
PHYSICAL REVIEW A 109, 012420 (2024)

Mitigating fabrication errors by recovering defective syndrome qubits in surface code

Sengthai Heng , Dongmin Kim, and Youngsun Han*

Department of AI Convergence, Pukyong National University, Busan 48513, South Korea

(Received 29 September 2023; accepted 5 December 2023; published 16 January 2024)

Fabrication errors on qubits can render data and syndrome qubits faulty, impacting quantum-processor
reliability. Our proposed method focuses on the recovery of faulty syndrome qubits, preserving the functionality
of neighboring qubits and minimizing the loss of data qubits. Through experimental simulation, we demonstrate
that our approach significantly improves percolation rates and reduces logical error rates while enhancing the
robustness of the surface code against fabrication errors. Moreover, our approach raises the critical point for
syndrome-fabrication errors by 29.4% on average and 33.33% when the percolation rate reaches 100%. Further-
more, it reduces logical error rates by 18.42% on average and achieves a 50% reduction in low computational
Pauli error rates.

DOI: 10.1103/PhysRevA.109.012420

I. INTRODUCTION

Fault-tolerance quantum computers are paramount for ad-
dressing meaningful problems (e.g., Shor’s algorithm [1],
Grover’s search algorithm [2], and simulating quantum
systems [3]). These algorithms promise revolutionary ad-
vancements in cryptography [4–6], optimization [7–9], and
materials science [10–12]; however, their successful im-
plementation relies on quantum error correction (QEC)
methods.

The surface code is one of the most promising QEC meth-
ods, attributed to its high threshold and relatively simple
lattice structure [13–17]. In the surface code, quantum infor-
mation is stored in two types of physical qubits: data qubits
and syndrome qubits. Data qubits are responsible for encoding
and processing the actual quantum information. Contrarily,
syndrome qubits are placed around the data qubits and are
crucial for error detection. These qubits interact with their
neighboring data qubits and are employed to identify errors
that may occur during quantum computation. However, simi-
lar to any physical implementation of quantum computation,
it is susceptible to errors, particularly fabrication errors, dur-
ing the manufacturing of qubits [18,19]. Fabrication errors
result from the imperfect manufacturing processes inherent in
the construction of quantum hardware [18,20–26]. For exam-
ple, although the latest Osprey quantum processor from IBM
reached 433 qubits, it has 19 (4.39%) defective qubits [27].
According to the estimates of [25], considering the current
technology, it is anticipated that roughly 2% of the qubits on
a transmon device exhibit faults.

Several innovative approaches for mitigating the impact
of fabrication errors in the surface code have been proposed.
One approach involves using sacrificial qubits to bolster the
topology. By introducing additional sacrificial qubits [22], this
method acts as a buffer against fabrication errors, ensuring the

*youngsun@pknu.ac.kr

integrity of the quantum processor’s overall topology. Another
strategy incorporates primitive SWAP gates into the construc-
tion of the syndrome readout circuit [23], offering a unique
approach to error correction. In contrast, another approach
[28] maintains the original construction of the surface code
without attempting to modify it. Instead, it focuses on directly
measuring the (defective) gauge operators [29,30], resulting
in deterministic outcomes for the supercheck operators and
providing an alternative means of error detection and correc-
tion. Lin et al. [26] proposed an automated method, working
on a rotated surface code with a defective grid and generating
syndrome measurement circuits. In [18], a protocol that places
a shell around a group of defective data and syndrome qubits
caused by cosmic rays was proposed and can be adapted
to the method in [28]. However, syndrome-qubit-fabrication
errors have a greater impact on the lattice compared to those
affecting data qubits [28].

To minimize syndrome qubit-fabrication errors, we pro-
pose a scheme for mitigating the impact of faulty syndrome
qubits (FSQs) in the surface code. Our method aims to
recover FSQs, thereby preserving the functionality of neigh-
boring qubits and minimizing the loss of data qubits for
computation. We present our approach’s architecture and im-
plementation details, demonstrating its effectiveness through
extensive simulations. The key contributions of this research
can be summarized as follows:

(i) We introduce a method for recovering FSQs by recon-
figuring stabilizers. The proposed approach employs bridge
gates to redirect error syndromes from FSQs to nearby data
qubits, thereby preserving quantum information and minimiz-
ing the loss of data qubits.

(ii) We demonstrate that the proposed method significantly
enhances percolation rates, postponing the critical point for
syndrome-fabrication errors by 29.4% on average and 33.33%
when the percolation rate reaches 100%.

(iii) We highlight that the proposed method reduces logical
error rates by 18.42% on average and achieves a remarkable
50% reduction at low computational Pauli error rates.

2469-9926/2024/109(1)/012420(9) 012420-1 ©2024 American Physical Society

https://orcid.org/0009-0006-3300-128X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.012420&domain=pdf&date_stamp=2024-01-16
https://doi.org/10.1103/PhysRevA.109.012420

HENG, KIM, AND HAN PHYSICAL REVIEW A 109, 012420 (2024)

FIG. 1. Example of the lattice distance-5 surface code with the syndrome circuits for x-type and z-type stabilizer generators. The star x and
plaquette z of the lattice in (a) are represented by x-type and z-type stabilizer generators in (b) and (c), respectively. The logical operators, XL

and ZL , correspond to anticommuting string entities spanning the lattice, and each operator commutes with all the stabilizer generators.

This paper is organized as follows: Sec. II covers the
surface code and fabrication errors in quantum computa-
tion. Section III describes our proposed scheme, including
the architecture and recovery process for FSQs. In Sec. IV,
we describe the noise model and experimental simulation.
In Sec. V, we analyze percolation thresholds, effective code
distances, and logical error rates, presenting the results of our
numerical simulations. In Sec. VI, we conclude the paper and
provide potential future directions in fault-tolerant quantum
computing.

II. BACKGROUND

A. Surface code

Surface codes utilize a two-dimensional L × L lattice of
entangled physical qubits to define logical qubits, as shown in
Fig. 1(a), i.e., a 5 × 5 lattice constituting a distance-5 surface
code. The distance-L code or code distance L is the measure
of a code’s strength, defined as the size of the shortest un-
detectable error chain or logical operator [31,32]. The data
qubits storing the computation quantum state are depicted by
black dots, and the syndrome qubits measuring the X and
Z parity are represented by x and z, respectively. Each data
qubit and syndrome qubit are connected by a coupler to apply
a multiqubit gate, denoted by a line. The x and z syndrome
qubits check the simultaneous eigenstates of their neighboring
four data qubits, as shown by the blue and green backgrounds,
respectively. Figures 1(b) and 1(c), corresponding to Fig. 1(a),
show the standard syndrome-extraction circuits associated
with the x and z syndrome qubits, respectively. These circuits
are known as x- and z-type stabilizer generators. The mea-
surement of all stabilizer generators entails a six-step process,
constituting one round of syndrome measurement [33]. These
steps include initializing the qubits, performing two-qubit
gates four times, and measuring the syndrome qubit once.

The logical XL and ZL operators are anticommuting string
entities traversing the lattice, demonstrating commutation
with all stabilizer generators, as shown in Fig. 1(a). The effect
of a logical operator on a logical state within the surface code
remains unchanged when multiplied by a stabilizer genera-
tor. Consequently, numerous equivalent logical operators can
be formulated. The code’s distance is directly related to the
minimal weight of the shortest logical operator. Thus, an ideal

surface code L is achieved [28]. Expanding the lattice size
promises enhanced error protection, as a greater number of
individual errors is required to induce a logical error [34].

The error-detection process involves measuring all the sta-
bilizer generators [29]. This measurement causes any random
errors in the qubits to become Pauli X and Z errors on the
data qubits [35]. If there are no errors, all measurements
from |+〉 and |0〉 are +1. If the error anticommutes with the
stabilizer generator, its outcome flips to −1. The collection of
measurement outcomes obtained from the stabilizer generator
measurements is commonly referred to as the syndrome [28].
Thus, those syndrome measurements are passed to a decoder,
which is a classical algorithm for identifying and correcting
the error that is the least probable to cause a logical error
[36–38]. We use this logical error rate as a metric to evaluate
our proposed method.

B. Fabrication error

Fabrication errors occur when physical qubits are defective
during the manufacturing process or due to the emergence
of faulty components during the chip’s life span [39,40].
This defect is permanent, and its impact on the surface code
can vary depending on the qubit type. The fabrication-error
locations within the surface code are known in advance. Ad-
ditionally, we assume that the qubits in surface-code chips
can be turned off or disabled. There are two types of fabrica-
tion errors: qubit-fabrication errors and link-fabrication errors
[25,26,28,39].

A qubit-fabrication error refers to a fault in a qubit, whether
a data qubit [faulty data qubit (FDQ)] or a syndrome qubit
(FSQ), which makes it unreliable for storing quantum in-
formation. A link-fabrication error prevents two qubits from
interacting as intended, thereby hindering the execution of
multiqubit gates. However, in this research, we focus on qubit-
fabrication errors, particularly on a syndrome qubit.

In our terminology, as described in [28], we maintain con-
sistency when referring to various types of failed components.
Specifically, we use the term faulty exclusively for compo-
nents that have permanent fabrication errors and the term
disabled for components that we intentionally deactivate.

Fabrication errors pose significant damage to the construc-
tion of surface codes, as they can introduce additional degrees

012420-2

MITIGATING FABRICATION ERRORS BY RECOVERING … PHYSICAL REVIEW A 109, 012420 (2024)

(a)
Z

X

Z

X

Z

X

Z

X X

Z

X

Z Z

XX

Z

X X

Z

X

Z

X

Z

X

Z

X X

Z

X

Z

X X

Z

X X

Z Z Z Z

Z

Z

X

Z

X

Z

X

Z

X X

Z

X

Z Z

XX

Z

X X

Z

X

Z

X

Z Z

X

Z

X

Z

X

Z

X

Z Z Z Z

X X

X X

Z

D

DD

D

(b)
Z

X

Z

X

Z

X

Z

X X

Z

X

Z Z

XX

Z

X X

Z

X

Z

X

Z Z

X

Z

X

Z

X

Z

X

Z Z Z Z

X X

X X

(c)
Z

X

Z

X

Z

X

Z

X X

Z

X

Z Z

XX

Z

X X

Z

X

Z

X

Z Z

X

Z

X

Z

X

Z

X

Z Z Z Z

X X

X X

FIG. 2. (a) When a data (syndrome) qubit is inoperative or de-
fective (indicated by a red dashed border), the associated links
(comprising all data qubits involved in the corresponding stabilizer
generator) are disabled. (b) Superstars are created on the x-type
supercheck operators. (c) Superplaquettes are formed on the z-type
supercheck operators.

of freedom, effectively creating extra logical qubits. For in-
stance, in cases where a syndrome qubit is found to be faulty,
the associated stabilizer generator might be disabled [23,28].
However, this action constructs a new logical qubit that can
interact with the intended logical qubit, thereby decreasing
the code distance. While reducing code distance alone may
not be problematic, assuming that fabrication errors are ran-
domly distributed across the code, the code distance will
progressively decrease as the lattice size L increases. This
phenomenon leads to a pseudothreshold behavior for smaller
lattice sizes which becomes negligible for larger lattices [28].

Figure 2(a) shows the detrimental effect of faulty data
and syndrome qubits (surrounding dashed lines) on 5 × 5
lattices. If a qubit is faulty, the supercheck operator [20] comes
into play. This operator addresses the loss of data qubits for
which the product of two stabilizer generators remains within
the code stabilizer. Consequently, when a data qubit is lost,
the two neighboring defective stabilizer generators can be
jointly measured, forming large supercheck operators. Our
approach, based on the methodology outlined in [28], utilizes
supercheck operators and the concept of gauge qubits to ad-
dress fabrication errors effectively. For the FDQ in Fig. 2(a),
the adjacent damaged generators are anticommutative, but
their supercheck operator product remains deterministic. Each
disabled data qubit (DDQ) in the surface code raises one
degree of freedom or gauge qubit [30,41].

The gauge qubits’ logical Pauli X and Z operators, rep-
resented as the damaged x-type and z-type stabilizers (or
gauge operators), are measured to randomize the gauge qubit’s
logical state. However, this randomization is inconsequential

FIG. 3. Fabrication errors randomly occur on qubits, with L rep-
resenting the code distance, and these errors have an impact on the
effective code distance.

since the specific state of the gauge qubit does not matter.
Notably, X or Z operator strings cannot terminate without de-
tection within this region, unlike when turning off a stabilizer
generator. While gauge operators are slightly lower L, they
still scale proportionally to the physical lattice size.

Additionally, the product of the damaged stabilizer gen-
erators forming the supercheck operator commutes with all
damaged stabilizer generators, allowing the effective use of
supercheck operators for error correction during classical
processing. These supercheck operators are formed by the
products of damaged x-type and z-type stabilizers, as illus-
trated in Figs. 2(b) and 2(c), respectively.

The utilization of supercheck operators is constrained by
percolation phenomena [42]. When a continuous string of
FDQs percolates throughout the lattice, it becomes impossi-
ble to encode a logical qubit at the same code distance as
intended. Consequently, the effective code distance decreases
due to the presence of these fabrication defects [24]. However,
this reduction is still manageable until the lattice reaches the
percolation threshold, beyond which it becomes impractical to
maintain the intended code distance.

III. PROPOSED METHOD

Figure 3 presents simulations involving the fabrication of
numerous planar code lattices, each subject to different fab-
rication errors (see Sec. V). The effective L for each lattice
is determined by determining the lowest-weight logical oper-
ator, and this process is averaged across all simulation runs.
The results indicate that the fabrication errors occurring on
syndrome qubits have a more severe impact than the errors
limited to only data qubits. To mitigate the adverse effects
of the fabrication errors on syndrome qubits, we introduce a
scheme aimed at their recovery.

012420-3

HENG, KIM, AND HAN PHYSICAL REVIEW A 109, 012420 (2024)

FIG. 4. (a)The QEC flow process involves the recovery of fault syndrome qubits. The surface code is initialized first, faulty qubits are
detected, and superchecks are formed. The next step involves recovering faulty syndrome qubits, followed by error encoding, logical quantum
computing where an error occurs, and error decoding. The processes presented in the boxes with dashed borders are designed to handle faulty
qubits. (b) The QEC process detects faulty qubits, forms superchecks, and recovers faulty syndrome qubits. x- and z-type syndrome qubits in
red are faulty qubits, whereas disabled qubits are labeled D. The red dots represent connections to which multiqubit gates cannot be applied.

A. Overall architecture

Figure 4(a) shows the QEC flow process described in [28],
with the proposed method applied. The processes with dashed
borders are methods for solving fabrication-error problems.
Those enclosed within the green box adhere to the original
method [28], whereas our scheme is depicted within the blue
box. The QEC sequence begins with the initialization of the
surface code and configured stabilizers with the intended L.
Next, faulty qubits are identified even before QEC compu-
tation since the faulty fabrication qubits are known. Third,
stabilizers are reconfigured, and large supercheck operators
are formed from [28]. Thereafter, our scheme reconfigures
the stabilizers containing FSQs from the previous method.
Finally, error encoding, logical quantum computation where
an error occurs, and error decoding are performed as usual.

The main idea is to reconfigure the stabilizers to ensure
the continuity of QEC amid FSQs. Subsequently, those error
syndromes are collected into nearby data qubits instead of
the FSQs. To achieve this, we employ bridge gates [43,44],
effectively redirecting the error syndromes. Essentially, this
process resembles the recovery of FSQs.

Figure 4(b) visualizes examples of the QEC process, in-
cluding the detection of faulty qubits, the construction of
supercheck operators, and the recovery of FSQs. When the
x- and z-type syndrome qubits depicted in red are identified as
faulty, their stabilizers are reconfigured to create supercheck
operations. These supercheck operations disable neighboring
data qubits and links, which may reduce the L. To avoid this
problem, our proposed approach leverages a DDQ as the syn-
drome qubit, thereby collecting error syndromes from it. This
adjustment allows the activation of two adjacent data qubits
highlighted in green for the storage of quantum information,
as depicted in Fig. 4(b).

B. Recovery of faulty syndrome qubits

Figure 5 provides a visual representation of the circuit
diagram detailing the intricate aspects of the FSQ recovery
scheme. To ensure clarity and precision in our discussion, we
employ two key terms [23]: qubit device and qubit variable.

A qubit device refers to the physical structure responsible
for manipulating the qubit variable, including semiconductor
qubits, photonic qubits, and trapped-ion qubits. Conversely,
a qubit variable represents the encoded information resid-
ing on a qubit device. In Fig. 5(a), the qubit variable
(X1, X2, n, s, e,w) corresponds to the specific qubit device
(x, z, •) labeled in Fig. 5(b).

The proposed solution aims to recover the FSQs by recon-
figuring the syndrome-extraction circuit to obtain the error
syndrome from one of the DDQs instead. As shown in
Fig. 5(b), there are four data qubits (n, s, e,w) that are chosen
to be disabled, and then we can utilize one of them as a new
syndrome qubit (NSQ). Recall from Sec. II that to extract error
syndromes from data qubits, we need to apply controlled NOT

(CNOT) gates from (to) data qubits to (from) syndrome qubits
based on the type of stabilizer. Here, we apply the CNOT gate
to the data qubit and NSQ.

Figure 5 shows the detailed reconfiguration. In this exam-
ple, we utilize |e〉 as an NSQ, which needs to perform a check
operation with the surrounding data qubit. However, there are
constraints to consider, such as not allowing |e〉 to perform
check operations on itself, as it now serves as a syndrome
qubit. Additionally, the |n〉, |s〉, and |w〉 qubits are unable to
directly apply CNOT gates to |e〉 due to hardware limitations.

To address these constraints, we introduce a bridge gate,
allowing us to connect |e〉 to the |X1〉 and |X2〉 syndrome
qubits, which are in turn connected to the |n〉 and |s〉 qubits, as
shown in Fig. 5(c). We define such |X1〉 and |X2〉 syndrome
qubits as bridge syndrome qubits (BSQs). However, qubits |w〉
and |e〉 have long-range connectivity, making the use of only a
bridge gate impractical. The bridge gate’s feasibility is limited
to situations where the distance between qubits is confined to a
single qubit length. We can apply a SWAP gate, which is similar
to the method used in [23], but it increases the number of gates
dramatically. To avoid this, we keep the |w〉 qubit as a disabled
qubit, as in the previous configuration. Consequently, the |n〉
and |s〉 data qubits become enabled and can be used as usual,
as indicated by the green dots in Fig. 5(d). We define these
enabled |n〉 and |s〉 data qubits as yield data qubits (YDQs).
Notably, this method replaces FSQs by manipulating the qubit

012420-4

MITIGATING FABRICATION ERRORS BY RECOVERING … PHYSICAL REVIEW A 109, 012420 (2024)

FIG. 5. The circuit diagram and surface-code lattice depict the implementation of the recovery of the faulty-syndrome-qubit scheme. The
circuit in (a) that shows how to replace the faulty syndrome qubits contains qubits corresponding to the qubit labels in (b). (c) depicts the
process of recovering syndrome qubits. The first step involves |e〉 qubit routing to |n〉 and |s〉 qubits using bridge gates. Next, the surface code
in (d) is shown after replacement, and the result of recovering two data qubits is presented in green.

states through bridge gates rather than physically relocating
them. However, to make the approach more intuitive, in Fig. 5,
we show the process of |e〉 physically moving to the FSQ.

One challenge of this recovery is choosing which disabled
data qubit should be the NSQ. For simplicity, one of the DDQs
is selected if it is not disabled by another supercheck stabilizer
and is not faulty. However, an issue arises when FSQs are
located at the lattice’s edge and no corresponding stabilizer
generator pairs with this faulty qubit [28]. To address this
situation, the lattice’s edge must be redefined by entirely
disabling the damaged stabilizer generator. This redefinition
process may need to be repeated if any of the qubits within this
new edge become faulty, effectively leading to the disabling of
a supercheck operator.

For clarity, we present the pseudocode for our proposed
method in Algorithm1, which corresponds to the details pro-
vided in Fig. 5. Algorithm 1 begins by identifying FSQs,
and if any of them are situated at the lattice’s edge, they are
left unchanged. For each eligible FSQ, we proceed to locate
nearby DDQs, which, in the context of Fig. 5, correspond to
|n〉, |s〉, |e〉, and |w〉.

For each of these DDQs, we evaluate whether they meet
certain constraints. If any of the DDQs fulfill these constraints,
one of them is selected to serve as the NSQ. If none of the
DDQs meets the criteria, we proceed to another FSQ.

Once a suitable NSQ is identified or selected, the algo-
rithm proceeds to determine the expected YDQs, in Fig. 5,
corresponding to |n〉 and |s〉. For each YDQ, we find the
corresponding BSQs, represented by |X1〉 and |X2〉 in Fig. 5.
Finally, we enable YDQi and apply a bridge gate to establish
connections between YDQi, BSQi, and the NSQ. This algo-
rithm effectively captures the steps involved in the recovery
of FSQs, ensuring the continuity of QEC while preserving the
lattice integrity.

IV. PERFORMANCE EVALUATION

A. Error model

Computational Pauli error rates pcomp are applied to every
gate in our model. We follow the assumption from [28] that
each two-qubit gate acts perfectly without any errors in [34]
and suffers from only depolarizing Pauli noise, occurring with
a probability of pcomp. We assumed a single gate (only identity
in this experiment) also acts perfectly, followed by depolariz-
ing Pauli noise with probability 4pcomp/5. The reason for this
is based on [28,45]: 4p/5 represents the error rate experienced

by each qubit participating in a two-qubit gate when exposed
to depolarizing noise with a probability of p. Moreover, this
assumption agrees with the experiments in [14]. It is assumed
that preparation has a probability of pcomp to initialize the
state on an orthonormal basis, whereas measurement has a
probability of pcomp to yield an incorrect outcome.

In preparation for error correction procedures, all fabri-
cation errors are initially treated as distinct and unrelated
occurrences. We assume that the precise locations of these
fabrication errors have already been pinpointed. In this sce-

Algorithm 1. Reconfiguration of the stabilizer to recover defec-
tive syndrome qubits.

// Faulty Syndrome Qubits

1 FSQs ← GetFaultySyndQubits();
2 for FSQ in FSQs do
3 if FSQ is at lattice edge then
4 continue;
5 end

// Disable Data Qubits

6 DDQs ← GetNearbyDisabledDataQubits(FSQ);
// New Syndrome Qubit

7 NSQ ← None;
8 for DDQ in DDQs do
9 if DDQ is faulty then

10 continue;
11 end

// If DDQ is disabled by another

stabilizer

12 if DDQ.number disabled() ≥ 2 then
13 NSQ ← DDQ;
14 break;

15 end

16 end
17 if NSQ is None then
18 continue;
19 end

// Yield Data Qubits

20 Y DQs ← GetYieldDataQubits(DDQ, NSQ);
21 for YDQ in YDQs do

// Bridge Syndrome Qubit

22 BSQ ← FindBridgeSyndQubit(Y DQ, NSQ);
23 Y DQ.set enable();
24 ApplyBridgeGate(Y DQ, BSQ, NSQ);

25 end

26 end

012420-5

HENG, KIM, AND HAN PHYSICAL REVIEW A 109, 012420 (2024)

nario, every qubit, whether it is a syndrome qubit or a data
qubit, faces a fabrication error, and this likelihood is denoted
by the parameter pcomp. Similarly, every connection or link
is prone to fabrication errors with a probability indicated by
plink. pqubit indicates fabrication-error rate. These parameters,
namely, pcomp, pqubit , and plink, can be adjusted independently.
However, for this research, we exclusively focus on analyzing
the parameter pqubit , making the probability plink almost neg-
ligible. Consequently, we assume that the errors in couplers,
which are essential for carrying out two-qubit gates, are inher-
ently presumed to be absent.

B. Experimental simulation

Our numerical simulation is implemented based on the
simulator from [28]. First, the simulation generates a surface-
code lattice consisting of qubits with fabrication-error rates
pqubit . The fabrication errors are on the data and syndrome
qubits, followed by the qubits or links for forming the su-
percheck operators. The logical operators are constructed
through a path-finding algorithm operating on the x-type
and z-type lattices. In cases where a logical operator cannot
be identified, the lattice undergoes a percolation process in-
volving FDQs, or DDQs, leading to the termination of the
simulation.

When a logical operator is constructed, the simulation ex-
ecutes 2 × L cycles of syndrome measurement. Each cycle
comprises the initialization of syndrome qubits, four steps
of two-qubit gates, and subsequent syndrome-qubit measure-
ment. These processes are each allotted a single unit of time.
Any qubit not engaged in a two-qubit gate, measurement,
or initialization during a specific time step experiences an
identity gate operation.

To initiate the code, an initial cycle of flawless x-type
and z-type measurements is conducted to obtain error-free
results for each measurement. The simulation concludes
with a final cycle of perfect measurements. For all other
stabilizer-measurement cycles, the provided Pauli error model
is applied.

We adopt a stabilizer approach identical to that pre-
sented in [28], employing the CNOT-Hadamard-phase sta-
bilizer algorithm [46]. This methodology is utilized to
simulate the quantum state during gate operations and mea-
surements, thereby verifying the accuracy of the gauge
operators’ results. Following the acquisition of all measure-
ments, a minimum-weight perfect-matching routine, involv-
ing the Blossom V algorithm [47], is employed to ascertain
the necessary correction based on the acquired syndrome
information.

The edge weights utilized for the perfect-matching rou-
tine are determined using the methodologies outlined in
[28,48], optimizing the matching process. Syndrome mea-
surement is emulated on x-type and z-type lattices, although
error correction is executed solely on one lattice to minimize
computational overhead. This decision is informed by the
symmetry between the x-type and z-type lattices, resulting in
nearly identical logical error rates. After the correction, an
assessment is conducted to detect the presence of a logical
X error by verifying if the combined error and correction
sequences commute with the logical Z operator.

FIG. 6. Percolation rates for the syndrome-fabrication-error rate.
The percolation rates, with default representing the method from
prior research and recovery denoting our proposed approach in which
the recovery method is applied. A star is used to denote the critical
points for the percolation error rate. Specifically, the critical point
for the default method occurs at a syndrome-fabrication-error rate of
17%, whereas the recovery method is observed at 22%.

The Pauli error rates are systematically adjusted, spanning
pcomp = 0.05% to pcomp = 1.00% in increments of 0.05%.
Each fabrication-error rate is modulated from 0% to 40% at
2% intervals. Moreover, the fabrication error will randomly
occur on the surface code. Using the configuration above,
the experiment is conducted following [28]. Each configura-
tion runs 100 times to obtain an average result. Additionally,
15 × 105 iterations are simulated for each combination of
error rates and code distances from distance-7 to distance-17
codes.

V. EXPERIMENTAL RESULTS

A. Percolation thresholds

Our primary result is illustrated in Fig. 6, which illustrates
the percolation behavior of the surface code concerning the
syndrome-fabrication-error rate, under the assumption of the
absence of data-fabrication errors. The percolation rate varies
from 0% to 100%, signifying the rate at which the effective
code distance reaches zero. In Fig. 6, we present the results
obtained using the method described in [28], labeled Default,
and our method, referred to as Recovery.

The recovery method achieves a 33.33% (on average) im-
provement in resilience against syndrome-fabrication errors
compared with the results of the default method when the
percolation rate is 100%. Notably, a percolation rate of 50%
serves as the bond percolation threshold analyzed in [28], and
our method enhances the resilience of syndrome-fabrication
errors by 27% on average in this scenario.

Moreover, Fig. 6 shows the critical point (stars) of the
percolation rate. Our findings reveal that a large L corresponds
to high resilience compared with a small L when operating

012420-6

MITIGATING FABRICATION ERRORS BY RECOVERING … PHYSICAL REVIEW A 109, 012420 (2024)

FIG. 7. Average effective code distance for the syndrome-qubit-
fabrication errors using the default and proposed recovery methods.

below the critical point. Conversely, when operating above
the critical point, a smaller L demonstrates superior resilience.
This observation underscores the intricate relationship be-
tween L and the percolation rate, particularly in the context
of the critical point within percolation theory. For the default
method, the critical point occurs at a syndrome-fabrication-
error rate of 17%, whereas for the recovery method, it shifts
to 22%. Thus, our scheme enhances the critical point along
the x axis by 22.7%, indicating that it requires a 29.4% higher
syndrome-fabrication-error rate to reach the critical point.

B. Effective code distance

Figure 7 shows an analysis of the variation in the average
effective code distance with the syndrome-qubit-fabrication
errors for the default and proposed recovery methods. To de-
termine the effective code distance for each lattice, we identify
the lowest-weight logical operator:

L̄′ =
∑n

i=1 min(L′zi, L′xi)

n
. (1)

Specifically, L̄′ is the average effective code distance, and n
is the total number of runs. L′z and L′x are defined as the
minimum weights of a nontrivial logical operator for z-type
and x-type stabilizers. This is equivalent to the product of
a logical operator on the encoded qubit and a gauge qubit
operator.

Subsequently, the effective code distance is calculated by
averaging the results across all simulation runs. The average
effective code distance drops from the intended code distance
to 1 when the syndrome-fabrication-error is 14.8% on average
for the default method. Conversely, for the recovery method,
it decreases the code distance to 1 when the syndrome-
fabrication-error rate averages 21.8%. This indicates that our
method significantly reduces the decline in the effective code
distance by an average of 47.29%.

FIG. 8. Average logical error rates with the qubit-fabrication-
error rate varying from 0% to 10% for intended distance-13, -15, and
-17 codes. The graph above shows the average result of the intended
code distance below.

C. Logical error rate

The logical error rate is calculated by dividing the number
of logical errors by the total number of runs, excluding those
affected by percolation. Figure 8 shows the logical error rate
that is impacted by the computational Pauli error rate pcomp,
which applies qubit-fabrication errors pqubit ranging 0% to
10%. The dashed lines indicate the experiment conducted
using our proposed recovery method, whereas the solid lines
are those conducted using the default method from [28]. Com-
pared to the default method, the recovery method reduced the
logical qubit error rate to around 50% when pcomp = 0.2%
and 18.42% on average. This reduction occurs because when
the lattice gains more data qubits, it becomes more resilient to
the error. At the crossing point, a threshold of approximately
0.2% of pcomp is observed for each intended code distance.
This indicates that the penalty of the surface code for having
a qubit-fabrication error above the cross point increases the
logical error rate at high L values.

VI. CONCLUSION

In this study, we have introduced an approach for mitigat-
ing the impact of FSQs on the surface code. Our proposed
method focuses on recovering FSQs, thereby preventing the
disabling of neighboring qubits and minimizing the loss of
data qubits available for computation.

A distinctive aspect of our approach involves the use
of bridge gates for reconfiguring stabilizers and redirecting
error syndromes from FSQs to nearby data qubits, which can
be performed without requiring any supplementary hardware
components. Moreover, using bridge gates proves to be more
efficient than methods utilizing SWAP gates in [23].

012420-7

HENG, KIM, AND HAN PHYSICAL REVIEW A 109, 012420 (2024)

Through the experimental simulation, we have demon-
strated our approach’s efficacy in improving the surface code’s
resilience against syndrome-fabrication errors. Our results in-
dicate that the recovery method substantially enhances the
percolation rate compared with the default method, effectively
raising the critical point for syndrome-fabrication errors by
29.4% on average and 33.33% when the percolation rate
reaches 100%. This implies that our approach allows for a
more robust surface-code implementation, particularly when
fabrication errors are prevalent. Furthermore, our method re-
markably achieves a 50% reduction in the logical error rate
at low computational Pauli error rates (pcomp = 0.2%) and
achieves 18.42% on average, compared with the results of the
default method. Further, we agree with [28] that increasing
the size of a surface code is beneficial only if it does not raise
the fabrication-error rate, and we found that the main cause is
particularly the syndrome-fabrication-error rate.

This study prompts further investigation into optimal
strategies for recovering defective syndrome qubits across

various quantum error correction codes. It aims to tailor these
strategies to maximize recovery efficiency while minimiz-
ing additional resource consumption. These inquiries seek to
explore the theoretical limits and trade-offs associated with
recovery operations, facilitating approaches to optimize the
proposed method’s performance in mitigating fabrication er-
rors on qubits.

ACKNOWLEDGMENTS

This research was partly supported by Quantum Com-
puting based Quantum Advantage challenge research (RS-
2023-00257994) through the National Research Foundation
of Korea (NRF) funded by the Korean government (MSIT)
and an Institute for Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korean
government (MSIT; Grant No. 2020-0-00014, “A Technology
Development of Quantum OS for Fault-tolerant Logical Qubit
Computing Environment”).

[1] P. Shor, Algorithms for quantum computation: Discrete log-
arithms and factoring, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, NW Washing-
ton, DC (IEEE Computer Society, Piscataway, NJ, 1994), pp.
124–134.

[2] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’96 (ACM
Press, Philadelphia, 1996), pp. 212–219.

[3] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[4] S. S. Panda, P. A. A. Yasir, and C. M. Chandrashekar, Quan-
tum direct communication protocol using recurrence in k-cycle
quantum walks, Phys. Rev. A 107, 022611 (2023).

[5] E. Gouzien, D. Ruiz, F.-M. Le Régent, J. Guillaud, and
N. Sangouard, Performance analysis of a repetition cat code
architecture: Computing 256-bit elliptic curve logarithm in 9
hours with 126 133 cat qubits, Phys. Rev. Lett. 131, 040602
(2023).

[6] C. Portmann and R. Renner, Security in quantum cryptography,
Rev. Mod. Phys. 94, 025008 (2022).

[7] N. N. Hegade, X. Chen, and E. Solano, Digitized counterdia-
batic quantum optimization, Phys. Rev. Res. 4, L042030 (2022).

[8] J. R. McClean, M. P. Harrigan, M. Mohseni, N. C. Rubin,
Z. Jiang, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H.
Neven, Low-depth mechanisms for quantum optimization, PRX
Quantum 2, 030312 (2021).

[9] M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang,
and H. Pichler, Quantum optimization with arbitrary connec-
tivity using Rydberg atom arrays, PRX Quantum 4, 010316
(2023).

[10] N. Yoshioka, T. Sato, Y. O. Nakagawa, Y.-Y. Ohnishi, and W.
Mizukami, Variational quantum simulation for periodic materi-
als, Phys. Rev. Res. 4, 013052 (2022).

[11] K. Nawa, T. Suzuki, K. Masuda, S. Tanaka, and Y. Miura, Quan-
tum annealing optimization method for the design of barrier
materials in magnetic tunnel junctions, Phys. Rev. Appl. 20,
024044 (2023).

[12] F. Machado, E. A. Demler, N. Y. Yao, and S. Chatterjee, Quan-
tum noise spectroscopy of dynamical critical phenomena, Phys.
Rev. Lett. 131, 070801 (2023).

[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[14] Y. Zhao et al., Realization of an error-correcting surface code
with superconducting qubits, Phys. Rev. Lett. 129, 030501
(2022).

[15] A. N. Cleland, An introduction to the surface code, SciPost
Phys. Lect. Notes 49, 49 (2022).

[16] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, Scalable
quantum circuit and control for a superconducting surface code,
Phys. Rev. Appl. 8, 034021 (2017).

[17] A. deMarti iOlius, J. E. Martinez, P. Fuentes, P. M.
Crespo, and J. Garcia-Frias, Performance of surface codes
in realistic quantum hardware, Phys. Rev. A 106, 062428
(2022).

[18] A. Strikis, S. C. Benjamin, and B. J. Brown, Quantum com-
puting is scalable on a planar array of qubits with fabrication
defects, Phys. Rev. Appl. 19, 064081 (2023).

[19] A. Bilmes, A. Megrant, P. Klimov, G. Weiss, J. M. Martinis,
A. V. Ustinov, and J. Lisenfeld, Resolving the positions of
defects in superconducting quantum bits, Sci. Rep. 10, 3090
(2020).

[20] T. M. Stace, S. D. Barrett, and A. C. Doherty, Thresholds for
topological codes in the presence of loss, Phys. Rev. Lett. 102,
200501 (2009).

[21] A. Paler, A. G. Fowler, and R. Wille, Reliable quantum cir-
cuits have defects, XRDS: Crossroads, ACM Mag. Stud. 23,
34 (2016).

[22] Y.-C. Tang and G.-X. Miao, Robust surface code topology
against sparse fabrication defects in a superconducting-qubit
array, Phys. Rev. A 93, 032322 (2016).

[23] S. Nagayama, A. G. Fowler, D. Horsman, S. J. Devitt, and R. V.
Meter, Surface code error correction on a defective lattice, New
J. Phys. 19, 023050 (2017).

012420-8

https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PhysRevA.107.022611
https://doi.org/10.1103/PhysRevLett.131.040602
https://doi.org/10.1103/RevModPhys.94.025008
https://doi.org/10.1103/PhysRevResearch.4.L042030
https://doi.org/10.1103/PRXQuantum.2.030312
https://doi.org/10.1103/PRXQuantum.4.010316
https://doi.org/10.1103/PhysRevResearch.4.013052
https://doi.org/10.1103/PhysRevApplied.20.024044
https://doi.org/10.1103/PhysRevLett.131.070801
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.21468/SciPostPhysLectNotes.49
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1103/PhysRevA.106.062428
https://doi.org/10.1103/PhysRevApplied.19.064081
https://doi.org/10.1038/s41598-020-59749-y
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1145/2983541
https://doi.org/10.1103/PhysRevA.93.032322
https://doi.org/10.1088/1367-2630/aa5918

MITIGATING FABRICATION ERRORS BY RECOVERING … PHYSICAL REVIEW A 109, 012420 (2024)

[24] A. Siegel, A. Strikis, T. Flatters, and S. Benjamin, Adaptive
surface code for quantum error correction in the presence of
temporary or permanent defects, Quantum 7, 1065 (2023).

[25] K. N. Smith, G. S. Ravi, J. M. Baker, and F. T. Chong, Scaling
superconducting quantum computers with chiplet architectures,
in 2022 55th IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Chicago, Illinois (IEEE Press, Piscataway,
NJ, 2022), pp. 1092–1109.

[26] S. F. Lin, J. Viszlai, K. N. Smith, G. S. Ravi, C. Yuan, F. T.
Chong, and B. J. Brown, Empirical overhead of the adapted
surface code on defective qubit arrays, arXiv:2305.00138.

[27] IBM Quantum, https://quantum-computing.ibm.com/services/
resources.

[28] J. M. Auger, H. Anwar, M. Gimeno-Segovia, T. M. Stace, and
D. E. Browne, Fault-tolerance thresholds for the surface code
with fabrication errors, Phys. Rev. A 96, 042316 (2017).

[29] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[30] O. Higgott and N. P. Breuckmann, Subsystem codes with high
thresholds by gauge fixing and reduced qubit overhead, Phys.
Rev. X 11, 031039 (2021).

[31] D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface
code quantum computing by lattice surgery, New J. Phys. 14,
123011 (2012).

[32] A. Paetznick, C. Knapp, N. Delfosse, B. Bauer, J. Haah, M. B.
Hastings, and M. P. da Silva, Performance of planar Floquet
codes with Majorana-based qubits, PRX Quantum 4, 010310
(2023).

[33] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin,
J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C.
Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber,
B. Neyenhuis, D. Hayes, and R. P. Stutz, Realization of real-
time fault-tolerant quantum error correction, Phys. Rev. X 11,
041058 (2021).

[34] Google Quantum AI et al., Suppressing quantum errors by
scaling a surface code logical qubit, Nature (London) 614, 676
(2023).

[35] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th ed. (Cambridge University Press,
Cambridge, 2010).

[36] Y.-H. Liu and D. Poulin, Neural belief-propagation decoders for
quantum error-correcting codes, Phys. Rev. Lett. 122, 200501
(2019).

[37] S. C. Smith, B. J. Brown, and S. D. Bartlett, Local predecoder to
reduce the bandwidth and latency of quantum error correction,
Phys. Rev. Appl. 19, 034050 (2023).

[38] J. Fujisaki, H. Oshima, S. Sato, and K. Fujii, Practical and
scalable decoder for topological quantum error correction with
an Ising machine, Phys. Rev. Res. 4, 043086 (2022).

[39] J. B. Hertzberg, E. J. Zhang, S. Rosenblatt, E. Magesan, J. A.
Smolin, J.-B. Yau, V. P. Adiga, M. Sandberg, M. Brink, J. M.
Chow, and J. S. Orcutt, Laser-annealing Josephson junctions
for yielding scaled-up superconducting quantum processors, npj
Quantum Inf. 7, 129 (2021).

[40] J. M. Kreikebaum, K. P. O’Brien, A. Morvan, and I. Siddiqi,
Improving wafer-scale Josephson junction resistance variation
in superconducting quantum coherent circuits, Supercond. Sci.
Technol. 33, 06LT02 (2020).

[41] A. Paetznick and B. W. Reichardt, Universal fault-tolerant
quantum computation with only transversal gates and error
correction, Phys. Rev. Lett. 111, 090505 (2013).

[42] S. D. Barrett and T. M. Stace, Fault tolerant quantum compu-
tation with very high threshold for loss errors, Phys. Rev. Lett.
105, 200502 (2010).

[43] M. Y. Siraichi, V. F. D. Santos, C. Collange, and F. M. Q.
Pereira, Qubit allocation as a combination of subgraph isomor-
phism and token swapping, Proc. ACM Program. Languages 3,
1 (2019).

[44] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, Optimiza-
tion of quantum circuit mapping using gate transformation and
commutation, Integration 70, 43 (2020).

[45] E. Knill, Quantum computing with realistically noisy devices,
Nature (London) 434, 39 (2005).

[46] S. Aaronson and D. Gottesman, Improved simulation of stabi-
lizer circuits, Phys. Rev. A 70, 052328 (2004).

[47] V. Kolmogorov, Blossom V: A new implementation of a mini-
mum cost perfect matching algorithm, Math. Prog. Comp. 1, 43
(2009).

[48] S. Bravyi and A. Vargo, Simulation of rare events in quantum
error correction, Phys. Rev. A 88, 062308 (2013).

012420-9

https://doi.org/10.22331/q-2023-07-25-1065
https://arxiv.org/abs/2305.00138
https://quantum-computing.ibm.com/services/resources
https://doi.org/10.1103/PhysRevA.96.042316
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevX.11.031039
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PRXQuantum.4.010310
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevApplied.19.034050
https://doi.org/10.1103/PhysRevResearch.4.043086
https://doi.org/10.1038/s41534-021-00464-5
https://doi.org/10.1088/1361-6668/ab8617
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.105.200502
https://doi.org/10.1145/3360546
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1103/PhysRevA.88.062308

