results
regarding the bipartite entanglement content of random states.
Then, we summarize our main findings, which are also illus-
trated in Fig. 1.

A. Notation

Throughout this work, we consider a tripartite system in a
pure state |ψ〉 ∈ HA ⊗ HB ⊗ HC . One can think of A, B, C
consisting of NA, NB, NC qubits, respectively. The associated
Hilbert spaces are of dimension LX = 2NX , with X = A, B,C,
and the dimension of the total Hilbert space is L = LALBLC =
2N . We will also use the notation NAB = NA + NB and LAB =
LALB = 2NAB . We analyze the bipartite mixed state entangle-
ment properties of reduced states ρ = trC |ψ〉〈ψ |. The partial
transpose (PT) of a density operator ρ,

ρ� = (1A ⊗ TB)ρ, (1)

where T denotes the transposition, plays a central role in
bipartite entanglement theory. A separable (nonentangled)
state can be written as a convex combination of local density
operators, which implies that their PT is always positive-
semidefinite [9,20]. That is, a state with a nonpositive PT
(NPT state) is entangled. The converse is not true as there
exist PPT entangled states, i.e., entangled states that have a

positive-semidefinite PT. The entanglement monotone related
to the PPT-condition is the logarithmic negativity [21,22]
E (ρ), given by

E (ρ) = log2 ‖ρ�‖1 = log2

∑
i

|λi|, (2)

where the sum is over eigenvalues {λi} of the partial trans-
pose (PT) operator. Our study is based on partial transpose
moments [23]

pn = tr(ρ� )n (3)

for n = 1, 2, . . . , dim(HAB). As shown in Refs. [12,13,24],
these moments can be utilized to derive necessary and
sufficient conditions (in terms of inequalities) of NPT-
entanglement. In this work, we study the properties of certain
ensembles of random states. Given an ensemble X and a func-
tion f : X → f (X ), we define the ensemble average EX [ f ]
of f with respect to X in the usual way as

EX [ f ] =
∫
X

d|ψ〉 f (|ψ〉). (4)

When the ensemble is not specified, it is assumed to be the
ensemble of Haar random states. In that case, we just write

E[ f ] =
∫

d|ψ〉 f (|ψ〉) =
∫

Haar
du f (u|0〉).
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B. Preliminaries

Before summarizing our results, we review here some
previous findings that are relevant for our work. As men-
tioned before, the entanglement content of random quantum
states is central in a variety of scenarios, including the study
of quantum many-body chaotic systems [25,26], the certi-
fication of quantum computers [27], properties of random
quantum circuits [28–30], and the description of black-holes
[31–33]. Generic properties of quantum chaotic systems can
be derived using random matrix theory [25,34–37]. A sem-
inal result in this context is due to Page [38], who showed
that the averaged bipartite entanglement entropy of Haar-
random pure states obeys a volume-law. An extension of
this result to Haar-random induced mixed states has been
achieved in [2–5]. In particular, the bipartite entanglement
properties of Haar-random induced states have been analyzed
with the logarithmic negativity, E (ρ), for different partitions
sizes (NA, NB, NC ) [2]. The scaling behavior of the expected
value of E (ρ), E[E (ρ)], determines a characteristic phase di-
agram for random states (see Fig. 2 of Ref. [2], which shows
a similar phase diagram to that presented in the center of
Fig. 1). Depending on the partition sizes, the system can be in
three different “entanglement phases.” Roughly speaking, the
phase diagram presented in Ref. [2] shows the following three
different phases: Phase I: For NC larger than NAB, E[E (ρ)]
vanishes and thus, on average, ρ is PPT. For obvious reasons,
this phase is called the PPT phase. Phase II: For NC smaller
than NAB and NA < NB (with NA �	 NB), the subsystem A is not
entangled with the subsystem C but is maximally entangled
with the subsystem B and E[E (ρ)] ∼ NA. Obviously, similar
results hold for NB < NA. This phase is called the maximally
entangled (ME) phase. Phase III: For NC smaller than NAB and
NA 	 NB, subsystems A and B are not maximally entangled
and E[E (ρ)] ∼ (NAB − NC )/2. This phase is called the en-
tanglement saturation (ES) phase. Whereas the PPT and ME
phases are expected (also due to the results on random pure
states [38]), Ref. [2] showed the existence of the ES phase
for mixed bipartite states. As we recall below, those results
can be obtained from random matrix theory in the limit of
high-dimensional Hilbert spaces. In Ref. [2] it has also been
shown that the probability distribution P(λ) of the spectrum
of ρ� shows a distinctive behavior in all three phases. In the
PPT and ES phases, it follows a semicircle distribution (with
support only on the positive domain in the PPT phase). In
contrast to that, in the ME phase, the spectrum is bimodal,
following two separate Marčenko-Pastur laws in the positive
and negative domain (see also the middle panel of Fig. 1).

C. Summary of results

We identify the following ratios as central quantities in the
study of entanglement of random states:

r2 = p2 p3

p4
, r̃2 = E[p2]E[p3]

E[p4]
(5)

and higher-order generalizations of the form rn =
pn pn+1/(pn+2 pn−1) and E[pn]E[pn+1]/(E[pn+2]E[pn−1]),
respectively. Here, E denotes the ensemble average. We
show that the quantity E[r2] can be approximated by r̃2 for
Haar-random states and used to detect and classify various

types of entanglement phases. Recall that in order to measure
or calculate moments, one can use the classical shadows or
randomized measurements technique on the same state and
then average over various states (see below).

These definitions are inspired by the study of the en-
tanglement structure of Haar-random induced mixed states
presented in Ref. [2] (see below). However, in contrast to the
negativity, these quantities only involve a few moments of the
PT, which makes them experimentally and also numerically
more accessible than the negativity. r2 and its generalizations
not only allow us to reproduce the phase diagram of Haar-
random induced states, but they are capable of identifying
various entanglement phases of different kinds of random
states. We show that they are capable of differentiating be-
tween Haar-random states and other sets of states. This is
highly relevant within quantum computation and beyond as
they can be used to confirm the behavior of random states
or to show that the system of interest does not generate
(enough) randomness. Moreover, other quantum resources,
such as “nonstabilizerness” [39], can be detected with these
quantities.

Our main findings are summarized in Fig. 1, which we
explain below in more detail.

1. Haar-random induced states (middle panel of Fig. 1)

As our first main result, we show that r̃2, which de-
pends only on up to the fourth PT moment, captures the
entanglement structure of Haar-random induced mixed states.
In particular, we analytically show that r̃2 takes quantized
values 1, 3/2, 1 for the different entanglement phases of Haar-
random induced mixed states, identifying sharply the phase
diagram shown in Fig. 2 of [2] (see the middle panels of
Figs. 1 and 2). Moreover, we can understand these properties
based on the universal properties of the negativity spectrum
{λi}, the eigenvalues of ρ� , which are reflected in the value
of r2. In particular, we show numerically that the typical
spectrum in the ME and PPT phases displays one or two
peaks around ±√

p3. As we will show below, having such
a spectrum necessarily implies the property r2 = 1. Let us
mention here that the two phases, for which r2 is 1, can be
easily differentiated using another quantity, which involves
only the first two (nontrivial) moments (see Sec. IX B and
Appendix C).

Despite the fact, that the PT moments are strongly related
to the entanglement properties of a mixed state, it is rather
surprising that the behavior of ratios of these quantities shows
such a strong agreement with that of the much more involved
negativity, which is an entanglement monotone. However, as
will become clear below, the analytic expressions derived in
Ref. [2] for the negativity, which involves all PT moments, in
the thermodynamic limit motivated us to introduce and study
the quantities presented in Eq. (5), which are functions of only
a few PT moments.

2. Random, but not Haar-random, states (side panels of Fig. 1)

As a second main result, we show that r2 displays a
very different behavior for random, but not Haar-random,
states, and that it reveals also other resources in quan-
tum information. Furthermore, we numerically show that
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(c)

(a) (b)

(d)

FIG. 2. (a),(b) Phase diagram for the ratio r̃2 of Haar-random
states with fixed NAB = 256 (a) and NAB = 10 (b). The PT moments
are computed using Eq. (9). It is possible to see that already at
experimentally relevant sizes we recover features of the phase dia-
gram in [2]. Approaching the thermodynamic limit, we observe the
emergence of the asymptotic values of r̃2 = 1 for the ME and PPT
phases, and of r̃2 = 3/2 for the ES. (c) Variance of p2 as a function
of N . The circles represent the variance for an ensemble of 100 Haar-
random states, computed numerically. The dotted lines correspond to
the analytical expressions obtained from random matrix theory. We
choose NA = NB, with NAB ≈ 2N/5 (orange) and NAB ≈ 4N/5 (red)
(we choose the closest integer for each N). (d) Variance (circles)
and linearized variance (dotted line) of r2, showing an exponen-
tial reduction of statistical fluctuations with increasing N . Light
green corresponds to the PPT phase, where for each N , we choose
NA = NB ≈ N/5. Green: we choose NA ≈ N/5, and NB ≈ 3N/5 (ME
phase). Dark green: we set NA = NB ≈ 2N/5 (ES phase).

the transition from randomly chosen states from a set of
classically simulatable states to Haar random states can be
observed with the help of r2. To demonstrate that, we con-
sider various sets of physically relevant states, as illustrated
in Fig. 1.

From classically simulatable states to random states:
Despite the simplicity of r2, it exhibits a completely differ-

ent behavior for families of states, which, if viewed as output
states of a quantum computation or simulation, can be sim-
ulated classically efficiently. Instances of such sets of states,
which we investigate here, are (i) stabilizer states, which are
generated by Clifford circuits acting on computational basis
states, (ii) random fermionic Gaussian states, which result
from random Matchgate circuits, and (iii) random matrix-
product states (rMPSs). The behavior of r2 as a function of the
system size is very different for these sets of states compared
to Haar-random induced states. To give an example, we ana-
lytically show that r2 takes a fixed value 1 for any stabilizer
state. Hence, any different value shows that the state cannot
be generated by a Clifford circuit (acting on a computational
basis state), which is classically efficiently simulatable. In
this sense, r2 can be viewed as an indicator of “magic” [40].
It is well known that the inclusion of additional resources,
such as the T-gate for Clifford circuits or the SWAP-gate for

Matchgate computation (fermionic Gaussian states), elevates
the computational power of a computation from classically
efficiently simulatable to a universal quantum computation.
Interestingly, this transition can be made apparent by studying
r2. We numerically show this for fermionic Gaussian states in
Sec. VII B. Similarly, we show strong numerical evidence that
random MPS states with low bond dimensions show a distinc-
tive behavior of r2 compared to random states. However, the
“phase diagram” resembles that of Haar-random states if the
bond dimension increases.

Chaotic and nonchaotic evolutions: We show, with the help
of a numerical example, that the behavior of r2 is different for
states generated by chaotic or nonchaotic Hamiltonian evolu-
tions. To illustrate this, we discuss below an experimentally
relevant situation based on the spin constrained dynamics of
Rydberg atoms. Therefore, r2 can serve as an indication of
entanglement and/or Haar-“randomness” that can be useful
both numerically and experimentally.

3. Measuring r2 and entanglement detection via r2

In contrast to the negativity, which can only be measured
by performing a full tomography of the reduced density matrix
[41], PT moments can be measured in an experiment using
either randomized measurements or quantum circuits using
physical copies. The PT moments of Haar random states
being exponentially small in system size, and the quantity
r2 being a ratio of such small numbers, one needs, however,
a high accuracy in estimating each PT moment. We discuss
these requirements in terms of number of measurements to
overcome statistical errors in Sec. VIII and Appendix B.

As a final result, we study the capability of r2 in detecting
entanglement contained in single states. That is, we analyti-
cally show that r2, if evaluated on a single state, can be used
to detect entanglement and analyze its relation to other means
of entanglement detection.

III. r2 REVEALS THE PHASE DIAGRAM
OF HAAR-RANDOM STATES

In this section, we focus on Haar-random induced mixed
states. As mentioned before, the phase diagram of Ref. [2]
(which is similar to the one presented in Fig. 1) is obtained by
considering the logarithmic negativity E (ρ) as a function of
the subsystem sizes. We first recall some details of the results
obtained in Ref. [2], which also will motivate the introduction
of the quantities r2 and r̃2, and more generally rn and r̃n. We
show that r̃2 takes well-defined quantized values in each of the
phases identified originally by the behavior of the negativity
in Ref. [2]. To relate the quantities introduced here, we finally
provide numerical evidence (see Fig. 2) that, for the ensemble
of Haar-random induced mixed states, the average E[r2] can
be well approximated by r̃2.

A. The ratios r̃n for Haar-random states

Given the clear distinction between the three phases in
terms of the logarithmic negativity (which contains informa-
tion about PT moments of any possible order), it is interesting,
from a more practical point of view, to see if the phases can
also be resolved using only a few low-order PT moments.
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Low-order PT moments have the advantage (compared to the
negativity) that they can be easily determined numerically
and can be estimated experimentally, using randomized mea-
surements [12,17] or interferometric “swap-tests” [10,42,43].
Here we show that the phase diagram can be observed
utilizing only low order PT moments. More precisely, the
expectation value of Haar-random induced mixed states E[r2]
is well approximated by r̃2 [see Eq. (11) below] and takes
well-defined quantized values in each of these phases (see
the middle panels of Figs. 1 and 2). In particular, r̃2 can
be interpreted as an “order parameter” for the entanglement
saturation phase, as it takes a fixed value 3/2 only in this
phase.

Let us first recall a general method to compute PT moments
of Haar-random induced mixed states. In general, the PT mo-
ments pn = tr(ρ� )n of any bipartite state ρ can be expressed
as the following expectation value:

pn = tr
(
�A(σ+) ⊗ �B(σ−)ρ⊗n

AB

)
. (6)

In the previous equation, we introduced the permuta-
tion operations �A(σ+), �B(σ−). Let Sn be the sym-
metric group over n elements. For any permutation τ ∈
Sn and any subsystem X = A, B, AB, ABC, . . ., we write
�X (τ ) for the following operator acting on n copies of
subsystem X ,

�X (τ )|φ1〉X ⊗ · · · ⊗ |φn〉X = |φτ (1)〉X ⊗ · · · ⊗ |φτ (n)〉X .

Finally, σ± are two special permutations defined as σ±(k) =
(k ± 1) mod n, i.e., cyclic (and anticyclic) permutations.

We are interested in the expectation value E[pn] over Haar-
random states |ψ〉 with ρAB = trC |ψ〉〈ψ |. In other words,

E[pn] = E[tr([�A(σ+) ⊗ �B(σ−) ⊗ 1C](|ψ〉〈ψ |)⊗n)]

= tr([�A(σ+) ⊗ �B(σ−) ⊗ 1C]E[(|ψ〉〈ψ |)⊗n]). (7)

Hence, the problem is now reduced to computing
this average. It is well-known that for Haar-random uni-
taries, the previous average equals the trace-one projec-
tor onto the symmetric subspace. This average can be
obtained (see [44,45] and also Appendix A 1) via the
twirling formula (A6). Inserting this expression in Eq. (7)
leads to

E[pn] =
∑

τ∈Sn
tr[�A(τ ◦ σ+) ⊗ �B(τ ◦ σ−) ⊗ �C (τ )]∑

τ∈Sn
tr[�ABC (τ )]

.

(8)

As noted in Ref. [2], when working in the thermodynamic
limit it is also possible to develop a diagrammatic approach
to obtain a leading-order expression for the average of PT
moments of Haar-random states:

E[pn] 	 1

(LALBLC )n

∑
τ∈Sn

Lc(τ )
C Lc(σ+◦τ )

A Lc(σ−◦τ )
B , (9)

where for any permutation τ ∈ Sn, c(τ ) is the number
of cycles in τ , counting also the cycles of length 1.
Using diagrammatic rules [2], one can obtain the thermo-
dynamic limit of the expected values of PT moments by
computing the leading contribution in L of the previous
expression.

One can show that in case NC > NAB one obtains E[pn] 	
L1−n

AB in the thermodynamic limit [2]. For NC < NAB and both
NA < N/2 and NB < N/2, one gets in the thermodynamic
limit

E[pn] 	
⎧⎨
⎩

CkLAB
(LABLC )k , n = 2k,

(2k+1)Ck

(LABLC )k , n = 2k + 1,

where Ck = (2k
k

)
/(k + 1) is the kth Catalan number. Finally,

when NAB > NC and NA > N/2, we obtain in the thermody-
namic limit

E[pn] 	
{

L1−n
C L2−n

B , n = 2k,

(LCLB)1−n, n = 2k + 1.

The case in which NAB > NC and NB > N/2 is obtained by
replacing LB with LA in the latter formula.

While in Ref. [2], the previous expressions are used to
compute the average value E[E (ρ)] (over Haar-random states)
of the logarithmic negativity in the thermodynamic limit via
the approximate relation

E[E (ρ)] 	 lim
n→1/2

log2 E[p2n], (10)

in this work we are interested in quantities that involve only
the average values of few low-order PT moments, namely
E[pk], with pk = tr(ρ� )k . We will be interested in average
values for different ensembles or families of states, as stated
in the Introduction. The previous discussion suggests that in
order to distinguish the phases in the asymptotic limit, one
could also consider ratios of these PT moments, and combine
them in such a way that the numerator and denominator have
the same total degree in L. This led us to introduce the ratios
of averaged PT moments r̃n as

r̃n = E[pn]E[pn+1]

E[pn+2]E[pn−1]
. (11)

Note that both expressions (10) and (11) involve averaged
moments of the form E[pk]. In particular, Eq. (10) contains
the (infinite) sequence of even moments (E[p2k])∞k=1, whereas
for n = 2, Eq. (11) is a ratio of the quantities (E[pk])4

k=1.
Hence, Eq. (10) contains somehow more information than
Eq. (11). However, as we will show, if one is interested
in the characteristic entanglement phase diagram of a given
ensemble, Eq. (11) provides a suitable order parameter. We
stress here that in order to find such a phase diagram using the
logarithmic negativity, one needs to study its “scaling” with
respect to the size of a tripartition, i.e., each phase can be
characterized by how the negativity changes with respect to
the size of a subsystem. In contrast to that, we will show that
r̃2 takes different quantized values in each phase, namely, it
is an order parameter. Moreover, r2 can be estimated experi-
mentally and numerically for moderated system sizes, as we
discuss in Sec. VIII.

In this work, we will consider the two quantities: r2 eval-
uated for a single state, and r̃2 evaluated for an ensembles of
states. Despite the fact that the average of r2 over an ensemble
of states does not necessarily coincide with the corresponding
r̃2, we show that in Appendix A for Haar-random states, the
average of r2 approximates r̃2. More importantly, the phase
diagram can be reproduced with both quantities. As shown in
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Appendix A, the fact that r2 has small statistical fluctuations
around r̃2 is due to the fact that each PT moment pn has
a relative variance var(pn)/E[pn]2 that decays exponentially
with N ; see the illustration in Fig. 2(a) for p2. As a conse-
quence, we can Taylor-expand r2 around r̃2, and find that the
relative variance var(r2)/r̃2

2 also decays exponentially with N ;
see Fig. 2(b). We have discussed to which extent r2 evalu-
ated for a single random state can be utilized to approximate
r̃2 (for Haar-random states). Note that additional statistical
fluctuations arise when estimating r̃2 from a finite number of
measurements in an experiment. We discuss those effects in
Sec. VIII and Appendix B.

It can be easily checked, using the formulas below Eq. (9),
that in the asymptotic limit the ratios given in Eq. (11) only
depend on n and take different but constant values in the
two entangled phases. Because it involves the lowest-order
moments, we will mostly focus on the ratio r̃2. It is also the
ratio that best allows us to distinguish the entangled phases,
taking value 3/2 in the ES phase and value 1 in the PPT and
ME phase; see Fig. 2. As shown in the second panel of Fig. 2,
the phases can also be seen in the finite-dimensional case, here
for NAB = 10. Let us remark here that another simple function
of the first three moments can be used to distinguish between
the PPT and the ME phases (see Sec. IX). We will describe
below measurement protocols that would allow us to measure
this phase diagram of Haar-random induced mixed states with
system sizes that are compatible with current experimental
systems.

Moreover, even though it cannot be seen in the asymptotic
limit, there is a small region where r̃2 < 1 in finite-
dimensional systems [see Fig. 2(b)]. In Fig. 2 we show that
the value of r2 is below 1 for NC ∈ [NAB, NAB + 2] for finite
N . From numerical computations, it can be seen that the min-
imum of r2 in the phase diagram seems to be always within
this interval.

It is interesting to note in this context that it was shown
in Ref. [4] that PPT-entangled states can be found with high
probability in a region slightly above that region. More pre-
cisely, Theorems 1 and 2 of Ref. [4] show that for 4LAB �
LC � L3/2

AB , the following two statements hold: (a) the proba-
bility that ρ� has negative eigenvalues is exponentially small,
and (b) the probability that ρ is separable is exponentially
small (see Ref. [4] for details). This implies that for NC ∈
[NAB + 2, 3NAB/2], the probability of ρ being PPT-entangled
is large. Equivalently, this will occur when NC/N ∈ [0.5 +
1/N, 0.6].

B. Relation between r2 and the negativity spectrum

As shown in Ref. [2], the shape of the negativity spec-
trum (the spectrum of ρ�) is very distinct for the three
phases (see, in particular, Fig. 2 of Ref. [2]). More pre-
cisely, plotting the density of the eigenvalues of the PT
operator leads either to a single positive “peak” (in the PPT
phase), to a function resembling a triangle around 0 (in
the ES phase), or to two separate “peaks,” one around a
positive and one around a negative eigenvalue (in the ME
phase). Here, we want to use this result and the behav-
ior of r̃2 to determine where these peaks are centered. To
this end, we will consider the density not as a function of

the eigenvalues, but as a function of rescaled and squared
eigenvalues.

We will first consider analytically a simplified situation,
where we consider r2 evaluated on a single state and model the
peaks by δ distributions. Then, we will consider finite system
sizes and illustrate this behavior for r̃2 (i.e., the average)
numerically.

Let us start out by considering r2 evaluated on a single
state to explain this behavior. Rewriting r2 as a function of
the negativity spectrum leads to

r2 =
∑

i λ
2
i p3∑

i λ
4
i

=
∑

i εi∑
i ε

2
i

, (12)

where the sum is over eigenvalues {λi}i of the PT operator
ρ� . In the second equality, we have introduced the rescaled
squared spectrum εi = λ2

i /p3.
We show now that in the PPT and ME phases, where peaks

occur in the negativity spectrum, the peaks are centered at εi =
1. Stated differently, we show that r2 = 1 implies that εi =
1, 0 for all i.

In case there is one peak, i.e., λi = λ1 for all i, we have
r2 = 1 iff LABε1 = LABε2

1 , which proves the statement. In
case there are two peaks, i.e., λi occurs ki �= 0 times for i =
1, 2, the condition r2 = 1 holds iff k1ε1 + k2ε2 = k1ε

2
1 + k2ε

2
2 .

Inserting the definition of εi and using the normalization
condition trρ� = 1, the previous condition implies straight-
forwardly that εi = 1, 0 for all i [46].

To demonstrate that this conclusion does not only hold
for the extreme case of δ distributions (and single states),
we analyze the negativity spectrum numerically. In Fig. 3,
we show that the behavior mentioned above is robust
within the various phases by studying how the negativity
spectrum changes when the relative sizes of the triparti-
tion vary. More precisely, let us explain how the different
panels in the previous figure are organized and discuss
them:

(i) The eight panels in the first two rows are dedicated
to illustrating the negativity spectrum for different values of
NC/N for a fixed ratio NA/NB. Namely, in panel (a) we show
the different values NC/N that we use in the seven panels
(b)–(h).

(ii) In addition, the four panels in the third row show the
negativity spectrum for different values of NA/NAB with fixed
NC . In this case, panel (i) illustrate the different values of
NA/NAB used in the three panels (j), (k), and (l).

(iii) Clearly, the PPT phase is characterized by a negativity
spectrum with positive-semidefinite support, whereas in the
ME and ES phases the probability density of negative eigen-
values is nonvanishing [2].

(iv) Note that, as illustrated in panel (h), in the interior of
the PPT phase r2 	 1 and the probability density has a single
“peak” around +√

p3.
(v) Finally, panels (b), (c), and (j) show that the probability

density has two “peaks” around ±√
p3 in the interior of the

ME phase for different values of NA, NB, NC .
Summarizing, while Ref. [2] showed the shapes of the

negativity spectrum in the various entanglement phases, here
the value of r2 allows us, using these results, to identify the
locations of these peaks when r2 = 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(b)

(h)

j) k) l)

FIG. 3. Distribution of the negativity spectrum {λi} and r̃2 for Haar-random states. (a)–(h) Distribution of rescaled negativity spectra
λi/

√
p3 for a single random state (blue dashed line), and an average of 100 random states (orange solid) for various points of the phase

diagrams obtained from different NC = 0, 2, 4, 6, 8, 10, 14, with a fixed NA = 6, NB = 2 (same parameters as in Fig. 7 of Ref. [2]). (i)–(l)
Same as (a)–(h) but for different values of (NA, NB ) = (1, 9), (3, 7), (5, 5), and fixed NC = 4. In the maximally entangled phase and the PPT
phase, we observed two (one, respectively) peaks centered around λi = ±√

p3 (1). As a consequence, εi ≈ 1 and r̃2 ≈ 1. Instead, in the
entanglement saturation phase [panels (e),(l)], the peak is centered around 0.

As we will show in Sec. IX, r2 can also be utilized to detect
a negative eigenvalue of the PT, i.e., to detect entanglement.
Moreover, we will show there that the p3-PPT condition [12]
can be utilized to differentiate between phase I and phase II.

IV. EFFECT OF WHITE NOISE

In this section, we apply our procedure to pseudo Haar-
random induced mixed states, which are convex combinations
of Haar-random induced mixed states and some amount of
white noise determined by a parameter ε [see Eq. (13)], which
are relevant in state-of-the-art experimental settings [27,41].
As we will see, r̃2, i.e., the mean value of low-order PT
moments, can be easily computed for the ensemble of pseudo
Haar-random induced mixed states. This allows us to compute
the corresponding phase diagram. In case it is known that
the states generated in an experiment are pseudorandom, the
phase diagram can be utilized to determine the value of the
parameter ε.

We start by defining the ensemble of pseudo Haar-random
pure states with parameter ε as the set of states

ρ ′
ABC = (1 − ε)|ψ〉ABC〈ψ | + ε1ABC/L, (13)

where 1ABC denotes the L × L dimensional identity matrix
with L = 2N , and |ψ〉ABC is Haar-random. From here, we

obtain pseudo Haar-random induced mixed states as

ρ ′ = trC (ρ ′
ABC ) = (1 − ε)ρ + ε1AB/LAB, (14)

where ρ = trC |ψ〉ABC〈ψ | is a Haar-random induced mixed
state, 1AB denotes the identity matrix, and LAB = 2NAB .

Let p′
n be the PT moment of a pseudo Haar-random in-

duced mixed state, and pn those of a Haar-random induced
mixed state. Then, the mean values E[p′

n] can be expressed in
terms of the mean values E[pn] as

E[p′
n] =

n∑
k=0

(
n

k

)
(1 − ε)kE[pk](ε/LAB)n−k, (15)

with E[p0] = p0 = LAB. Clearly we have E[p′
n] = E[pn] if

ε = 0, and E[p′
n] = L1−n

AB if ε = 1. One can use the previous
expression to compute the phase diagram of the ensemble
of pseudo Haar-random induced mixed states with noise pa-
rameter ε for all ε ∈ [0, 1]. This phase diagram interpolates
between the one for Haar-random induced mixed states for
ε = 0 and the trivial one associated with the maximally mixed
states with r̃2 ≡ 1 everywhere for ε = 1. For intermediate val-
ues 0 < ε < 1, the following two observations can be made:
(i) the lower boundary of the PPT phase (located along the
horizontal line NC/N = 0.5 for ε = 0) goes down to some
value NC/N < 0.5 that depends on ε as depicted in Fig. 4; (ii)
in the region corresponding to the ME phase for Haar-random
states (where r̃2 = 1 for ε = 0), r̃2 	 1 − ε for the values of
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(a) (b)

FIG. 4. r̃2 for Haar-random induced mixed states in the presence
of white noise. (a) r̃2 for all the possible tripartitions with NAB =
64, and a white noise contribution of ε = 1 − 10−4, comparable with
those in the experiment of Ref. [27]. (b) r̃2 for different ε, NAB = 64,
and NA = 24. In the ME region, r̃2 decreases linearly with 1 − ε for
the parameters considered, whereas the r̃2 = 3/2 region associated
with the ES phase shrinks with increasing ε.

1 − ε considered in Fig. 4(b). These results can be understood
from the leading-order contributions in the thermodynamic
limit to PT moments in the two entangled phases.

V. ASPECTS OF SIMULATABILITY REVEALED BY r2:
STABILIZER STATES

One may wonder whether the phase diagram revealed by
r2, r̃2 or the negativity for Haar-random induced mixed states
changes if one consider a different ensemble of quantum
states. Here, we determine the values of r2 for a class of
quantum states that play an important role in the classical
simulation of quantum computations: stabilizer states. We
observe strong differences compared to the situation of Haar-
random states. We will complement these results in Sec. VII
for other classes of states that are classically simulatable,
namely a class of random MPS and the class of fermionic
Gaussian states. Note that in contrast to before, we consider
here r2 evaluated for a single stabilizer state, and we do not
consider an average. This will be enough, as we will show,
since for stabilizer states, r2 can be seen to be always 1.

Stabilizer states, sometimes also referred to as Clifford
states, can be written as |ψ〉 = U |0〉⊗N , where U belongs
to the N-qubit Clifford group. This group contains all uni-
tary operators U which map (under conjugation) any N-qubit
Pauli operator σ to some N-qubit Pauli operator, σ ′, i.e.,
σ ′ = UσU †. According to the Gottesman-Knill theorem, the
output of a Clifford circuit U applied to a computational basis
state can be simulated classically efficiently [47,48].

As shown in Ref. [19], any three-partite stabilizer states
|ψ〉 can be decomposed into Greenberger-Horne-Zeilinger
(GHZ) states, Bell states, and product states, distributed
among the three parties, A, B, and C [19]. That is, |ψ〉 can
be written as

|ψ〉 = UAUBUC |0〉⊗sA |0〉⊗sB |0〉⊗sC |GHZ〉⊗gABC

× |EPR〉⊗eAB |EPR〉⊗eAC |EPR〉⊗eBC , (16)

with UA,UB,UC unitary Clifford operators on A, B,C, respec-
tively. Using this decomposition and the fact that pn(ρ ⊗

σ ) = pn(ρ)pn(σ ), it is straightforward to obtain the following
PT moments:

p2 = (
1
2

)gABC+eAC+eBC
,

p3 = (
1
4

)eAB
(

1
4

)gABC+eAC+eBC
,

p4 = (
1
4

)eAB
(

1
8

)gABC+eAC+eBC
. (17)

With all that, it is easy to see that

r2 = 1 for all Clifford states. (18)

Hence, in stark contrast to random states, r2 takes a fixed
value, which is independent of the stabilizer state and the
system sizes.

Given the decomposition above, it can also be seen that the
negativity spectrum of stabilizer states is constrained to two
values λi = ±√

p3, i.e., all eigenvalues λi of ρ� are either√
p3 or −√

p3. This is because each Bell pair between A
or B and C, and each GHZ state in Eq. (16), gives a 1/2
multiplicative contribution to the negativity spectrum, while
the eAB Bell pairs between A and B give a ±1/2 contribution.
Therefore, this type of negativity spectrum is analogous to the
ones of the PPT and ME phases of Haar-random states with
r2 ≈ 1. However, if one measures in an experiment r2 �= 1,
e.g., in the ES phase for a Haar-random state, it proves that
the state is not a stabilizer state and thus cannot be generated
via Clifford gates, which are classically efficiently simulatable
[40].

One may wonder what happens when Clifford circuits are
doped with T gates, which make them universal for quantum
computations. The question of convergence of the output of
doped Clifford circuits to Haar-random states has been studied
in Ref. [49]. In this work, we will focus on the transition of
another class of constraint states to Haar-random states by
considering fermionic Gaussian states (see Sec. VII). How-
ever, let us mention here that recently, measures of “magic”
have been introduced to quantify how distant a given quantum
state is from the set of stabilizer states, in particular in terms of
quantum resources [40,50]. The quantity r2 − 1 vanishes for
Clifford states, but it does not measure how resourceful a state
is. This can be easily understood by the fact that r2 is invariant
under local unitaries, i.e., applying a local, non-Clifford, op-
eration on a stabilizer state will also result in r2 = 1. This is
in contrast to the measures of “magic” introduced in Ref. [50]
that would detect such non-Clifford operations, and that are
invariant under global entangling Clifford operations applied
on non-Clifford states. Instead, what r2 characterizes is a sort
of magic entanglement structure of non-Clifford states: any
state with r2 �= 1 has an entanglement content that cannot be
generated using a Clifford circuit followed by local unitary
operations.

Let us finally mention that for stabilizer states, the negativ-
ity is given by the simple function [19]

E (ρ) = eAB = 1
2 log2

(
p2

2/p3
)

for all Clifford states. (19)

This shows that stabilizer states are PPT iff they satisfy the p3-
PPT condition [12], which states that for any PPT state it holds
that p3 � p2

2. In other words, p3 < p2
2 implies that the partial

transpose of the state is not positive-semidefinite. In general,
there exist, of course, states that are not PPT and for which
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p3 � p2
2. However, Eq. (19) shows that a Clifford state is PPT

(has zero negativity) if and only if the p3-PPT condition is
satisfied. In fact, for stabilizer states Eq. (17) implies that
the state is separable if and only if p3 = p2

2. Otherwise, the
p3-PPT condition is violated. Thus, we always have p3 � p2

2,
which ensures that the expression of the negativity in Eq. (19)
is always non-negative.

VI. r2 IS A TEST FOR HAAR-RANDOM STATES:
CASE STUDY WITH THE PXP MODEL

We now turn to the discussion on how to exploit the
properties of r2 to characterize the entanglement structure
of quantum many-body states in quantum simulation experi-
ments. In this section, we focus on systems based on Rydberg
atoms trapped in optical tweezers [51], which have been
used recently to realize a large variety of correlated phases
of matter, ranging from ground states of 1D and 2D spin
models [52,53] to topological states [54] and quantum spin
liquids [55]. In our context, Rydberg systems are of particular
interest as they allow for the implementation of chaotic quan-
tum many-body systems, where the entanglement structure of
states generated by quenching in the long-time limit shares
properties with the entanglement structure of Haar-random
states [56].

For the subsequent analysis, we will focus on the dynamics
of Rydberg atoms in a 1D chain as previously studied in
Refs. [52,56]. Here, entanglement is generated via the Ryd-
berg blockade mechanism. In particular, atoms located within
the blockade radius cannot be simultaneously excited to the
Rydberg state, due to the large interaction between Rydberg
excited atoms. For a 1D-chain where the blockade affects only
nearest-neighbor sites, the system is effectively described by
a PXP-model,

H = �
∑

i

PXiP . (20)

Here, the operator P constraints the Hilbert space by project-
ing out all states where two adjacent atoms are in the Rydberg
state, i.e., P = ∏

i(1i1i+1 − QiQi+1), where the operators Qi

are the local projectors Qi = |1〉i〈1|. Recently, the model (20)
has attracted great interest due to its connection to quan-
tum many-body scarring [57–59]. Despite the fact that the
Hamiltonian (20) is nonintegrable and quantum-chaotic [56],
quench dynamics from specific unentangled product states
lead to constrained dynamics with long-lived periodic revivals
accompanied by suppression of thermalization.

We first study the entanglement structure of states in
the constrained case by simulating a quantum quench
|ψ (t )〉 = e−iHt |ψ0〉 from a staggered initial state |ψ0〉 =
|Z2〉 = |10〉⊗N/2. As shown in Ref. [56], in this case the state
|ψ (t )〉 is well described by a MPS with low bond dimension.

This is also reflected in the slow growth of entanglement
entropy in Fig. 5(a). In Fig. 5(b) we analyze the averaged
entanglement negativity of the partial transpose ρ� for all
possible connected tripartitions {NA, NB, NC} of the chain. For
NC � N , the negativity is maximal around NA/NAB = 0.5.
Interestingly, the ratio r̃2 in Fig. 5(c) shows a quantitatively
different behavior that is not captured by the negativity. Close
to NC/N = 0, we observe a band in the horizontal direction in

(a)

(b) (e)

(f)(c)

(d)

FIG. 5. Entanglement structure of quantum many-body states in
nonequilibrium dynamics of a PXP-model [Eq. (20) in the main text].
Panels (a)–(c): constrained dynamics, performing a quench from an
antiferromagnetic initial state |ψ0〉 = |Z2〉 = |01〉⊗N/2. Panels (d)–
(f): quench from a maximally polarized state |ψ0〉 = |0〉⊗N , resulting
in ergodic many-body dynamics. (a) Von-Neumann entanglement
entropy as a function of time for different bipartitions of a spin
chain with N = 10. (b) Negativity for fixed N = 10 for all possible
connected tripartitions of the chain denoted by the white crosses.
(c) Corresponding phase diagram for the ratio r̃2. The data in panels
(b),(c) and (e),(f) have been obtained by averaging the quantities over
300 states from the time interval t ∈ [20, 50] 1/� indicated by the
shaded area in panels (a) and (d).

which r̃2 saturates to a value r̃2 > 1. With increasing NC , the
phase diagram shows an extended region where r̃2 < 1. As
we will see in Sec. VII A, both features are related to the finite
correlation length and associated finite bond-dimension of the
underlying state. This example shows that, when the dynamics
is constrained, r̃2 shows a different behavior compared with
random states.

For generic unentangled initial states, the dynamics of the
system is ergodic with quick thermalization of local observ-
ables. The entanglement entropy Fig. 5(d) grows linearly and
quickly saturates to a value close to the Page entropy of a ran-
dom state [38]. In this case, the averaged negativity [Fig. 5(e)]
essentially shows the same features as for Haar-random states
[2]. We observe a peak in the negativity for NC = 0 and
NA/NAB = 0.5, which broadens and fades out as the size of
the bath NC is increased. Similar features are visible when
analyzing the ratio r̃2. Here we additionally observe a band
close to NC/N = 0.5 with r̃2 < 1. As discussed above, slightly
above this region it has been proven that PPT-entangled states
are likely to be found.

We emphasize that in contrast to the negativity [Figs. 5(b)
and 5(e)], the ratio r̃2 is easily accessible in current ex-
perimental settings. As discussed in Ref. [60], randomized
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measurements for obtaining moments of ρ� can be im-
plemented in settings based on Rydberg atoms. Recently,
direct measurement of Rényi entanglement entropies has been
experimentally demonstrated in dynamically reconfigurable
Rydberg arrays by applying beam-splitting operations as Bell-
measurements between two copies of an atom array [61].
These ideas can be readily extended to measuring moments
of the partially transposed density matrix based on preparing
multiple copies of the same quantum state [10,42,43]; see also
our discussion in Sec. VIII.

VII. r2 FOR TWO CLASSICALLY SIMULATABLE
CLASSES OF STATES

We have discussed how PT moments reveal via the quantity
r̃2 the phase diagram of Haar-random states, while exhibiting
striking differences with Clifford states and nonergodic states
of the PXP model. We now show that r̃2 shows also a dis-
tinctive behavior for two other important classes of quantum
states: MPS and fermionic Gaussian states.

A. Matrix-product states

MPSs form a class of quantum states with a low level
of entanglement that can describe in particular ground states
of gapped local Hamiltonians in one dimension [62,63]. In
this section, we describe how the ratio r̃2 shows a different
behavior compared to Haar-random states.

A MPS describing the state of N qubits can be written as

|ψ〉 =
∑

σ∈{0,1}N

vT
L Mσ1

1 Mσ1
2 · · · MσN

N vR|σ1, . . . , σN 〉, (21)

where Mσi
i are χ × χ matrices, and vL and vR are vectors

of length χ . Noting that the von Neumann entropy (and any
Rényi entropy) between two connected partitions A and B is
upper-bounded by log2 χ [64], the bond dimension χ is the
key parameter that controls the amount of entanglement of the
MPS.

Here, we consider a distribution [65] of rMPSs, which are
obtained by drawing from the Haar measure a unitary matrix
from the Ui(2χ ) group for each site i = 1, . . . , N indepen-
dently, and defining[

Mσi
i

]
�,�′ = [Ui]�,�′+χσi . (22)

The vector components of vL and vR are sampled using inde-
pendent Gaussian complex variables of zero mean and unit
variance. When all the random variables have been initial-
ized, we normalize the vector |ψ〉. We calculate numerically
both the negativity and the PT moments using the algorithm
presented in Ref. [66] for various bond dimensions χ . We
consider here that the partitions A and B are adjacent and
placed at the middle of the chain; see Fig. 6(a).

In Figs. 6(c) and 6(d) we show r̃2 for two values of
χ = 8, 16. As a first notable difference with respect to Haar
random states, we observe that for NC/N � 1/2, r2 > 1 for a
large interval of values of NA/NAB. Interestingly, this region
r2 > 1 corresponds to a saturation of the negativity when
varying NA/NAB for a fixed NC ; cf. panels (e) and (f). In the
limiting case of a pure state NC → 0, we can understand this
saturation of the negativity as a consequence of the finite bond

FIG. 6. (a) Pictorial representation of a matrix-product state of
N = 8 qubits with the typical tripartition we consider. The gray
matrices represent the qubits belonging to the region C, while the red
(blue) matrix belongs to the region A (B), respectively. (b) Definition
of the matrices for rMPS. A random unitary Ui is reshaped, i.e.,
its first index is partially contracted with a qubit in the state |0〉.
(c),(d) Ratio r̃2 of the PT moments and (e),(f) average logarithmic
negativity for an ensemble of rMPS (definition in the text), with
fixed NAB = 10 and bond dimensions, respectively, χ = 8 and 16
(equivalent color scales). These data have been obtained numerically
averaging over ∼102 random realizations of the rMPS.

dimension of the rMPS. Indeed, for pure states, the negativity
can be shown to be upper-bounded by log2(χ ) [11], which is
consistent with the two plateau values shown in panels (e) and
(f) for χ = 8 and 16.

A second important observation is that r2 < 1 in the limit
NC � N/2. In this case, the two partitions A and B are NPT
entangled, as shown by the finite value of the negativity in
panels (e) and (f). This can be interpreted as follows: for
Haar-random states, we have seen that the density matrix ρ

converges to a PPT density matrix with r2 = 1 as NC increases
(intuitively, adding a qubit in the bath C always make the
reduced state ρ more mixed, until we reach the maximally
mixed state). Here instead with rMPS, we obtain an NPT state
for arbitrary large NC because the bond dimension introduces
a finite correlation length between AB and C [62,64,67].

B. Fermionic states

In this section, we study the behavior of the ratios r2, r̃2 for
the ensemble of random fermionic Gaussian mixed states, and
we show that it is again distinct from all the previously studied
classes of states. Moreover, we use r̃2 to observe the transition
from classically simulatable states (fermionic Gaussian states)
to Haar random states. To this end, we consider the change of
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r̃2 as a function of the number of SWAP gates that dope the
corresponding classically simulatable circuit.

1. Definitions

Fermionic Gaussian states have being studied in the con-
text of entanglement characterization [2,68,68–71], and they
are also of interest in quantum computation as fermionic
Gaussian pure states can be seen as the output of Matchgate
(MG) circuits [72–74]. This connection between fermionic
Gaussian states and MG circuits can be used to define prop-
erly an ensemble of random mixed states and to compute
the corresponding phase diagram associated with the ratios
r2, r̃2. The idea is to uniformly sample MG circuits and
then consider the reduced states of the resulting wave func-
tion. As we will explain below, the uniform sampling of a
MG circuit U acting on N qubits can be done efficiently
since they are characterized by a special orthogonal matrix
R ∈ SO(2N ), and the special orthogonal group has a unique
invariant (Haar) measure induced by that of the unitary group
U(2N ) ⊃ SO(2N ). The reduced state of the pure state U |0N 〉
will be a fermionic Gaussian (mixed) state completely charac-
terized by a correlation matrix scaling linearly with N that can
be efficiently computed [69,75,76] from that of U |0N 〉. From
this correlation matrix, the PT moments can be determined,
as we will explain below. Therefore, we can deal with much
larger system sizes compared to the case in which we consider
the output of a universal quantum computation. In contrast
to that, we consider in the subsequent subsection quantum
circuits that are no longer efficiently classically simulatable by
including additional resourceful gates like the SWAP gate. As
the number of resourceful gates increases, the circuits become
universal. As we show here, this transition from fermionic
Gaussian states to Haar-random states as a function of the
number of SWAP gates can be observed with r̃2.

We are interested in fermionic Gaussian mixed states
defined on the Hilbert space of N (ordered) fermionic
modes/sites that we identify with the numbers 1, 2, . . . , N . A
fermionic Gaussian state can be written in the form

ρABC ∝ exp

(
1

4

2N∑
j,k=1

Wjkc jck

)
, (23)

where W is a (2N × 2N) purely imaginary antisymmetric
matrix, and c j are (anticommuting) Majorana fermionic op-
erators. Due to the relation G = tanh(W/2) [75,76], with the
(2N × 2N) covariance matrix G with matrix elements given
by Gjk = (1/2)tr(ρABC[c j, ck]), such a density matrix can be
uniquely characterized by its covariance matrix. As mentioned
before, fermionic Gaussian pure states have been shown to be
equivalent to those states generated by MG circuits through
a Jordan-Wigner (JW) transformation [72–74]. The JW trans-
formation is a unitary mapping from an N-modes fermionic
state to an N-qubits (N-spins) state. In terms of the 2N Ma-
jorana fermionic operators, the JW mapping can be described
by the well-known relations

c2k−1 =
∏
i<k

(
σ z

i

)
σ x

k ,

c2k =
∏
i<k

(
σ z

i

)
σ

y
k , (24)

where σ x, σ y, and σ z denote the Pauli matrices. The N
fermionic creation (annihilation) operators a†

k (ak) for k =
1, . . . , N are related to the 2N Majorana fermionic operators
via the equations c2k−1 = ak + a†

k and c2k = −i(ak − a†
k ). A

state

|�〉 =
∑

i1,...,iN ∈{0,1}
αi1,...,iN (a†

1)i1 · · · (a†
N )iN |�〉, (25)

with |�〉 the Fock vacuum, can be related to the N-qubits state

|�〉 =
∑

i1,...,iN ∈{0,1}
αi1,...,iN |i1, . . . , iN 〉. (26)

Fermionic states [77] are those states of the form (25) whose
N-qubits representation (26) is an eigenstate of σ⊗N

z .
Let us consider N-qubit states that are the output of nearest-

neighbor MG circuits [72–74], i.e., we consider states of the
form |�〉 = U |0N 〉, where U is a product of two-qubits match
gates M acting on nearest neighbors. Any match gate, M, can
be written as

M =

⎛
⎜⎜⎝

u00 0 0 u01

0 v00 v01 0
0 v10 v11 0

u10 0 0 u11

⎞
⎟⎟⎠,

with u = (ui j ) and v = (vi j ) in U(2), and det u = det v. This
automatically implies that the state |�〉 = U |0N 〉 is an eigen-
state of the operator (σ z )⊗N . Hence, the corresponding state
|�〉 [via Eqs. (25) and (26)] can be written in the form of
Eq. (23) and is thus a fermionic Gaussian pure state. In
particular, its reduced state in a connected subsystem is a
fermionic Gaussian (mixed) state whose correlation matrix
can be computed efficiently from that of |�〉 [69].

Note that partial transposition in the fermionic case
can be defined in different, generally nonequivalent ways
[68,69,78,79]. Let us write ρ = trC |�〉〈�| and ρ ′ =
trC |�〉〈�|, where |�〉 and |�〉 are related via Eqs. (25) and
(26), and |�〉 = U |0N 〉 is the output of a MG circuit U . For
simplicity, in what follows we will assume that subsystems
A, B, and C are connected and also that subsystems A and
B are adjacent [80]. Then, the definition for the PT operator
which we consider here [69] has the property [74] that the PT
moments of ρ coincide with the PT moments of ρ ′.

2. Sampling fermionic Gaussian states

In what follows, we denote by G0 the correlation matrix of
the fermionic state |�〉 representing the vacuum (associated
with the state |0N 〉). Then, the correlation matrix of |�〉 cor-
responding to the state |�〉 = U |0N 〉 [see Eqs. (25) and (26)],
where U denotes a MG circuit, is given by G = R · G0 · RT .
Here, R ∈ SO(2N ) is related to the MG circuit via the equa-
tion [73,74]

U †ciU =
∑

j

Ri jc j . (27)

This can be easily verified using Eq. (27), which implies that

〈cic j〉U |0N 〉 = 〈U †cic jU 〉|0N 〉 = 〈U †ciUU †c jU 〉|0N 〉

=
∑

kl

RikR jl〈ckcl〉|0N 〉 =
∑

kl

RikR jl (G0)kl .
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Note that the relation between a MG circuit U and R ∈
SO(2N ) is one-to-one. Let us mention here that sampling
uniformly random special orthogonal matrices R ∈ SO(2N )
is equivalent to sampling from particularly structured MG
circuits [81] with O(N2) number of MGs.

The (2NAB × 2NAB) correlation matrix of the reduced state
in the connected subsystem AB can be obtained from G by
deleting the rows and columns with indices that correspond to
the modes in C, the complement of AB in 1, 2, . . . , N . There-
fore, the fermionic Gaussian state in AB can be expressed as

ρ = 1

Z
exp

(
1

2

∑
j,k∈AB

[tanh−1 G] jkc jck

)
, (28)

where Z is a normalization factor such that trρAB = 1. Let us
denote by G′ the correlation matrix of the previous state.

As explained in Appendix D [see, e.g., Eqs. (D5) and
(D8)], the matrix G′, which is efficiently computable, allows
one to compute the desired PT moments.

Summarizing, the procedure to compute the required PT
moments for the ensemble of fermionic Gaussian states is
the following. First, one calculates the correlation matrix G0

corresponding to the vacuum (associated with the state |0N 〉
in the qubits picture). Second, a (2N × 2N) special orthog-
onal matrix R is sampled uniformly randomly according to
the unique invariant measure (Haar) of SO(2N ). Third, the
correlation matrix G = R · G0 · RT is constructed. Fourth, the
correlation matrix G′, corresponding to the reduced state, is
obtained from G by deleting the rows and columns with in-
dices that correspond to the modes in C. Finally, one uses the
formulas of Appendix D [see, e.g., Eqs. (D5) and (D8)] to
compute r̃2.

In Fig. 7 we show the phase diagram of r̃2 as a function
of NC and NA, with NAB = 32 averaging over 200 repeti-
tions in panel (a). We observe qualitative differences with
respect to Haar random states. (i) First, we notice the presence
of a region with large r̃2 � 1 for NC/N � 1. (ii) Second,
when NC � NAB we observe a large region with r̃2 � 1. In-
terestingly, r̃2 does not converge to a fixed value when N
increases (keeping the ratios NA,B,C/N fixed). This is shown
in panel (b) for NA = NB, using different values of NC/N =
0, 1/33, 1/17, 1/9, 1/5, 1/3, 1/2, 2/3. For NC � N/33, r̃2 in-
creases exponentially with system size. Instead for NC >

N/33, we observe that r̃2 exponentially approaches 0.

3. From Gaussian to arbitrary states

Let us consider now nearest-neighbor MGs circuits that
are doped with SWAP gates, which make a MG computa-
tion universal [73,82,83]. By sampling numerically randomly
states generated by such (MGs + SWAP) circuits, we investi-
gate the transition from Gaussian fermionic states to random
states, as the number NSWAP of SWAP gates increases. We
consider quantum circuits U composed of 3N layers, each of
which consists in the parallel application of N/2 (even layer)
or N/2 − 1 (odd layer, respectively) nearest-neighbor ran-
dom two-qubit gates. Among these 3N2/4 + 3N (N/2 − 1)/2
gates, NSWAP of them are chosen randomly as SWAP gates, the
rest are sampled as random MGs. Therefore, the probability
to apply a SWAP gate instead of an MG is approximately
pSWAP ≈ 2NSWAP/(3N2).

(a) (b)

(c) (d)

FIG. 7. (a) Phase diagram of the fermionic Gaussian states en-
semble as a function of NA and NC , NAB = 32 (N = NA + NB + NC).
(b) r̃2 for fermionic Gaussian states, with NA = NB, as a function of
NAB for different values of NC/N . These results are averaged over
200 random states. (c) r̃2 for a doped MG circuit with NA = 5, NB =
5, NC = 0 (corresponding to the ME phase for Haar-random states).
(d) Same as (c), but for NA = 4, NB = 2, NC = 14 (in the PPT phase
for Haar-random states). Both in (c),(d), r̃2 reveals the transition from
Gaussian to Haar-random states.

The results for r̃2 are shown in Fig. 7 for partition sizes
NA, NB, NC belonging to the ME phases [panel (c)] and the
PPT phase [panel (d)], respectively. In both cases, we observe
that for pSWAP = 0 we recover the results of the previous
subsection, as we sample approximately random Gaussian
states with order N2 MGs. Note that the sampling described
in the previous subsection was equivalent to sampling from
the particularly structured circuits of Ref. [81], where the
number of MGs in each circuit was also O(N2). As the number
of SWAP gates NSWAP increases, r̃2 converges to the value
obtained by Eq. (8), indicating the generation of approximate
Haar random states.

VIII. MEASURING r2 IN EXPERIMENTS

In this section we address the problem of measuring the ra-
tio r2 in experiments. Being a nonlinear functional of the den-
sity matrix, r2 cannot be “directly” measured, i.e., as the
expectation value of an Hermitian operator. However, one
can use approaches based on randomized measurements or
physical copies, as we explain below.

For these two approaches, an important aspect to have in
mind is that, in order to faithfully estimate a ratio of PT
moments such as r2, each PT moment must be estimated with
a small relative error �pn � pn.

Since pn is typically an exponentially small number,
the determination of r2 via measuring pn and taking the
ratio of these quantities requires a very large number of
measurements. However, the key features of r2 are al-
ready visible for moderate system sizes N ∼ 8, as shown
in the various numerical examples presented here and in
Appendix B.
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A. Randomized measurements

The idea of randomized measurements consists of using
statistical estimators of PT moments based on projective mea-
surements that are performed after random unitary operations
[12,17,84,85]. The measurement protocol resembles the one
of quantum state tomography. However, a full quantum state
tomography with accuracy ε on the matrix elements of ρ

requires at least Ntot ∼ 4NAB/ε2 measurements [86]. Random-
ized measurement estimation methods allow us to estimate
PT moments with small error ε, which only requires Ntot ∼
β2NAB/ε2, with β a prefactor that is state-dependent, and
typically decreases with N [12,17,84,85] (e.g., β = 4p2 for
estimating p2). Due to this “friendly” exponential scaling, the
PT moments p2, p3 have been recently measured experimen-
tally for systems of up to 7 qubits [12] (see also Ref. [87] for a
measurement of a fourth-order polynomial of the density ma-
trix). In Appendix B, we present for completeness a numerical
study of statistical errors related to the estimation of r̃2 with
randomized measurements. We find that r̃2 can be faithfully
estimated for N = 8 for the three entanglement phases with
a number of measurements that is compatible with current
experimental possibilities.

B. Protocols with multiple copies

Protocols based on performing measurements on multiple
physical copies also allow us access to Rényi entropies
[61,88–90], and they can be adapted to measure PT
moments [43]. The idea is to rewrite PT moments as an
expectation value of a permutation operator on the extended
state ρ⊗n. While implementing with high-fidelity such a
collective measurement on multiple copies can be seen as
demanding from a technical point of view, the advantage
compared to randomized measurement protocols is that
the required number of measurements simply scales as
Ntot ∼ (1 − pn)/ε2 ≈ 1/ε2 [43].

IX. ENTANGLEMENT DETECTION VIA PARTIAL
TRANSPOSE MOMENTS

In this section, we mainly consider r2 evaluated for a single
state ρ. We will show that the inequality r2 > 1 detects a spe-
cial class of entangled states. As this condition can be seen as
a sufficient condition for entanglement based on PT moments,
we then compare it to another such condition, which involves
only the second and the third moment, namely the p3-PPT
condition introduced in Ref. [12]. Furthermore, we introduce
the p3 negativity and study this quantity in the context of
Haar-random states.

A. Detecting entanglement via r2

As shown in Refs. [12,13,24], PT moments are well suited
to detect entanglement, and a complete set of inequalities
involving PT moments can be derived which are satisfied if
and only if the state has a positive partial transpose. Stated
differently, any state that violates at least one of the inequali-
ties is necessarily NPT and therefore entangled. Here, we use
this insight to show that r2 evaluated on a single state detects
entanglement. To stress that we consider here single states, we

use the notation r2(ρ) in the following. Let us now show the
following simple observation:

Observation 1. Any bipartite state ρ with r2(ρ) > 1 is
entangled.

Despite the fact that this observation is a consequence of
the subsequent observation, we present here a proof of it, as it
illustrates a connection between the negativity spectrum and
the condition r2(ρ) > 1.

Proof. We denote by λi the eigenvalues of the partial trans-
pose of ρ and define

αn = 1

2

∑
i, j

(λiλ j )
n−1(λi − λ j )

2(λi + λ j ). (29)

Using the fact that pn = ∑
i λ

n
i , we have

αn = pn+2 pn−1(1 − rn). (30)

For any separable ρ we have λi � 0 and therefore αn �
0. Hence, αn < 0 implies that A and B are entangled. In
particular, for n = 2, and using the fact that p4 p1 = p4 >

0, we obtain r2 > 1, which implies that A and B are
entangled.

In the situation of Haar-random states, we see that the
value r2 fluctuating around 3/2 in the entanglement saturation
phase is evidence of mixed-state entanglement. However, in
the maximally entangled phase we have r2 of order 1. Clearly,
the condition above is not necessary for entanglement. In fact,
as we will show next, the p3-PPT condition, i.e., p3 > p2

2,
is strictly stronger than the condition r2 > 1, as stated in the
following observation.

Observation 2. For any bipartite state ρ with r2(ρ) > 1 it
holds that the entanglement contained in the state is detected
by the p3-PPT condition.

Proof. It is easy to show (see Lemma 1 of Ref. [24]) that
for any state ρ it holds that

p2 p4 � p2
3. (31)

Using this Lemma, we will show now that if ρ satisfies the
p3-PPT condition, i.e., if p3 � p2

2, then r2 � 1. Multiplying
the left- and right-hand side of these two inequalities, respec-
tively, and dividing by the strictly positive number p2, we
obtain

p4 p3 � p2
3 p2. (32)

Due to the prerequisite p3 � p2
2, we have that p3 > 0.

Hence, after dividing the inequality above by p3 p4 > 0, we
obtain r2 = p2 p3/p4 � 1. This shows that if r2 > 1, then
p3 < p2

2.

B. Introducing the p3-negativity

Finally, we investigate here to which extent the p3-PPT
condition can be used to detect entanglement for random
states. To this end, we find it instructive to introduce the
“p3-negativity”

E3(ρ) = 1
2 log2(p2

2/p3). (33)

Note that the p3-PPT condition is equivalent to the condition
E3(ρ) < 0. In addition, for stabilizer states (see Sec. V), we
showed that E3 = E . For random states, we also define the
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quantity Ẽ3 = 1
2 log2(E[p2]2/E[p3]) obtained after averaging

the PT moments, and which can be thus calculated analyti-
cally.

As shown in Appendix C, for such random states the value
of Ẽ3 closely resembles the one of the average negativity
E[E](ρ). In particular, while r2 does not differentiate between
the PPT phase and the maximally entangled phase (r2 = 1
in both phases), we have Ẽ3(ρ) ≈ 0 in the PPT phase and
Ẽ3(ρ) ∼ min(NA, NB) in the maximally entangled phase. Thus
Ẽ3 can be used to distinguish these two phases.

As a final remark, for all the random induced mixed states
that we have considered, cf. details on the numerical simu-
lations in Appendix C, we have observed that the following
inequality holds: E3(ρ) � E (ρ). The question of whether the
p3-negativity can be proven to be a lower bound to the nega-
tivity for any quantum state is left for further work.

X. CONCLUSION

The ratio r2 (and r̃2) provides a tool to study the entan-
glement of mixed states from only the first four moment of
the partial transpose. It can be computed numerically and
for small system sizes measured experimentally to probe the
entanglement phase diagram of random states [2], and identify
sharp differences compared to Clifford, MPS, and Gaussian
fermionic states. The value of r2 reflects in particular univer-
sal properties of mixed-state entanglement in relation to the
negativity spectrum.

These results raise interesting prospects regarding the dy-
namics of quantum circuits, where entanglement grows as a
consequence of unitary time evolution, but is also affected
by decoherence and or measurements [7]. In this context,
it will be particularly important to understand how PT mo-
ments reveal the emergence of Haar-random states in random
quantum circuits, in comparison, e.g., with random Clifford
circuits.

Another interesting outlook for our work could be to dis-
cover other types of dimensionless ratios, which can tell us
about entanglement beyond the PPT condition, for instance in
relation to the realignment criterion [91–93].
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APPENDIX A: EFFECT OF FINITE SAMPLING
AND CONCENTRATION EFFECTS

In this Appendix, we address the role of statistical fluctu-
ations when estimating r̃2 from a finite number K of random
states |ψk〉 for k = 1, . . . , K . To this end, we will first recall
how the expectation values of PT moments E[pn] [appearing
in, e.g., Eq. (7)] and more generally quantities of the form
E[pn pm] can be expressed in terms of permutation operators.

1. Basic properties of Haar-random states

Here we review some basic and well-known results from
random matrix theory that will be used below.

We are interested in expectation values of the form on =
tr(Onρ

⊗n
u ), where On is an operator acting on n copies of a

state ρu = u|0N 〉〈0N |u†. In fact, what we will need is the mean
value E[on] over Haar-random unitaries u ∼ U(2N ) [94], i.e.,

E[on] = tr
(
OnE

[
ρ⊗n

u

])
. (A1)

More explicitly, for any random variable f (u) defined over
elements of the unitary group u ∈ U(2N ), the expression
E[ f (u)] stands for the mean value over Haar-random uni-
taries u ∼ U(2N ) sampled uniformly from the unique invariant
(Haar) measure du. In other words, we define

E[ f (u)] :=
∫

Haar
du f (u). (A2)

For any operator On acting on n copies of the Hilbert space
of N qubits, consider the map

�n(On) := E[u⊗nOn(u†)⊗n] =
∫

Haar
du u⊗nOn(u†)⊗n. (A3)

It is well known [44,45] that the previous map can be ex-
pressed via the so-called twirling formula as

�n(On) =
∑

σ,τ∈Sn

Wg(στ−1) tr(�(τ )On) �(σ ). (A4)

In the previous expression, Wg(·) are the Weingarten func-
tions defined (see, e.g., Ref. [44]) for any permutation σ ∈ Sn,
where Sn is the symmetric group over n elements; and �(σ )
denote the permutations operators (acting on n copies), i.e.,

�(τ )|φ1〉 ⊗ · · · ⊗ |φn〉 = |φτ (1)〉 ⊗ · · · ⊗ |φτ (n)〉. (A5)

For any On being supported on the symmetric subspace,
such as On = (|0N 〉〈0N |)⊗n, the fact that �(τ )On = Z for all
permutations τ and that

∑
τ∈Sn

Wg(στ−1) is constant implies
that the Weingarten function decouples from the permutation
operator �(σ ). Using then that �n is trace-preserving, we
obtain

�n((|0N 〉〈0N |)⊗n) =
∑

σ∈Sn
�(σ )∑

σ∈Sn
tr[�(σ )]

, (A6)

which is merely the projector onto the symmetric subspace,
a result that is well-known. From the previous formula, one
can obtain the relevant equations used in the main text in the
context of Haar-random states. In particular, writing the PT
moments in terms of multicopy observables, and using the
formulas above, Eq. (8) was obtained.
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Finally, note that it is possible to apply the previous
equations to expressions of the form E[ono′

m], where o′
m =

tr[O′
mρ⊗m

u ]. To this end, simply note that

ono′
m = tr

[
Onρ

⊗n
u

]
tr
[
O′

mρ⊗m
u

] = tr[On ⊗ O′
mρ⊗(m+n)

u ],

(A7)

and thus, using the linearity of the mean value in the previous
equation and Eq. (A6) with n → n + m,

E[onom] = tr
[
On ⊗ O′

mE
[
ρ⊗(m+n)

u

]]
=

∑
σ∈S(m+n)

tr[On ⊗ O′
m�(σ )]

tr[�(σ )]
. (A8)

The latter formula [together with Eq. (8)] will be used in Ap-
pendix A 2 to compute covariances of the form cov[pn, pm] =
E[pn pm] − E[pn]E[pm] of PT moments.

2. Variance in the estimation of r̃2 for a finite
number of random states

We now address the role of statistical fluctuations when
estimating r̃2 from a finite number K of random states
|ψ〉k=1,...,K .

Here, we consider that we build an estimation r̃ (e)
2 from

empirical averages of PT moments p(e)
n over the K random

states. To this end, a central assumption is that the statistical
fluctuations of p(e)

n around the mean values are sufficiently
small. This can be explicitly checked using the formulas of
Appendix A 1 for low-order PT moments. In particular, for the
estimated values p(e)

n of PT moments of order n = 2, 3, 4, the
corresponding variances are exponentially smaller that their
expectations squared. We show this for the particular case of
n = 2 in Fig. 2. Using now a Taylor expansion around these
mean values, we have

r̃ (e)
2 = p(e)

2 p(e)
3

p(e)
4

≈ r̃2

(
1 +

4∑
n=2

an(p(e)
n − E[pn])

E[pn]

)
(A9)

with a2,3 = 1, a4 = −1.
Based on this approximation, we can express the variance

of r̃ (e)
2 as

var
[(

r̃ (e)
2

)2]
r̃2

2

≈
∑

n

var
[
p(e)

n

]
E[pn]2

+ 2
∑
n<n′

anan′cov
[
p(e)

n , p(e)
n′

]
E[pn]E[pn′ ]

=
∑

n

var[pn]

KE[pn]2
+ 2

∑
n<n′

anan′cov[pn, pn′ ]

KE[pn]E[pn′ ]
.

(A10)

Note that this type of approximation to the variance is known
as linearized variance in statistics [95]. To write the second
equality, we have used the fact that the estimations p(e)

n are
built from K independently sampled random states. Using
Appendix A 1, we can write the analytical expressions for the
variances var[pn], as well as covariances cov[pn, pm] (see also
Ref. [49] for n = 2). This allows us to approximate var[r̃ (e)

2 ]
[given in Eq. (A10)] analytically.

In Fig. 2, apart from showing the variance of p(e)
2 , we

also plot that of r̃ (e)
2 as a function of N , and for different

points of the phase diagram. Here, we consider the extreme
situation K = 1 where those quantities are estimated from a
single random state using p(e)

n = pn and r̃ (e)
2 = r2. For small

systems N , we also calculate numerically the exact variance
of r2 (without Taylor approximation), and we obtain excellent
agreement with our linearized variance approximation. We
observe that the relative variance var[r2]/r̃2

2 decays exponen-
tially with N . This means that in the thermodynamic limit
N → ∞, the statistical fluctuations of r2 become negligible
even in the extreme case where a single state is considered.

APPENDIX B: MEASURING r̃2 WITH CLASSICAL
SHADOWS OF RANDOMIZED MEASUREMENTS

In this Appendix, we summarize the protocol to access r̃2 in
an experiment based on the randomized measurement toolbox
[18] (and references therein), and we estimate numerically the
statistical errors that are due to the finite number of measure-
ments.

We consider a randomized measurement protocol of PT
moments for systems of N qubits based on “classical shad-
ows” [12,84]. This relies on single-qubit random unitaries
u = ⊗

ui that are sampled independently from the Haar mea-
sure. When applying Nu such transformation on a quantum
state ρAB, and performing for each transformation Nm pro-
jective measurements, one can build unbiased estimations of
the PT moments pn (see Ref. [12] for the precise estimation
formula and variance bounds on the statistical estimators).
In the situation in which we are interested in average PT
moments over Haar-random states, in order to access r̃2, we
will consider that the measurement sequence is performed on
Ns different random states sampled from the Haar measure.
The total number of projective measurements to obtain an
estimation of r̃2 is therefore NsNuNm.

We now assess numerically the required number of mea-
surements to extract r̃2 with a small statistical error. We
consider a system with N = 8 qubits, which is sufficiently
large to observe the three entangled phases of Haar-random
states. In Fig. 8, we show the estimated value of r̃2 as a
function of NuNm for different Nm = 1, 10, 100. The number
of states is fixed to Ns = 64, which is sufficient to obtain
convergence of the average PT moments to the Haar expec-
tation values with excellent accuracy. We consider different
partitions NA, NB, NC corresponding to the PPT phase [panels
(a),(b)], the maximally entangled phase [panels (c),(d)], and
the entanglement saturation phase [panels (e),(f)]. The errors
are computed using the jackknife resampling method. As
shown in the figure, we can estimate the value of r̃2 with good
accuracy, and thus identify the three entanglement phases
with a number of measurements 64NuNm ∼ 105−106 that is
compatible with current experimental possibilities [96,97].

APPENDIX C: p3-NEGATIVITY FOR RANDOM STATES

In this Appendix, we study the value of the p3-
negativity Ẽ3 = log2(E[p2]2/E[p3])/2 of Haar-random states.
In Figs. 9(a) and 9(b), we represent Ẽ3 for NAB = 256 and
10, respectively. In panels (c) and (d), we also compare Ẽ3

with the average value of E3(ρ), and of the negativity E3(ρ)
for two “cuts” of the phase diagrams (see the caption). For
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(c)

(a) (b)

(d)

(e) (f)

FIG. 8. Estimates and their jackknife errors of r̃2 for an ensemble
of 64 eight-qubit Haar-random states via randomized measurements.
The chosen partition sizes correspond to (a),(b) the PPT phase;
(c),(d) the ME phase; and (e),(f) the ES phase.

NAB = 256, the p3-negativity reproduces without noticeable
differences the phase diagram of the negativity shown in
Ref. [2]. In particular, we observe for Ẽ3 a linear dependence
with min(NA, NB) in the maximally entangled phase, and a sat-
uration in the entanglement saturation phase. These features
are also visible at small system size NAB = 10.

In Figs. 9(c) and 9(d), we observe that Ẽ3 and E[E3(ρ)]
seem to be always smaller than the averaged negativity. Inter-
estingly, one can make a similar observation for single random
states (i.e., not taking ensemble averages). In Fig. 9(e), we
represent the negativity E (ρ) as a function of E3(ρ) for various
Haar random states, which were obtained by taking different
values of 2 � NAB � 10 and NC � NAB + 4. For each set of
(NA, NB, NC ), 50 states were sampled. For all the random
states that we numerically sampled, we observe that the p3-
negativity is always smaller than the negativity E (ρ).

APPENDIX D: GAUSSIAN FERMIONIC STATES

Here, we give more details on the calculation of r̃2 for
Gaussian fermionic states studied in Sec. VII B. In particular,
we explicitly show how the PT moments can be determined
from the correlation matrix for fermionic Gaussian states
[see, e.g., Eq. (D8)].

As discussed in Sec. VII B, we consider here the case in
which subsystems A, B, and C are connected and A and B
are adjacent. Our aim is to determine the PT moments of a
fermionic Gaussian state ρAB with a (2NAB × 2NAB) correla-
tion matrix G′. G′ is obtained from the correlation matrix of
the whole system (ABC), G, which is a (2N × 2N) matrix by
deleting the rows and columns with indices that correspond
to the modes in C (Sec. VII B). For |�〉ABC = U |0N 〉, the

FIG. 9. (a),(b) Phase diagram of Haar random states as probed
by Ẽ3 for (a) NAB = 256 and (b) NAB = 10. (c),(d) Comparison be-
tween the logarithmic negativity E (ρ ) and the p3-negativity E3(ρ )
for few-qubits Haar-random states, respectively, NAB = 8, NC = 3
(c) and NAB = 6, NA = 3 (d), averaged over ∼102 samples. E3(ρ )
has been averaged both among individual states (dashed line) and
by computing the logarithm of the average of the PT moments
for the ensemble of states (points; see the definition of Ẽ3 in the
text). (e) Comparison between the logarithmic negativity E (ρ ) and
the p3-negativity E3(ρ ) � E (ρ ) for single Haar-random states. Red
points are the values obtained numerically, while the black dashed
line represents the function E = E3.

correlation matrix G is, as explained before, given by G = R ·
G0 · RT . Here, R ∈ SO(2N ) is sampled uniformly randomly.

To determine the PT moments of the fermionic Gaussian
state ρAB with correlation matrix G′ = 1

2 〈[ci, c j]〉ρAB , we pro-
ceed as follows. Let W ′ be a (2NAB × 2NAB) matrix such that

G′ = tanh
W ′

2
. (D1)

Then, we have [75,76]

ρ = 1

Z
exp

(
1

4

∑
kl

W ′
kl ckcl

)
, (D2)

where Z is a normalization factor. As we will see below, the
partial transpose ρ� of the state ρ can be expressed in terms
of a matrix G+ that is constructed from the correlation matrix
G′ as follows:

G+ =
(

G′
AA i G′

AB

i G′
BA −G′

BB

)
. (D3)

In the previous equation, the (2NX × 2NY ) matrices G′
XY

for X,Y ∈ {A, B} are submatrices of the (2NAB × 2NAB)
correlation matrix G′ obtained by taking rows (columns) with
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indices that correspond to modes in X (Y ). More precisely,
the partial transpose of the state ρAB can be expressed as [69]

ρ� = 1 − i

2
O+ + 1 + i

2
O−, (D4)

where the operators O± can be written as

O+ = O†
− = 1

Z
exp

(
1

4

∑
kl

W +
kl ckcl

)
(D5)

with W + related to the previously defined matrix G+ via the
analog of Eq. (D1). In other words,

G+ = tanh
W +

2
. (D6)

It is clear that the PT density matrix given by Eq. (D4) is
not a Gaussian operator but rather the sum of two of them, and

one can write

tr(ρ� )k = 1

2k/2

∑
(σ1,...,σk )

exp

(
−i

π

4

k∑
i=1

σi

)
tr

⎛
⎝ k∏

j=1

Oσ j

⎞
⎠,

(D7)

where the leftmost sum is over all possible tuples
(σ1, . . . , σk ) ∈ {+,−}k . Then the PT moments of order 2, 3,
and 4 read

p2 = tr(ρ� )2 = +tr(O+O−),

p3 = tr(ρ� )3 = − 1
2 tr(O3

+) + 3
2 tr(O2

+O−),

p4 = tr(ρ� )4 = − 1
2 tr(O4

+) + tr(O2
+O2

−)

+ 1
2 tr(O+O−O+O−), (D8)

and it is possible to compute them efficiently.
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