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Detection of multipartite correlation transfer via discrete Rényi entropy
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It is shown that the total amount of correlation stored in N-qubit systems, as characterized by the discrete
Rényi entropy, can be effectively employed to detect the presence of N-partite correlations within the framework
of deterministic measurements. An associated optimization procedure can be analytically performed for a broad
range of N-qubit states, encompassing both symmetric and nonsymmetric ones. This analytical approach enables
the analysis of the asymptotic limit N � 1. It is proved that the appropriately normalized quadratic discrete
Rényi entropy always decreases in the process of deterministic measurements. This allows us to introduce a
robustness parameter for assessing the stability of pure multipartite states under the protocol of measurement-
induced optimal correlation transfer.
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I. INTRODUCTION

Phase-space quasidistributions have been widely used to
characterize quantum states of various types, whether de-
scribed by compact or noncompact dynamic symmetry groups
(see Ref. [1] and references therein). For instance, properties
like positivity and Gaussianity of the Wigner function (and the
Glauber P function) are commonly employed [2] as indicators
of the quantumness of states [3]. The Husimi Q function
allows us to explore other aspects of quantum states. Being
a positive distribution, the Q function enables us to define
entropic-like quantities, such as the Wehrl and Rényi en-
tropies. The latter are useful for quantifying the localization of
the distribution within the corresponding classical phase space
[4]. Consequently, they are instrumental in characterizing
physical properties, including aspects like light polarization
[5], nonclassical behavior of bosonic modes [6], entanglement
detection [7], bipartite quantum correlations [8], quantum
phase transitions [9], and more. Moreover, Q-function-based
entropies are invariant under appropriate group transforma-
tions and have also been applied to describe the complexity
of quantum states [10]. These qualities make the Q function a
valuable tool for analyzing quantum systems, especially due
to its feasibility for direct experimental assessment [11].

Discrete quasiprobability distributions, i.e., quasiproba-
bility distributions in discrete phase spaces, retain most
of the fundamental properties of continuous representations
and provide nonredundant descriptions of finite-dimensional
quantum systems [12,13]. Additionally, discrete phase-space
methods are often more suitable for faithfully representing
nonsymmetric multipartite states. Detecting phase-space lo-
calization and delocalization is particularly valuable in the
case of multipartite systems, where discrete quasidistributions
corresponding to pure states become sparser in the presence
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of quantum correlations [14,15]. Thus, the degree of delo-
calization also indicates the full amount of existing quantum
correlations. Interestingly, there is a direct connection be-
tween certain features of the discrete quasiprobabilities [15]
and algebraic properties of multipartite states, which are re-
lated to their entanglement characteristics [16].

Additional information about multipartite correlations [17]
can be extracted by analyzing outcomes of local measure-
ments [18–21] (see also Ref. [22] and references therein).
Particularly, the idea of localizable entanglement [19,20] in-
volves maximizing the average entanglement resulting from
probabilistic measurements of one or several particles. Un-
fortunately, in all the discussed schemes, various types of
optimization procedures are built-in, limiting their applica-
tions to a reduced number of particles or very specific states,
such as some classes of states that are symmetric under per-
mutations of particles [23].

In this paper, we propose a method to quantify multipartite
correlations based on the results of deterministic measure-
ments [24]. This protocol involves performing a single-qubit
measurement on a given N-qubit state, probabilistically pro-
jecting it into two (N − 1)-partite states. The choice of the
qubit measurement basis ensures that the resulting pure N − 1
qubit states have the same amount of correlations, which
are further maximized according to the selected measure. As
our correlation measure, we use the quadratic discrete Rényi
entropy, which, as we demonstrate, is the only measure invari-
ant under arbitrary (not only Clifford) local transformations.
Additionally, the quadratic Rényi entropy is related to a pre-
viously introduced entanglement measure [16], providing a
geometric interpretation of the latter. We show that there is a
significant distinction between probabilistic and deterministic
approaches. In particular, certain optimizations can be analyt-
ically carried out in the deterministic measurement scheme,
allowing us to analyze the macroscopic limit involving a
large number of qubits for a broad class of both symmetric
and nonsymmetric states. We analytically demonstrate that
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appropriately normalized discrete entropy decreases during
the process of deterministic measurements for real (and lo-
cally equivalent) N-qubits states and introduce the robustness
parameter in terms of the entropies of the original and output
states. The robustness strongly depends on the type of cor-
relations stored in the original state and characterizes their
structural stability during the optimal transfer of correlations
via local measurements.

In Sec. II, we extend the concept of Rényi entropy to the
multipartite case by utilizing the discrete Q function and dis-
cuss its application for characterizing correlations within pure
N-qubit states. Section III focuses on applying the introduced
measure for detecting multipartite correlations during deter-
ministic measurements. The results are discussed in Sec. IV.

II. DISCRETE RÉNYI ENTROPY

The N-qubit Hilbert space H2N = H⊗N
2 is spanned by the

computational basis

|λ〉 = |l1, . . . , lN〉, li = 0, 1,
∑

λ

|λ〉〈λ| = Î, (1)

where Î is the identity operator in H2N . The corresponding
discrete phase-space is a 2N × 2N grid, labeled by a pair of N
tuples: (α, β ), [α = (a1, . . . , aN ), β = (b1, . . . , bN ), ai, bi ∈
Z2] [12–14]. The discrete Q function is defined as an average
value of the density matrix over a set of discrete coherent
states [14,25],

|α,β〉 = ⊗�N
i=1σ

ai
z σ bi

x |n0〉i = ⊗�N
i=1|ai, bi〉i, (2)

where σ (i)
z,x are the Pauli operators corresponding to the ith

qubit and |n0〉i is the fiducial state fixed by the Bloch vector
n0 = (1, 1, 1)/

√
3, so that is the usual spin coherent state with

�N
i=1|n0〉i = |ξ 〉, ξ = 2−1/2(

√
3 − 1)eiπ/4, (3)

|n0〉i〈n0| = 1

2

(
Îi + n(i)

0 · σ̂ (i)
)
, (4)

so that |〈a′, b′|a, b〉|2 = 3−1(2δaa′δbb′ + 1). The set of projec-
tors on (2) form an informationally complete set,∑

α,β

|α, β〉〈α, β| = 2N Î,

which allows us to define the discrete Q function according to

Qρ (α, β ) = 〈α, β|ρ̂|α, β〉 = Tr
( ⊗ �N

i=1q̂i(ai, bi )ρ̂
)
, (5)

q̂i(ai, bi ) = |ai, bi〉i〈ai, bi|,
∑
α,β

Qρ (α, β ) = 2N , (6)

where ρ̂ is the density matrix. Thus, the Q function of a pure
factorized state |ψ〉 = ⊗�N

i=1|ψi〉i is a product of the single-
qubit Q functions,

Qψ (α, β ) = ⊗�N
i=1Qi(ai, bi ), Qi(ai, bi ) = |〈ψi|ai, bi〉|2.

(7)
In particular, the Q function of the fiducial N-qubit state |ξ 〉 is

Qξ (α, β ) = 3−[h(α)+h(β )+h(α+β )]/2, (8)

where 0 � h(α) = ∑N
i=1 ai � N , is the weight of the N tuple

α = (a1, . . . , aN ) and the sum of N tuples in h(α + β ) is taken
by mod 2.

It is worth noting that the discrete P symbols can be defined
as the dual representation of ρ̂,

ρ̂ =
∑
α,β

|α, β〉〈α, β|Pρ (α, β ), (9)

Pρ (α, β ) = Tr
(⊗�N

i=1 p̂i(ai, bi )ρ̂
)
,

2 p̂i(ai, bi ) = 3q̂i(ai, bi ) − Îi, (10)

so that the average value of an operator f̂ is computed in the
standard way as a convolution of Q and P symbols,〈

f̂
〉 =

∑
α,β

Pρ (α, β )Q f (α, β ) =
∑
α,β

Pf (α, β )Qρ (α, β ). (11)

The discrete Q function provides a nonredundant represen-
tation of an N-qubit state. In what follows we focus on pure
states ρ̂ = |ψ〉〈ψ | so that Qρ (α, β ) ≡ Qψ (α, β ). Qψ (α, β )
is always positive and application of local Clifford transfor-
mations leads to a rearranging of values Qψ (α, β ) in the
discrete grid (α, β ). Much like the phase-space representation
for continuous symmetries, the discrete Q function can be
conveniently expressed by expanding the discrete coherent
states (2) in the logical basis (1),

|α, β〉 = N
∑

μ

(−1)μαξ h(μ+β )|μ〉, (12)

where μα = ∑
i miai (mod 2), α = (a1, . . . , aN ), μ =

(m1, . . . , mN ), N = (1 + |ξ |2)−N/2, and ξ is the constant
defined in (3), so that

Qψ (α, β ) = N 2
∑
μ,ν

(−1)(μ+ν)αξ h(μ+β )ξ ∗h(ν+β )ρμν, (13)

with ρμν = 〈ν|ψ〉〈ψ |μ〉. For instance, the Q function of an
arbitrary symmetric state |ψ〉S , expanded in the Dicke basis
{|Dk〉, k = 0, . . . , N},

|D(N )
k 〉 =

√
k!(N − k)!

N!

∑
perm

P(|1〉1 · · · |1〉k|0〉k+1 · · · |0〉N),

(14)
with

|ψ〉S =
N∑

k=0

akN

∣∣D(N )
k

〉
, (15)

depends of three discrete variables h(α), h(β ), h(α + β ) and
takes the form

Qψ (α, β ) = N 2

∣∣∣∣∣∣∣
N∑

k=0

akN

k!
√

CN
k

dkFp1,p2,p3 (z)

dzk

∣∣∣∣
z=0

∣∣∣∣∣∣∣
2

,

where

Fp1,p2,p3 (z) = (1 − ξz)p1 (ξ + z)p2 (ξ − z)p3

(1 + ξz)p1+p2+p3−N ,

h(α) = p1 + p3, h(α + β ) = p1 + p2,

h(β ) = p2 + p3.

012421-2



DETECTION OF MULTIPARTITE CORRELATION … PHYSICAL REVIEW A 109, 012421 (2024)

For instance, for the W state |D1〉 we have,

QD1 (α, β ) = N−1N 2|ξ |2+2h(β )

× |N + (ξ−2 − 1)h(α) − (ξ−2 + 1)h(α + β )|2.
The quadratic Rényi entropy is defined as

S = − ln δ
(N )
ψ , δ

(N )
ψ =

∑
α,β

Q2
ψ (α, β ) (16)

and characterizes the degree of localization of the discrete Q
function in the discrete phase-space. Higher values of S, and
consequently, smaller values of δ

(N )
ψ , correspond to sparser

distributions, which one can relate with more correlated pure
states. It is important to note that δ

(N )
ψ takes on a product form

for factorized states, δ
(N )
ψ1ψ2

= δ
(N )
ψ1

δ
(N )
ψ2

. For an arbitrary pure

single-qubit state δ
(1)
ψ assumes the same value, specifically

δ
(1)
ψ = 4/3. This property is a distinctive characteristic of the

fiducial state (3).
It is noteworthy that δ(N )

ρ (for an arbitrary state) can be
expressed, as discussed in Ref. [15], in terms of purities
associated with all possible bipartitions [16] (see also Ap-
pendix A), specifically,

δ(N )
ρ =

(
2

3

)N
⎛
⎝1 +

N∑
i1=1

Tri1 (Tri2...iN ρ̂)2

+
∑
i1 �=i2

Tri1i2 (Tri3...iN ρ̂)2 + · · ·

+
∑

i1 �=i2 �=···�=iN−1

Tri1...iN−1 (TriN ρ̂ )2 + Tr12...N ρ̂2

⎞
⎠. (17)

The representation (17) shows that δ
(N )
ψ remains invariant

under any local transformation, not limited to local Clifford
transformations, as can be directly inferred from (16) (see also
Appendix A where a direct proof of the invariance of δ

(N )
ψ is

provided). In fact, this particular property sets apart the second
moment of the discrete Q function (16) from all the other
moments

∑
α,β Qp

ψ (α, β ), p > 2, as these moments maintain
invariance solely under local Clifford transformations (see
Appendix B).

As a consequence of (7) it becomes evident that the max-
imum value of δ

(N )
ψ for pure states is reached for factorized

states with δ(N )
max = (4/3)N . To provide a meaningful measure

that normalizes δ
(N )
ψ , we introduce

δ̃
(N )
ψ = (3/4)Nδ

(N )
ψ . (18)

This normalization ensures that for any factorized state,
δ̃

(N )
ψ = 1, representing its maximum value. Consequently, the

deviation δ̃
(N )
ψ not only serves as a good witness for quantum

correlations in pure N-qubit states but also characterizes the
“amount” of such correlations contained in the state.

A relevant parameter that characterizes the extent of non-
localization of the Q function for pure states is the asymptotic
behavior of δ̃

(N )
ψ in the limit N � 1, δ̃

(∞)
ψ = limN→∞ δ̃

(N )
ψ .

Our numerical observations suggest that δ̃(∞)
ρ is related to

the number of distinct multipartite correlations in a strongly

entangled N-qubit state (i.e., when the size of nonfactorized
clusters contained in the state is ≈N). Indeed, δ̃

(∞)
ψ remains

a constant nonzero value in cases where a state contains only
a few k-partite correlations, as observed in examples such as
|GHZ〉 or low excited Dicke states (14), |DN

k 〉, k � N :

δ̃
(N )
D1

= 1

2
+ 1

2N
, δ̃

(N )
GHZ = 1

2
+ 1

2N
,

δ̃
(N )
Dk�N/2

= (2k − 1)!!

2kk!
+ k(2k − 3)!!

2k (k − 1)!N
+ O(N−2).

In the opposite case, when the number of types of correlations
is ≈Nl , 0 < l � 1, one has δ̃

(∞)
ψ = 0 [actually δ̃(N )

ρ ∼ O(N−l ),
N � 1].

Furthermore, for parameter-dependent states, δ̃(∞)
ρ ap-

pears to reach its minimum value for maximally correlated
states within its own class. For example, consider the state
|GHZ〉a ∼ |0 . . . 0〉 + a|1 . . . 1〉, where a is a real parameter.
In this case, one obtains

δ̃
(∞)
GHZa

= 1 + a4

(1 + a2)2 ,

whose minimum is reached at a = 1.
For a real superposition ≈|D1〉 + a|GHZ〉 we can readily

derive the expression for δ̃(N )
a as follows:

δ̃(N )
a = 1

2
+ 1

2N (1 + a2)2 + a2(4 + a2)

2N (1 + a2)2
.

Interestingly, δ̃(∞) is independent of the parameter a of the
state.

In a more sophisticated case of a real superposition
of a Dicke state with two excitations and the GHZ state
≈|k = 2, N〉 + a|GHZ〉, one obtains

δ̃(∞)
a

= (1 + 2a2)2 + 2

8(1 + a2)2 ,

with the minimum δ̃(∞) = 1/3 at a = 1/
√

2.
For a general symmetric state (15) after some algebraic

manipulation, we arrive at the following expression:

δ̃
(N )
ψ =

∑ ak1N a∗
k2N ak3N a∗

k4N√
CN

k1
CN

k2
CN

k3
CN

k4

δk1+k3,k2+k4 G(N )
k1k2k3k4

, (19)

where Gk1k2k3k4 = Gk3k2k1k4 = Gk1k4k3k2 is a hypergeometric
function, whose explicit form is given in Appendix C.

For any Dicke state |k, N〉, δ̃
(N )
Dk

takes the form

δ̃
(N )
Dk

= (
CN

k

)−1
3F2

(−k, k − N, 1
2

1, 1
; 1

)
.

In particular, for highly correlated state |k = N/2, N〉, δ̃
(N )
N/2

acquires the asymptotic form

δ̃
(N )
N/2 ≈ 2√

Nπ
[1 + O(N−1)],

with δ̃
(∞)
N/2 = 0, as expected.

For several nonsymmetric states, it is reasonably straight-
forward to compute the parameter δ̃

(N )
ψ using Eq. (13).

For instance, for the domain-wall state |DWN 〉 ∼ |000 . . . 〉 +
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|100 . . . 〉 + |110 . . . 〉 + · · · we obtain

δ̃
(N )
DW = 5N + 22−N − 3

(N + 1)2 , δ̃
(∞)
DW = 0

for the singlet state with even N , |SN 〉 ∼∏N/2−1
k=0 (|0〉2k+1|1〉2k+2 − |1〉2k+1|0〉2k+2),

δ̃
(N )
S =

(
3

4

)N/2

;

while for the closed cluster state,

|CN〉 = 1

2N/2

∑
μ

(−1)
∑N

i=1 μiμi+1 |μ〉, μN+1 = μ1,

one gets,

δ̃
(N )
C = 1

2N
(FN−1 + FN+1 + 1),

where FN are Fibonacci numbers. The exponential decay of
δ̃

(N )
C with respect to N ,

δ̃
(N )
C ∼

(
1 + √

5

4

)N

,

indicates a presence of a large number of different types of
correlations in the cluster state.

Finally, we introduce a normalized Rényi entropy as

S̃(N ) = − ln δ̃
(N )
ψ , (20)

which attains its minimum value S̃(N ) = 0 for factorized states
and can be considered as a specific measure of quantum cor-
relations.

III. DETERMINISTIC CORRELATION MEASURE

The core concept behind deterministic correlation ex-
traction involves optimizing single-qubit projective measure-
ments on a pure multipartite state in such a way that the
total amount of correlations in both outcomes becomes equal.
This enables us to deterministically convert higher-order cor-
relations into their lower-order counterparts by implementing
these optimal measurements.

In multipartite systems one can establish a hierarchy of
quantum correlations [26], which can be converted into each
other by employing adequate measurement schemes. In prin-
ciple, correlations contained in an N-partite systems can be
(partially) captured by an (N − 1)-partite systems obtained
as a result of a suitable local von Neumann measurement.
A deterministic measurement protocol consists in choosing
a convenient measurement basis for a specific qubit that al-
lows us to (probabilistically) map an initial N-qubit state into
outcome pure (N − 1)-qubit states obeying the same global
characteristics. In our case such a characteristic will be the
total amount of correlations described by the parameter δ̃

(N )
ψ ,

Eq. (18).
Let us consider a pure N-qubit state |ψ〉 and assume that

the ith qubit is measured. These local measurements give rise
to two possible outcomes:

(a) When projecting into the state

|θ, φ〉i = cos
θ

2
|0〉i + eiφ sin

θ

2
|1〉i, (21)

the resulting (N − 1)-partite pure state

|ψ ′
θ,φ〉 = i〈θ, φ|ψ〉P−1/2

θ,φ (22)

is detected with the probability Pθ,φ =
TrN−1(i〈θ, φ|ψ〉〈ψ |θ, φ〉i ).

(b) On the other hand, the projection into the orthogonal
state |θ + π, φ〉i leads to the outcome |ψ ′

θ+π,φ〉 with the prob-
ability Pθ+π,φ = 1 − Pθ,φ . In the deterministic scenario, both
output states |ψ ′

θ,φ〉 and |ψ ′
θ+π,φ〉 share the same values of

δ̃
(N−1)
ψ ′ (θ, φ) = δ̃

(N−1)
ψ ′ (θ + π, φ) = δ̃

(N−1)
d , and consequently,

they possess the same Rényi entropy; that is,

S̃(N−1)
θd ,φd

= S̃(N−1)
θd +π,φd

= S̃(N−1)
d , (23)

where (θd , φd ) is the measurement direction leading to (23).
Our objective is to determine the maximum value of the de-
terministic Rényi entropy,

S̃(N−1)
max = max

θ,φ
S̃(N−1)

d ,

which is equivalent to finding the minimum value of the pa-
rameter δ̃

(N−1)
d . This approach describes the optimal projection

of the initial state into two distinct sets of (N − 1)-qubit states,
where each set possesses both the equal and the maximum
possible amount of correlations.

The difference between the original value δ̃
(N )
d and

min δ̃
(N−1)
d ≡ δ̃

(N−1)
d,min , suitably normalized, characterizes the

robustness of the original state under measurements that de-
terministically maximize the output correlations.

At first glance, the protocol described above appears to
require a complex optimization procedure facing challenges
similar to those encountered in well-established multipartite
entanglement measures [18,26–28]. However, in Appendix D,
we prove the following

Theorem 1. For an arbitrary pure state with real coefficients
(and locally equivalent),

|ψ〉 =
∑

μ

aμ|μ〉, aμ = am1m2...mN ∈ R,
∑

μ

a2
μ = 1,

(24)
it satisfies

min
θ,φ

δ̃
(N−1)
d = δ̃

(N−1)
ψ ′

(
θ = ±π

4
, φ = π

2

)
= δ̃

(N−1)
d,min , (25)

where |ψ ′
θ,φ〉 is defined in (22).

This implies that an optimal deterministic projection can be
performed on an arbitrary qubit. Consequently, for real sym-
metric states (15) the minimization (25) is global. However,
for nonsymmetric states with real coefficients (and locally
equivalent states), one should still carry out the minimization
over the entire set of qubits.

The outcome of Theorem 1 enables us to establish the
following central theorem (see Appendixes E and F).

Theorem 2. For any deterministically projected qubit of the
state (24) the following inequality holds:

δ̃
(N−1)
d,min � δ̃

(N )
ψ , (26)
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FIG. 1. The parameters δ̃
(N−1)
d,min and δ̃

(N )
ψ for N-qubit states

cos ε|0 . . . 0〉 + sin ε|RS〉, where |RS〉 are complex Haar random
states, ε is uniformly distributed in [0, π ]; the darkest points cor-
respond to the highest values of 2 � N � 10.

and

lim
N→∞

δ̃
(N−1)
d,min = δ̃

(∞)
ψ . (27)

Therefore, the total amount of quantum correlations stored
in a real state and quantified with the normalized Rényi en-
tropy (20) cannot be increased in the deterministic projection
scheme. The numeric simulations suggest that S(N−1)

max � S(N )

holds true for N-qubit states (24) with aμ ∈ C. In Fig. 1
we plot δ̃

(N−1)
d,min and δ̃

(N )
ψ for N-qubit states generated as

cos ε|0 . . . 0〉 + sin ε|RS〉, where |RS〉 are Haar random states
with complex coefficients, ε is uniformly distributed in the
segment [0, π ], and the darkest points correspond to the high-
est values of N , 2 � N � 10. It can observe that the relation
(26) is always fulfilled.

However, the relative variation of the entropy is sensitive
to the types of correlations contained in the original N-qubit
state. In particular, the global robustness rN

ψ of quantum corre-
lations can be characterized by the rate of change of the Rényi
entropy with respect to its limit value at N → ∞:

rN
ψ = 1 − IN

ψ , (28)

IN
ψ = (

δ̃
(N )
ψ − δ̃

(∞)
ψ

)(
s̃(N ) − s̃(N−1)

max

)
, (29)

where

s̃(N ) = − ln
(
δ̃

(N )
ψ − δ̃

(∞)
ψ

)
,

and the relation (27) was taken into account. The instability
parameter IN

ψ is always positive and enables us to analytically
analyze the asymptotic behavior of the robustness in the large-
N limit.

The parameter IN
ψ for some typical N-qubit states with real

coefficients at N � 1 (up to the leading term) is presented in
Table I.

The parameter rN
ψ (28) provides a valuable insight into

the structural stability of the state under measurements that
deterministically transfer the maximum amount of quantum
correlations. In particular, the GHZ state is very stable, since
it is optimally projected into the mutually orthogonal (N − 1)-
qubit states ≈|0 . . . 0〉 ± i|1 . . . 1〉, which carry essentially the
same amount and type of correlations as the original state
for a large number of qubits. This is reflected in the expo-
nentially fast decay of the instability parameter IN

ψ with N .
A similar behavior is observed for the singlet states, which
is optimally projected into the (N − 2) singlet state with a
factorized single qubit; and for the cluster states which are
deterministically projectable into locally equivalent (N − 1)-
qubit cluster states,

|CN〉 → Û (±)
i−1 Û (±)

i+1 |CN−1〉, Û (±)
j = exp

(±iπσ ( j)
z /4

)
,

when the ith qubit is measured.
The symmetric Dicke states and the domain-wall state

are considerably asymptotically less stable under the deter-
ministic projections. In particular, the domain-wall state is
optimally projected into unbalanced superposition of a fac-
torized and correlated states:

|DWN−1〉 → (|0N−1〉 ± i
√

N |DWN−1〉)(N + 1)−1/2.

In a similar way |DN
1 〉 is projectable into a superposition of

|DN−1
1 〉 and a nonexcited state:∣∣DN−1

1

〉 →
√

1 − N−1
∣∣DN−1

1

〉 ± iN−1/2|0N−1〉,
and in general,

∣∣DN−1
k

〉 →
√

N − k

N

∣∣DN−1
k

〉 ± i

√
k

N

∣∣DN−1
k−1

〉
.

The most unstable among them is the state |D2p
p 〉, for which

the projection is performed into a balanced superposition of

TABLE I. The parameters IN
ψ , δ̃

(N )
ψ , δ̃

(N−1)
d,min for different N-qubit states in the N � 1 limit.

State δ̃
(N )
ψ δ̃

(N−1)
d,min IN

ψ

|GHZ〉 1
2 + 1

2N
1
2 + 1

2N−1
ln 2
2N

|DN
k�N/2〉 (2k−1)!!

2k k!
+ k(2k−3)!!

2k (k−1)!N
(2k−1)!!

2k k!
+ (5k−2)(2k−3)!!

2k (k−1)!N
k

2k−1
(2k−1)!!

2k+2(k−1)!N
ln 5k−2

k

|DN
N/2〉 2√

Nπ

3√
Nπ

2 ln(3/2)√
πN

|S〉 ( 3
4 )N/2 ( 3

4 )N/2−1 (
√

3
2 )N ln 4

3

|DW 〉 5N−13
N2

5N−11
N2

2
N2

|C〉 ( 1+√
5

4 )N ( 1+√
5

4 )N−1 ( 1+√
5

4 )N ln(
√

5 − 1)
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FIG. 2. ln IN
ψ /N , where the instability parameter (29) is com-

puted for pure random Haar states as a function of the number N
of qubits.

two orthogonal states with similar correlation characteristics
|D2p

p 〉 → |D2p−1
p 〉 ± i|D2p−1

p−1 〉.
In Fig. 2 we plot the normalized instability parameter (29)

for pure Haar random states and for different number of qubits
2 � N � 10. Since the random states are highly correlated, it
is expected that δ̃

(∞)
ψ = 0.

IV. SUMMARY

In this paper we employ a discrete analog of the Rényi
entropy to assess the robustness of multipartite correlations
in N-qubit systems when subjected to deterministic measure-
ments in the asymptotic limit of a large number of particles,
N � 1.

We have shown that the total amount of correlation stored
in N-qubit system and characterized by the discrete Rényi
entropy can be used for detection of N-partite correlations
in the framework of deterministic measurements. Both the
behavior of δ̃

(N )
ψ in the limit of a large number of particles

and its change during projective deterministic measurements
provides a valuable information about the structure of multi-
partite correlations.

The obtained results, particularly Theorem 2, indicate that
the total amount of quantum correlations always decreases
when they are transferred from N to N − 1 qubit states with
real coefficients (and locally equivalent states) through deter-
ministic single-qubit measurements. This is in contrast with
the behavior of the average (geometric) entanglement measure
in the process of probabilistic measurements [20]. Therefore,
as a monotone function of the number of projections, the
robustness (28) assesses the stability of a multipartite state
during the optimal measurement-based correlation transfer
and distinguishes pure states with different types of quantum
correlations.

The advantage of the present measure lies in its capabil-
ity for analytical optimization of the measurement protocol
for a broad class of N-qubit states. This analytical approach

enabled us to derive a qualitative result Eq. (26) that can be
extended to arbitrary nonsymmetric states.
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APPENDIX A

In this Appendix we prove that

δ̃
(N )
ψ =

(
3

4

)N ∑
α,β

Q2
ψ (α, β ), (A1)

is invariant under local transformations.
First, we observe that, for an arbitrary pure N-qubit state

|ψ〉 =
∑

μ

aμ|μ〉, μ = (m1, . . . , mN), mi = 0, 1, (A2)

the sum (A1) is reduced to the following expression:

δ̃
(N )
ψ =

∑
μ1,μ2,μ3,μ4

aμ1 a∗
μ2

aμ3 a∗
μ4

N∏
i=1

δm1,i+m2,i+m3,i+m4,i,0

× δ(1−m1,i )m2,i (1−m3,i ),0δm1,i (1−m2,i )m3,i,022m1,im3,i−m1,i−m3,i ,

(A3)

where the summations and multiplications are taken by mod 2
and we employ the standard summation technic for functions
defined on N-tuples,

∑
β

f (β ) =
N∏

i=1

1∑
βi=0

f (βi ), (A4)

we have also used the explicit form of the fiducial state param-
eter (3) while summing over the coherent states (12). Observe
that Eq. (A3) can be conveniently represented as

δ̃
(N )
ψ =

∑
μ1,μ2,μ3,μ4

aμ1 a∗
μ2

aμ3 a∗
μ4

g(N )
μ1μ2μ3μ4

, (A5)

g(N )
μ1μ2μ3μ4

= 2−h(μ1+μ3 )δh(μ4 )+h(μ2 ),h(μ1 )+h(μ3 )

× δh(μ1+μ2 )+h(μ2+μ3 ),h(μ1+μ3 )δμ1+μ2,μ3+μ4 , (A6)

where h(μ) = ∑N
i=1 mi.

The state (A2) transformed by a local unitary,

U = ⊗
∏

i

u(i)|ψ〉,

u(i) =
[

cos θi
2 e

i
2 (φi+ηi ), i sin θi

2 e
i
2 (φi−ηi )

i sin θi
2 e− i

2 (φi−ηi ), cos θi
2 e− i

2 (φi+ηi )

]
, (A7)

takes the form

|ψU〉 = ⊗
∏

i

u(i)|ψ〉 =
∑

μ

a′
μ|μ〉, (A8)

a′
μ =

∑
ν

aν

∏
i

〈mi|u(i)|ni〉, ν = (n1, . . . , nN), (A9)

012421-6
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where

〈mi|u(i)|ni〉 = (
(1 − mi )u

(i)
1,1 + miu

(i)
2,1

)
(1 − ni )

+ (
(1 − mi )u

(i)
1,2 + miu

(i)
2,2

)
ni.

After performing extensive but straightforward calculations,
we simplify the sum in Eq. (A5) with aμ given in (A9) over
μ1, μ2, μ3, μ4 to the following expression:

1∑
m1,i,m2,i,m3.i,m4,i=0

〈m1,i|u(i)|n1,i〉〈m2,i|u(i)|n2,i〉∗

× 〈m3,i|u(i)|n3,i〉〈m4,i|u(i)|n4,i〉∗

×
N∏

i=1

δm1,i+m2,i+m3,i+m4,i,0δ(1−m1,i )m2,i (1−m3,i ),0

× δm1,i (1−m2,i )m3,i,022m1,im3,i−m1,i−m3,i ,

which, remarkably, does not depend on the angles θi, ϕi, ηi of
local transformations, i.e., the above equation is reduced to

N∏
i=1

δn1,i+n2,i+n3,i+n4,i,0δ(1−n1,i )n2,i (1−n3,i ),0

×δn1,i (1−n2,i )n3,i,022n1,in3,i−n1,i−n3,i .

This leads to the conclusion that the expression for δ̃
(N )
ψU

re-
mains the same, i.e.,

δ̃
(N )
ψU

= δ̃
(N )
ψ .

On the other hand, we represent the projector |α, β〉〈α, β| as
follows using the factorization property (5) and the relation
(10):

|α, β〉〈α, β| =
(

1

3

)N
⎡
⎣2N

N∏
i=1

⊗ p̂i(ai, bi )

+2N−1
N∑

j=1

N∏
i �= j

⊗ p̂i(ai, bi )

+2N−2
N∑

j �=k=1

N∏
i �=k �= j

⊗ p̂i(ai, bi ) + · · · + Î

⎤
⎦.

Consequently, the Qρ (α, β ) can be expressed in terms of the
P functions (9) of the reduced density matrices according to

Qρ (α, β ) =
(

1

3

)N
⎡
⎣2N Pρ (α, β ) + 2N−1

N∑
j=1

Ptr jρ

(
α′, β ′)

+2N−2
N∑

j �=k=1

Ptr j,kρ (α′′, β ′′) + · · · + 1

⎤
⎦,

where, for instance, tr j,k ρ̂ is the reduced density matrix ob-
tained by tracing over the jth and kth qubits, and (α′′, β ′′)
represents the (N − 2)-tuples obtained by excluding the ele-
ments a j , b j , ak , bk from the N-tuple (α, β ). As a result, we

arrive at the following expression:∑
α,β

Q2
ρ (α, β ) =

(
2

3

)N ∑
α,β

Qρ (α, β )

[
Pρ (α, β )

+2−1
N∑

j=1

Ptr jρ (α′, β ′)

+ 2−2
N∑

j �=k=1

Ptr j,kρ (α′′, β ′′) + · · · + 2−N

]
,

This precisely corresponds to Eq. (17) in the main text, as
established in Eq. (11).

APPENDIX B

In this Appendix we show that the higher moments of the
discrete Q function,

∑
α,β Qp

ρ (α, β ), p > 2, are not invariant
under local transformations. This lack of invariance is ev-
ident even when considering the fiducial state, ρ̂ = |ξ 〉〈ξ |.
To simplify our analysis, we focus on local transformations
(A7) where φi, ηi = 0. Consequently, the Q function of the
transformed state becomes

QUρU † (α, β ) =
N∏

i=1

∣∣〈ξ |iûiσ
ai
z σ bi

x |ξ 〉i

∣∣2

=
(

1

3

)pN N∏
i=1

[
(2 + cos θi )

(1−ai )(1−bi )

× (1 − sin θi )
ai (1−bi )

]
× [

(2 − cos θi )
(1−ai )bi (1 + sin θi )

aibi
]
.

This leads us to the following expression:

∑
α,β

Qp
ρ (α, β ) =

(
1

3

)pN N∏
i=1

[(2 + cos θi )
p + (1 + sin θi )

p

+(2 − cos θi )
p + (1 − sin θi )

p],

where the summation formula (A4) was employed. It is evi-
dent that the above expression is independent on the angle θi

only for p = 1, 2.

APPENDIX C

An integral form of the function Gk1k2k3k4 appearing in
Eq. (19) is obtained by using an integral representation of the
δ functions in Eq. (A5),

G(N )
k1k2k3k4

=
∑

μ1,μ2,μ3,μ4

g(N )
μ1μ2μ3μ4

× δh(μ1 ),k1δh(μ2 ),k2δh(μ3 ),k3δh(μ1+μ2+μ3 ),k4 , (C1)

where g(N )
μ1μ2μ3μ4

is defined in (A6) and which leads to

G(N )
k1k2k3k4

=
∫

|ωi|=1

dω

(2π i)4

×
[
1 + 1

2 (ω1 + ω3)(ω2 + ω4) + ω1ω2ω3ω4
]N

ω
k1+1
1 ω

k2+1
2 ω

k3+1
3 ω

k4+1
4

,

dω = dω1dω2dω3dω4. (C2)
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Taking into account the restriction δk1+k3,k2+k4 ,

G(N )
k1k2k3k4

= δk1+k3,k2+k4 G̃(N )
k1k2k3

,

we arrive at the following expression:

G̃(N )
k1k3k2

=
∫

dω

(2π i)3

[
1 + 1

2 (ω1 + ω3)(1 + ω2) + ω1ω2ω3
]N

ω
k1
1 ω

k2
2 ω

k3
3

, dω = dω1dω2dω3,

which is convenient for asymptotic estimations in the limit N � 1.
The explicit integration gives

G̃(N )
k1k2k3

= N!2−|β−α|

α!(N − β )!|k2 − k1|!|k3 − k2|! × 4F3

(−α, β − N, 1 + |β − α|/2, 1/2 + |β − α|/2
β − γ + 1, γ − α + 1, |β − α| + 1 ; 1

)
,

where α = min(k1, k2, k3, k4), β = max(k1, k2, k3, k4), γ is
the middle value of the ordered set {ki, k j, kk}, i, j, k = 1, 2, 3,
and 4F3 is a hypergeometric function.

APPENDIX D

In this Appendix we prove Theorem 1 of the main text.
Let us consider an arbitrary pure state with real coeffi-

cients,

|ψ〉 =
∑

μ

aμ|μ〉, aμ = am1,m2,...,mN ∈ R,
∑

μ

a2
μ = 1.

(D1)
Let us project the ith qubit on the state |ϕ〉i = cos θ |0〉i +
eiφ sin θ |1〉i to obtain,

|ψ ′〉 =i 〈ϕ|ψ〉 = cos θ
∑
μ′

bμ′ |μ′〉 + e−iφ sin θ
∑
μ′

cμ′ |μ′〉,

(D2)
where μ′ are elements of an (N − 1)-tuple, and

bμ′ = am1,...,0i,...,mN , cμ′ = am1,...,1i,...,mN . (D3)

The norm of the state (D2) is

M2(θ, φ) =
∑
μ′

| cos θbμ′ + e−iφ sin θcμ′ |2.

Thus, δ
(N−1)
ψ ′ (θ, φ) = ∑

α′,β ′ Q2
ψ ′ (α′, β ′) for the normalized

projected state (D2) is

δ
(N−1)
ψ ′ (θ, φ) = 1

M4(θ, φ)

∑
α′,β ′

(cos2 θQρ11

+ 1

2
sin 2θ

(
eiφQρ12 + e−iφQρ21

)
+ sin2 θQρ22 )2,

where ρ jk = |ϕ j〉〈ϕk|, j, k = 1, 2 and

|ϕ1〉 =
∑
μ′

bμ′ |μ′〉, |ϕ2〉 =
∑
μ′

cμ′ |μ′〉. (D4)

The condition for deterministic measurements is that

δ
(N−1)
ψ ′ (θ, φ) = δ

(N−1)
ψ ′ (θ + π/2, φ) = δ

(N−1)
d (θ, φ).

The minimum value of δ
(N−1)
d (θ, φ) can be determined by

using the Lagrange multipliers method, i.e., looking for the

extrema of the function

F (θ, φ) = δ
(N−1)
ψ ′ (θ, φ)

− λ
[
δ

(N−1)
ψ ′ (θ, φ) − δ

(N−1)
ψ ′ (θ + π/2, φ)

]
.

It is easy to see that the extremum of F (θ, φ) is reached at
λ = 1/2, θ = π/4, φ = π/2 with,

∂θF |θ=±π/4,φ=π/2,λ=1/2 = ∂φF |θ=±π/4,φ=π/2,λ=1/2

= ∂λF |θ=±π/4,φ=π/2,λ=1/2 = 0.

In other words, the minimum values of δ
(N−1)
ψ ′ for the projected

state |ψ ′〉 =i 〈ϕ|ψ〉 are achieved by projecting onto the states
(|0〉 ± i|1〉)i/

√
2.

APPENDIX E

In this Appendix we prove Theorem 2 of the main text.
Let us observe that δ̃

(N )
ψ for the state (D1) can be repre-

sented in the form (A5), but in terms of the coefficients bμ′

and cμ′ defined in (D3):

δ̃
(N )
ψ =

∑
μ′

1,μ
′
2,μ

′
3,μ

′
4

[bμ′
1
bμ′

2
bμ′

3
bμ′

4
+ 2cμ′

1
cμ′

2
bμ′

3
bμ′

4

+ cμ′
1
cμ′

2
cμ′

3
cμ′

4
]g(N−1)

μ′
1μ

′
2μ

′
3μ

′
4
, (E1)

where the summation is on the N − 1 tuples, μ′ =
(m1, . . . , mi−1, mi+1, . . . , mN ) and g(N )

μ1μ2μ3μ4
is given in (A6).

On the other hand, the state (D1) optimally projected to the
i-th qubit state (|0〉 + i|1〉),

i(〈0| − i〈1|)|ψ〉 =
∑
μ′

(
bμ′ − icμ′

)∣∣μ′〉,
is automatically normalized,∑

μ′
|bμ′ − icμ′ |2 =

∑
μ′

b2
μ′ + c2

μ′ = 1.

Therefore, we obtain the normalized measure (18) before and
after the optimal deterministic projection:

δ̃
(N−1)
ψ ′ =

∑
μ′

1,μ
′
2,μ

′
3,μ

′
4

[bμ′
1
bμ′

2
bμ′

3
bμ′

4
+ 4cμ′

1
cμ′

2
bμ′

3
bμ′

4

+ cμ′
1
cμ′

2
cμ′

3
cμ′

4
+ −bμ′

1
cμ′

2
bμ′

3
cμ′

4
− cμ′

1
bμ′

2
cμ′

3
bμ′

4
]

× g(N−1)
μ′

1μ
′
2μ

′
3μ

′
4
. (E2)
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The difference between the normalized measures (18) before,
as given by Eq. (E1), and after, as given by Eq. (E2), the opti-
mal deterministic projection can be expressed as an explicitly
positive quantity,

δ̃
(N−1)
ψ ′ − δ̃

(N )
ψ =

∑
α′,β ′

4[X (α′, β ′)W (α′, β ′)

− Y (α′, β ′)Z (α′, β ′)]2 � 0, (E3)

where

〈α′, β ′|ϕ1〉 = Z (α′, β ′) + iW (α′, β ′),

〈α′, β ′|ϕ2〉 = X (α′, β ′) + iY (α′, β ′),
and |ϕ1,2〉 are defined in (D4).

Interestingly, Eq. (E3) can be represented in a more com-
pact form as follows:

δ̃
(N−1)
ψ ′ − δ̃

(N )
ψ =

∑
α′,β ′

Q2
ρ ′ (α′, β ′),

where

ρ̂ ′ = Tri(|ψ〉〈ψ |σyi).

APPENDIX F

In this Appendix we prove that limN→∞ δ̃
(N−1)
d,min =

limN→∞ δ̃
(N )
ψ .

In Eq. (E2), rewritten as

δ̃
(N−1)
d,min − δ̃

(N )
ψ = 2

∑
μ′

1,μ
′
2,μ

′
3,μ

′
4

cμ′
1
cμ′

2
bμ′

3
bμ′

4

× (
g(N−1)

μ′
1μ

′
2μ

′
3μ

′
4
− g(N−1)

μ′
1μ

′
3μ

′
2μ

′
4

)
, (F1)

the coefficients cμ′ and bμ′ satisfy the following invariance
properties under permutation of elements of N − 1 tuples,

c�i, jμ
′
1
cμ′

2
bμ′

3
bμ′

4
= cμ′

1
c�i, jμ

′
2
b�i, jμ

′
3
b�i, jμ

′
4
,

cμ′
1
c�i, jμ

′
2
bμ′

3
bμ′

4
= c�i, jμ

′
1
cμ′

2
b�i, jμ

′
3
b�i, jμ

′
4
, (F2)

cμ′
1
cμ′

2
b�i, jμ

′
3
bμ′

4
= c�i, jμ

′
1
c�i, jμ

′
2
bμ′

3
b�i, jμ

′
4
,

cμ′
1
cμ′

2
bμ′

3
b�i, jμ

′
4
= c�i, jμ

′
1
c�i, jμ

′
2
b�i, jμ

′
3
bμ′

4
, (F3)

where �i, j denotes a permutation of the ith and jth compo-
nents of each μ′

k (k = 1, 2, 3, 4), i.e., �i, jμ
′
k,i = μ′

k, j . These
properties are guaranteed by the presence of the δ functions
that depend only on the appropriate weights h(μ′

k ). As a con-
sequence, the sum in (F1) is bounded by its symmetrization as
follows:

δ̃
(N−1)
d,min − δ̃

(N )
ψ � 2

N−1∑
k1,k2,k3,k4=0

Ck1Ck2 Bk3 Bk4√
CN−1

k1
CN−1

k2
CN−1

k3
CN−1

k4

× (
G(N−1)

k1k2k3k4
− G(N−1)

k1k3k2k4

)
, (F4)

where Gk1k2k3k4 is defined in (C1) and the following definitions
were used:

Ch(μ′
j ) =

√
CN−1

h(μ′
j )

∑
μ′

δh(μ′ ),k j cμ′
j
,

Bh(μ′
j ) =

√
CN−1

h(μ′
j )

∑
μ′

δh(μ′ ),k j bμ′
j
, j = 1, 2, 3, 4

such that

∑
μ′

(
b2

μ′ + c2
μ′
) =

∑
μ′

[
C2

h(μ′ )

CN−1
h(μ′ )

+ B2
h(μ′ )

CN−1
h(μ′ )

]

=
N−1∑
k=0

(
C2

k + B2
k

) = 1,

with the notation h(μ′
k j

) = k j , j = 1, 2, 3, 4, 0 � k j � N − 1,

and CN−1
k are the binomial coefficients.

Using the representation (C) it can be shown that

G(N−1)
k1k2k3k4

− G(N−1)
k1k3k2k4

= r (N−1)
k1k2k3k4

O(N−1/2),

where |r (N−1)
k1k2k3k4

| � 1. This implies that

lim
N→∞

(
δ̃

(N−1)
d,min − δ̃

(N )
ψ

) = 0.

In other words, as N approaches infinity, the difference be-
tween δ̃

(N−1)
d,min and δ̃

(N )
ψ converges to zero.
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