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Quantum entanglement percolation under a realistic restriction
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The problem of establishing Bell and Greenberger-Horne-Zeilinger states between faraway places or distant
nodes of a circuit is a difficult and an extremely important one, and a strategy which addresses it is entanglement
percolation. We provide a method for attaining the end through a quantum measurement strategy involving three-,
two-, and single-qubit measurements on a single-layer honeycomb lattice of partially entangled pure bipartite
entangled states. We then move over to a double-layered lattice, and introduce entanglement percolation on that
lattice under a realistic restriction on local quantum operations and classical communication allowed on the
nodes of the lattice. When applied to a single-layered honeycomb lattice, our strategy would call for less noise
effects in an actual realization than when the same phenomenon is attained via existing methods. Moreover, for
the double-layered honeycomb lattice, we report advantage of quantum entanglement percolation over classical
entanglement percolation under the realistic restriction.
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I. INTRODUCTION

One of the major problems in quantum information [1] is
of distributing entangled states [2–4]. Entanglement is often
a fragile resource and decoherence tends to frequently make
the problem of distributing entanglement a difficult one. But
distributing entanglement, be it between two remote positions
on a lattice or between two stations separated by a relatively
large distance, can have a multitude of uses, ranging from
quantum computers [5] to quantum key distribution [6–9] and
quantum dense coding [10–16]. Quantum networks [17–24]
have been employed as a solution to the problem of distribut-
ing entanglement. They consist of nodes where each node can
station many qubits. Different qubits at a particular node can
be entangled with other qubits at other nodes. A network often
has a well-defined geometric structure, and may form a lattice,
for example, a triangular or a square lattice. Local quantum
operations at the nodes and classical communication between
the nodes are usually accessible in a realistic situation, and are
thereby adopted in theoretical considerations of manipulation
of the structure and connectivity of a quantum network.

An associated problem is that of establishing maximally
entangled states (also called Bell states) between two far-
away places. Using maximally entangled states for different
protocols like quantum teleportation [25] and quantum cryp-
tography [26] is extremely important, since they often provide
the maximum advantage over the corresponding classical pro-
tocols. (See Refs. [27–34] however.)

Nielsen’s majorization criterion answered the question
whether a single copy of a bipartite pure state can be con-
verted to another, deterministically and under local operations
and classical communication (LOCC) [35]. Vidal derived the
complete set of monotones for local pure state transforma-
tions and found the formula for the maximum probability of
successfully converting—under LOCC—a bipartite pure state
to another [36] (see also Refs. [37–39]). The entanglement

swapping scheme was earlier introduced by Żukowski et al. in
Refs. [40] (see also Refs. [41,42]). Bose, Vedral, and Knight
generalized this scheme to a multiparticle scenario and ap-
plied it to a communication network [43].

Acín, Cirac, and Lewenstein (ACL) [44] developed the
“classical entanglement percolation” (CEP) protocol and used
it to show how the concept of percolation [45] in statistical
mechanics can be applied in the context of sharing quan-
tum entanglement. (See Refs. [46–50] for further studies.)
Precisely, they showed how it can be utilized to achieve the
task of distributing entanglement between faraway nodes on
a network and to establish a maximally entangled Bell state
between two distant nodes of an asymptotically large lat-
tice. They further developed a protocol which they termed as
“quantum entanglement percolation” (QEP), and showed how
QEP can succeed where CEP could not, in accomplishing the
task of entanglement distribution.

In this paper, we will mainly be concerned with QEP, and
use shared pure entanglement for this purpose. In particu-
lar, a quantum measurement strategy is constructed which
helps to establish maximally entangled states between two
“antipodal” end nodes of a lattice. We discuss about both
single- and double-layered honeycomb lattices where the
present measurement strategy can be utilized. The hexago-
nal (or honeycomb) lattice is one of the most widely used
lattices in the theory and experiment of ultracold gases and
condensed-matter physics (see, e.g., Refs. [51–55] for some
recent examples). We believe that this proliferation of hexag-
onal lattices in real systems would lend the strategy reported in
the paper to be more prone to being realized when considered
for that lattice. Apart from this practical aspect, there is a
mathematical tractability issue that led to the choice of the lat-
tice. The percolation threshold can be analytically calculated
for the honeycomb lattice. As a result, the results obtained
in the paper are independent of numerical approximations,
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FIG. 1. Schematic diagram of a quantum network. The network
is formed by a collection of nodes, each of which contains a cluster
of qubits. A qubit in one node is typically entangled with a qubit
in a different node. The smaller circles represent the qubits, while
the larger ones represent the nodes. The lines represent the entangled
states.

in the context of calculation of percolation thresholds. Only
for a few lattices can the percolation threshold probability be
calculated exactly, with honeycomb and triangular lattices
being two such lattices. This has led us, and may have led
the former works in the literature, to choose to study transfor-
mations from a honeycomb to a triangular lattice.

Our strategy involves three-, two-, and single-qubit mea-
surements. The outcome is in a Greenberger-Horne-Zeilinger
(GHZ) state [56,57] between an arbitrary number of nodes
of the lattice, which can then be transformed to a maximally
entangled two-qubit state between two faraway nodes. Stick-
ing to a single layer of the honeycomb lattice, we compare
our strategy with previous entanglement percolation strate-
gies in the literature with respect to the resources utilized,
and show that the number of measurements required for the
success of our strategy is less than those required in both
Ref. [44] and Ref. [48]. It is thus plausible that our mea-
surement strategy would have less noise effects in an actual
experimental realization compared to the same based on the
strategies in Refs. [44,48]. When applied to a single-layered
honeycomb lattice, it may look like our measurement strategy
is not that effective since there is no advantage of QEP over
CEP. But to find out the nontrivial feature(s) of our measure-
ment strategy, we apply it to a double-layered honeycomb
lattice with the restriction that the layers are provided one
by one, i.e., no joint measurement on both layers is allowed.
In this way, by introducing entanglement percolation under
what we refer to as “restricted” local quantum operations
and classical communication (rLOCC), we show how QEP
can be advantageous over CEP via our measurement strategy.
We note that the restriction we are talking about can be ex-
periment friendly, because, compared to full LOCC, rLOCC
will be easier to implement. In fact, the main motivation
of considering rLOCC comes from the adaptive strategies
which have drawn significant attention recently; for example,
see Refs. [58–62].

The rest of the paper is arranged in the following way.
In Sec. II, we provide a recapitulation of a few tools that
will be necessary for our analysis. Thereafter, in Sec. III, we
present the main results, and finally, in Sec. IV, we provide
the concluding remarks.

FIG. 2. Entanglement swapping. Entanglement swapping, prob-
ably the earliest and the simplest quantum network, can be seen
as a method of entangling two quantum systems that have never
met, but are each entangled with two further quantum systems that
have interacted in the past. In the schematic given, the quantum
systems are represented by the circles (in blue) and the lines represent
entangled states. The ellipse (in red) enclosing the two blue circles
indicates an interaction, possibly via a measurement, between the
two blue circles. In the figure, the two blue circles at the extremes
get entangled by the interaction. The arrow represents the flow of
operations in time.

II. COLLECTING THE TOOLS

A. Classical entanglement percolation

We begin with a description of the protocol for CEP. First,
any node of a lattice can contain any number of qubits, and
secondly, the qubits of two different nodes can be connected
via partially entangled states. See Fig. 1, where the nodes
within a quantum network are shown. The geometry created
due to these partially entangled qubits at different nodes forms
the structure of the lattice. The protocol begins by applying
LOCC between the nodes to convert the partially entangled
states to maximally entangled states. After this, some of the
previous links are broken and the probability that an initial
partially entangled state is converted to a maximally entangled
one is governed by the singlet conversion probability (SCP) of
the initial states.

Now for every lattice, there exists a percolation threshold
which is the critical value of the occupation probability in the
lattice, such that infinite connectivity (percolation) occurs. In
CEP, if the SCP is greater than the percolation threshold for
the given lattice, then an infinite cluster forms in the lattice.
This infinite cluster consists of nodes which are all linked with
maximally entangled states and, thus, one finds many paths
along which one can do entanglement swapping (see Fig. 2)
to create a maximally entangled state between two faraway
nodes of the given lattice. This can be performed, provided
the two such nodes lie in the same cluster, the probability
of which is θ (p), which is strictly greater than zero if SCP
is greater than the percolation threshold of the lattice. So,
the task of creating a maximally entangled state between two
end nodes of the lattice has been accomplished with a strictly
nonvanishing probability. The same would not have been pos-
sible using only entanglement swapping (without the singlet
conversion step in CEP), since in that case, as was shown in
Ref. [44], if the initial states were partially entangled, then the
probability of succeeding would have decayed exponentially,
with increasing lattice distance between the nodes.
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B. Quantum entanglement percolation

In QEP, the original lattice structure, using some particular
quantum measurements, is converted to some other lattice
for which the percolation threshold is lower than that of the
parent lattice. Thenceforth, CEP is applied on the new lattice.
To demonstrate the effectiveness of their protocol, ACL used
a double-layered honeycomb lattice in which percolation is
not possible as the critical amount of entanglement (which
is governed by the SCP here) is less than the percolation
threshold [44]. Carrying out measurements in the Bell basis
at the nodes, they converted their original lattice structure to
a triangular lattice which has a lower percolation threshold
than, and thus meets the criterion of, the critical amount of
entanglement being greater than the percolation threshold,
for entanglement percolation to succeed in the new lattice.
The Bell basis is given by the set of four orthonormal states,
(1/

√
2)(|00〉 ± |11〉), (1/

√
2)(|01〉 ± |10〉). As evident, this

protocol of entanglement percolation uses the richness of the
geometry of two-dimensional lattices. Further, the particular
lattice transformation used is one of the most important factors
leading to the success of the QEP. It is important to note
here that a double-layered honeycomb lattice was used, since
using the measurement strategy described in Ref. [44], it is
not possible to convert the single-layered honeycomb lattice
to a triangular lattice.

In this paper, we will present a quantum measurement strat-
egy which helps to establish multiparticle genuine entangled
states between an arbitrarily large number of nodes and maxi-
mally entangled states between two end nodes of the lattice by
using a single-layered honeycomb lattice. We then apply our
measurement strategy to a double-layered honeycomb lattice.

C. Schmidt decomposition

If |ψ〉 is a pure state which belongs to a bipartite quantum
system, described on the Hilbert space H = HA ⊗ HB, then
there exist orthonormal bases {|iA〉} and {|iB〉} in HA and HB

respectively, such that

|ψ〉 =
∑

i

√
αi|iA〉|iB〉, (1)

referred to as the Schmidt decomposition of |ψ〉, where
√

αi

are non-negative real numbers which satisfy the condition∑
i αi = 1. The

√
αi are known as Schmidt coefficients.

D. Nielsen’s majorization criterion

Nielsen found the necessary and sufficient condition that
a pure entangled state |ψ〉 can be deterministically converted
into another pure entangled state |φ〉 under LOCC [35]. Con-
sider a pure entangled state |ψ〉 ∈ Cn ⊗ Cn. Let the Schmidt
decomposition of the state |ψ〉 be given by

|ψ〉 =
n∑

i=1

√
αi|iA〉|iB〉, (2)

where
∑n

i=1 αi = 1 and αi � αi+1 � 0. The problem is to find
whether it can be converted, exactly and deterministically at
the level of a single copy and under LOCC, to another pure
state |φ〉 ∈ Cn ⊗ Cn, the Schmidt decomposition of which is

given by

|φ〉 =
n∑

i=1

√
βi|iA〉|iB〉, (3)

where
∑n

i=1 βi = 1 and βi � βi+1 � 0. Let us define
the Schmidt vectors, λψ = (α1, α2, . . . , αn) and λφ =
(β1, β2, . . . , βn). Then Nielsen’s criterion tells us that |ψ〉 can
be converted to |φ〉 under LOCC if and only if λψ is majorized
by λφ (written as λψ ≺ λφ), that is if and only if

k∑
i=1

αi �
k∑

i=1

βi (4)

for all k = 1, 2, . . . , n.

E. Singlet conversion probability

Vidal [36] showed that the pure state |ψ〉 ∈ Cn ⊗ Cn can
be locally converted to the pure state |φ〉 of the same Hilbert
space with a maximum probability given by

P(|ψ〉 → |φ〉) = min
l∈[1,n]

(
n∑

i=l

αi

/
n∑

i=l

βi

)
. (5)

For the conversion of a two-qubit pure partially entangled
state with Schmidt coefficients

√
φ0 and

√
φ1, φ0 > φ1 > 0,

to a maximally entangled Bell state, the above formula yields
an SCP of 2φ1.

F. Locally converting generalized GHZ to GHZ state

We find here an LOCC-based strategy to convert an m-
qubit partially entangled GHZ state [56] to the m-qubit
GHZ state with maximal probability. The initial state for
the measurement strategy is the partially entangled GHZ
state (also called the generalized GHZ state), |ψ〉A1A2...Am =
cos θ |00 . . . 0〉 + sin θ |11 . . . 1〉, |ii . . . i〉 ≡ |i〉⊗m, ∀i = 0, 1.
Here we take 0 < θ < π

4 and cos θ = √
φ0 > sin θ = √

φ1.
|0〉 and |1〉 are elements of the computational basis, being
eigenstates of the Pauli-z operator. We now apply an LOCC-
based measurement strategy to convert the above state to the
GHZ state, |ψ+〉 = (|00 . . . 0〉 + |11 . . . 1〉)/

√
2. The strategy

involves a measurement on just any one of the m qubits. The
corresponding measurement operators are given by

M1 =
(√

φ1

φ0
0

0 1

)
, M2 =

(√
1 − φ1

φ0
0

0 0

)
, (6)

where
∑2

i=1 M†
i Mi = I , with I being the identity operator act-

ing on the qubit Hilbert space. The probability of conversion
is seen to be 2φ1, and is the same as that of the conversion
of the same states in any bipartition, so that the probability is
optimal.

In this paper, for m = 3, we will refer to the corresponding
states as generalized GHZ and GHZ states. For larger m, we
will refer to the GHZ state as the “cat” state [56,63].

III. MAIN RESULTS

We first demonstrate our measurement strategy using a
single-layered honeycomb lattice, and then in a later portion,
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FIG. 3. Monolayer hexagonal lattice of bipartite states to a
monolayer triangular lattice of tripartite states. The single-layer
hexagonal lattice is formed by bipartite (possibly nonmaximally)
entangled states on each edge. Each node contains three qubits.
Being a bipartite lattice, we can color (or number) the nodes of the
hexagonal lattice with two colors (numbers), say, red(1) and blue(2),
such that each nearest neighbor of a red(1) node is a blue(1) node and
vice versa. Measurement in the GHZ basis is carried out on the three
qubits at the red(1) nodes. For example, the GHZ-basis measurement
is performed at the node A2, which has three qubits, each of which
is connected to a qubit at a neighboring blue(2) node via a bipartite
entangled state. These blue(2) nodes are denoted in the figure as A1,
A3, and A4. The relevant three qubits of these blue(2) nodes transform
into a generalized GHZ state, due to the GHZ-basis measurement
at the red(1) node, A2. There are two more qubits at each of these
blue(1) nodes, which are in turn connected to neighboring red(1)
nodes on the other side with respect to A2. Making such GHZ-basis
measurements at all the red(1) nodes of the hexagonal lattice leads to
a monolayer triangular lattice of generalized GHZ states, a unit cell
of which is depicted on the right-hand side of the figure.

we extend our strategy to a double-layered honeycomb lattice
by introducing entanglement percolation under restricted local
operations and classical communication, i.e., rLOCC.

A. Our measurement strategy on a single-layered
honeycomb lattice

Our task is to establish maximally entangled states between
two distant nodes of an asymptotically large lattice. As shown
in Ref. [44], the average of the SCPs over all four possible
outcomes at one node that may result due to entanglement
swapping between two identical copies of a two-qubit state is
the same as that of the original states. Further, they used this
result to convert two layers of partially entangled two-qubit
pure states arranged on honeycomb lattices to a single layer
of the same on a triangular lattice, via entanglement swap-
ping measurements at the nodes of the bilayered honeycomb
lattice. This is done because the percolation threshold of the
honeycomb lattice is higher than that of the triangular one.
If the partially entangled two-qubit pure states that acted as
initial states of the bilayered honeycomb lattice are such that
the SCP is less than the amount needed to do entanglement
percolation on a honeycomb lattice, the ACL entanglement-
swapping-based quantum measurement strategy enables one
to do entanglement percolation via “moving” to the triangular
lattice, provided the said SCP is higher than the critical value
needed for entanglement percolation on the latter lattice. See
also Ref. [48].

FIG. 4. Transforming a honeycomb lattice to a triangular one
by measuring on the Greenberger-Horne-Zeilinger basis on every
other node. The nodes at which the measurements are carried out are
marked with a circle (in red) on the hexagonal lattice. These nodes do
not appear any more on the triangular lattice. Further details appear
in the text and in the caption of Fig. 3.

Starting with a single layer of partially entangled pure
states arranged on a honeycomb lattice, we propose another
quantum measurement strategy which can attain entanglement
percolation. Since, it is a single layer of the lattice that we use,
the amount of entanglement used here is lower than that in the
ACL strategy which used two layers. However, while ACL’s
strategy required two-qubit measurements, we use three-qubit
ones. Later, when we use a double-layered honeycomb lattice,
the single-layered strategy gets modified accordingly.

The honeycomb lattice has three qubits at each node, and
the three edges emerging from each node connect with three
other qubits of three neighboring nodes, with each connection
(edge) being a single copy of the partially entangled state, |φ〉
= √

φ0|00〉 + √
φ1|11〉, φ0 > φ1 > 0, and φ0 + φ1 = 1. See

Fig. 3. We now assume that measurements are carried out, at
a certain specified set of nodes of the lattice, in the three-qubit
GHZ basis which is composed of the following eight states:

(|000〉 ± |111〉)/
√

2, (|001〉 ± |110〉)/
√

2,

(|010〉 ± |101〉)/
√

2, (|011〉 ± |100〉)/
√

2. (7)

The honeycomb lattice is a “bipartite” lattice, which means
that its nodes can be colored (or numbered) by using two col-
ors (or numbers), say red(1) and blue(2), such that all nearest
neighbors of any red(1) node are blue(1), and vice versa. The
GHZ-basis measurements are carried out only at the nodes of
a specific color (or number), say red(1). The measurements are
carried out on the three qubits at the nodes which are colored
(and numbered) red(1)in Fig. 3, and which are circled (in
red) in Fig. 4. After this measurement, we have successfully
converted our single-layered honeycomb lattice made up of
partially entangled pure two-qubit states to a triangular lattice
spanned by three-qubit generalized GHZ states. It is to be
noted that the triangular lattice is such that every fundamental
triangle that is filled with a generalized GHZ state is sur-
rounded by three empty triangles that are neighbors on its
sides. Thus, every empty triangle is surrounded on its sides
by filled triangles. The three-qubit generalized GHZ state
between the three relevant qubits of the three nodes (which
form a triangle in Fig. 3) neighboring the node at which the
GHZ-basis measurement is carried out can be obtained by
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computing the following expression:

(I ⊗ |Ai〉〈Ai| ⊗ I ⊗ I )|λ〉/√pi. (8)

The notations in the above state can be described as follows.
Consider four parties A1, A2, A3, A4 which are four neighbor-
ing nodes of a honeycomb lattice. Suppose that A2 is sharing
three pure two-qubit partially entangled states

√
φ0|00〉 +√

φ1|11〉, φ0 > φ1, φ0 + φ1 = 1, with each of the other three
parties. So, A2 has three qubits, representing a node, on which
the measurement in GHZ basis is carried out. The operators
|Ai〉〈Ai| are the projectors onto the elements of the three-qubit
GHZ basis, which act on the three qubits present in a node (be-
ing in possession of A2). On the other hand, identity operators
act on the single qubits of A1, A3, and A4. pi is the probability
that the projector |Ai〉〈Ai| clicks. |λ〉 denotes the total state of
the six qubits in possession of the four observers at the four
nodes. Exploiting the three-qubit measurement, we obtain the
following three-qubit generalized GHZ states, which generate
the triangles spanning the new lattice:

φ0
√

φ0|000〉 ± φ1
√

φ1|111〉√
φ3

0 + φ3
1

,
φ0

√
φ1|001〉 ± φ1

√
φ0|110〉√

φ2
0φ1 + φ2

1φ0

,

φ0
√

φ1|010〉 ± φ1
√

φ0|101〉√
φ2

0φ1 + φ2
1φ0

,
φ1

√
φ0|011〉 ± φ0

√
φ1|100〉√

φ2
0φ1 + φ2

1φ0

.

(9)

These generalized GHZ states are created due to a GHZ-basis
measurement, and they appear, respectively, with probabilities
pi, given by

p1 = p2 = φ3
0 + φ3

1

2
,

p j = φ2
0φ1 + φ2

1φ0

2
, ∀ j = 3, . . . , 8. (10)

The average SCP is calculated by averaging the SCPs
over all the eight possible outcomes (all outcomes are given
above) and is given as Avg. SCP = p0 = 2φ2

1 (φ1 + 3φ0).
Now we need to figure out the percolation threshold for our
triangular lattice. It could be difficult to calculate the threshold
for bond percolation in a triangular lattice spanned by GHZ
states. However, we can map our problem to a site percolation
problem as shown in Fig. 5.

An essential point to note here is that now each site in
the mapped triangular lattice (the red dots on the right-hand
side lattice in Fig. 5) denotes the presence of a GHZ state
with probability p0 (and its absence with probability 1 − p0).
Percolation of GHZ states in the original lattice is mapped to
percolation of sites in the mapped triangular lattice of sites in a
one-to-one correspondence. It is to be noted that the mapping
here is just a mental picture that aids in the mathematics of the
problem, and does not represent a physical maneuver.

The site percolation threshold for a triangular lattice is 1/2
[64]. If the average SCP, p0, of the original triangular lattice
with generalized GHZ states (left panel in Fig. 5) is larger
than the percolation threshold pc	

≡ 1/2 of the mapped trian-
gular lattice of sites (right panel in Fig. 5), arbitrarily large
cat states, 1√

2
(|00 . . . 0〉 + |11 . . . 1〉), will be formed in the

FIG. 5. Mapping the bond percolation problem to the site perco-
lation one. The triangular lattice of generalized GHZ states that we
obtained via the GHZ-basis measurements on every other node of
the hexagonal lattice is depicted on the left-hand side of the figure.
The intent is to create a cat state (see text) between qubits of an
arbitrarily large number of nodes. On the left-hand side, this is a bond
percolation problem, while we can look at it as a site percolation
problem by replacing every generalized GHZ state on the left panel
by a dot on the right panel. Each of these dots has a three-qubit
GHZ state with probability p0. The same intent as in the left panel
is attained by a site percolation on the triangular lattice on the right
panel. The change is only at the level of calculations, and does not
require a physical transformation.

original triangular lattice. This will be effected in the fol-
lowing way. There is a probability p0 for the generalized
GHZ states in the original triangular lattice to be transformed
locally, i.e., by local (with respect to the sites) quantum oper-
ations and classical communication (between the sites), to a
GHZ state. In cases when the transformation is successful, we
do two-qubit Bell-basis measurements along with single-qubit
measurements at the sites of the original triangular lattice
along the boundary of the region bounded by the sites forming
the cat state. See Fig. 6 for an example. The condition, on the
parameters of the bipartite nonmaximally entangled states of
the hexagonal lattice, for successfully creating an arbitrarily
large GHZ state is given by

2φ2
1 (φ1 + 3φ0) > 1

2 , (11)

which, solving the cubic, provides the range,

φ0 > φ1 ∈
(

1

2
− sin

π

18
,

1

2

)
, (12)

that is,

φ0 > φ1 ∈ (
0.326 35, 1

2

)
, (13)

with the left end of the last interval being correct to five
significant figures. This threshold is exactly the same as for
entanglement percolation using CEP on the hexagonal lattice
[44]. Each site of the original triangular lattice contains three
qubits. However, the sites that will form the cat state will
of course have one “active” qubit (i.e., the qubit used in the
construction of the cat state), and the remaining two qubits
will remain “passive.” By measuring in the σx basis on the
active qubits at all but two of these sites, we can create a
maximally entangled bipartite state between two sites that
have an arbitrarily large distance between them on the lattice.
It is evident that our measurement strategy, when applied on
a single-layered honeycomb lattice, is not better than CEP.
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FIG. 6. A specific scenario of percolation on a triangular lattice
of Greenberger-Horne-Zeilinger states. Suppose that we wish to
create a cat state (see text) between the nodes marked as A1–A4.
We are beginning with an initial situation where each triangle in the
figure represents a GHZ state. For every such triangle, the GHZ state
is present with probability p0. The cat state that we wished for can
be obtained by Bell measurements and single-qubit measurements
along the boundary of the region formed by the nodes A1–A4. The
Bell measurements are performed at the nodes marked by the ellipses
(in blue), on the two qubits inside those ellipses. The single-qubit
measurements are marked by the circles (in green).

However, our measurement strategy helps to reduce the num-
ber of measurements. We now proceed to talk about that issue.

Reducing the number of measurements

Applying our measurement strategy to a single-layered
honeycomb lattice for the percolation task reduces the number
of required measurements, providing potentially important
implications for noise resistance in an actual realization of our
technique.

Comparing our result with that in Ref. [44], we see that
there the authors converted the bilayer honeycomb lattice of
partially entangled two-qubit states to a triangular lattice, and
they succeeded in attaining bipartite entanglement percola-
tion. All measurements performed were two-qubit ones. Our
measurement strategy applied on a single layer of their honey-
comb lattice uses three-, two-, and single-qubit measurements,
to attain multipartite (and hence also bipartite) entanglement
percolation.

We compare our result of using QEP on the monolayer
hexagonal lattice with that of using CEP on the same lattice
[44]. The thresholds obtained are exactly the same. However,
the number of measurements are different. While CEP uses
lower-qubit measurements, we use less measurements. Pre-
cisely, for an l × l square box encompassing a part of the
hexagonal lattice, to create a cat state between nodes on the
boundary of the square, CEP requires 6l2 + O(l ) single-qubit
and O(l ) two-qubit measurements, while the QEP proposed
here requires 2l2 + O(l ) single-qubit, O(l ) two-qubit, and
2l2 + O(l ) three-qubit measurements. It is to be noted that
the length and breadth of the square box are counted such that
the hexagonal lattice in Fig. 4 is of breadth 2. It is probably

TABLE I. Comparison of the number of measurements in the
strategy described in this paper with the CEP in Ref. [44]. The
number of measurements shown here is for an l × l square box
encompassing a part of a hexagonal lattice. For a large lattice, the
number of measurements that our strategy uses would be consider-
ably lower than in CEP, and hence it will potentially call for less
noise effects, assuming a physical system that has comparable noise
levels in single-, and two-, and three-qubit measurements.

Type of measurement QEP CEP

Single-qubit measurements 2l2 + O(l ) 6l2 + O(l )
Two-qubit measurements O(l ) O(l )
Three-qubit measurements 2l2 + O(l )
Total number of measurements 4l2 + O(l ) 6l2 + O(l )

important to mention the following here. If the threshold re-
quired to connect nodes agrees with the one given through
the percolation threshold then it is expected that a connec-
tion between the distant ends can be established for some
nodes. However, it cannot be decided in advance which nodes
at the distant ends would be connected in the end. To see
the difference more clearly, we highlight the comparison in
Table I.

It should be noted that three-qubit measurements are, in ac-
tual implementations, often harder than two-qubit ones, which
in turn are harder than single-qubit ones. This is potentially
a technical restriction and does not necessarily have to be
true for all future architectures and physical substrates. The
advantage obtained here is under the assumption that a future
quantum device architecture will be able to implement all
few-qubit gates with equal or similar efficiency and noise
level.

Finally, in Ref. [48], the authors have used a different
measurement strategy and have attained multipartite entangle-
ment percolation. For the success of their strategy, the authors
needed to do between four and five measurements per unit
cell of their honeycomb lattice, whereas we need to do three
measurements per unit cell of our honeycomb lattice. Due
to the reduced number of measurements (per unit cell), it is
plausible that noise effects on a realization of our strategy will
be lower than the same on the one in Ref. [48].

B. Our measurement strategy on a double-layered
honeycomb lattice

We have already seen that, using a single-layered honey-
comb lattice, our measurement strategy does not lend any
advantage over CEP. So, it may seem that our measurement
strategy is weaker than the one introduced in Ref. [44]. But to
explore the nontrivial advantage of our measurement strategy
we need to dig a bit deeper. Though till now we have just
used a single layer of a honeycomb lattice, we can show
that our measurement is of particular importance when there
is more than one layer. The same measurement strategy, as
introduced in the previous section, is extended for the double-
layered honeycomb lattice here. As in case of Ref. [44], the
two layers of our double-layered honeycomb lattice are built
of nonmaximally entangled pure quantum states. But in this
network, only rLOCC is allowed. We now provide a formal
definition of rLOCC.
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Definition 1. The LOCC class that we had considered until
now meant that an observer at a given node can perform all
quantum operations at that node, and can also communicate
classically with the observers at any other node. The restricted
LOCC class disallows any operation in that class that involves
a joint operation on “particles” of both the layers. The parties
must perform LOCC between the nodes, but by considering
one layer after another.

The motivation of considering rLOCC comes from the con-
cept of adaptive LOCC. Researchers often use adaptive LOCC
in the context of state discrimination or channel discrimina-
tion in a many-copy scenario. Adaptive LOCC is interesting
because it is potentially easier to implement in a practical
scenario, in comparison to an element of the full LOCC class.
This is the reason why we consider rLOCC.

We next consider |φ〉⊗2, where again |φ〉 = √
φ0|00〉 +√

φ1|11〉, φ0 > φ1 > 0, and φ0 + φ1 = 1. We also consider
that each of the |φ〉s belongs to the two different layers. So,
the optimal SCP under rLOCC will be p + (1 − p)p, where
p = 2φ1. Given the first copy, the parties are able to suc-
ceed with probability p = 2φ1. But they fail with probability
(1 − p). So, with probability (1 − p), they use the second
copy and then they can succeed with probability p = 2φ1

again. In this way, the overall optimal SCP under rLOCC is
given by p + (1 − p)p. For CEP to succeed we need

p + (1 − p)p >
(

1 − 2 sin
π

18

)
, (14)

which implies that

φ1 >
1

2

(
1 −

√
sin

π

18

)
≈ 0.2916

⇒ φ1 > 0.2916. (15)

Clearly, if we take φ = 0.28, then CEP fails. Nevertheless for
this choice of φ1 = 0.28, the average SCP using our measure-
ment strategy as introduced in the last section is

p′ = 2φ2
1 (φ1 + 3φ0), (16)

that is,

p′ = 0.3825. (17)

Recall that p′ is achievable when there is only one layer. But
here we are considering two layers under rLOCC. In this case,
using the first layer, probability p′ is achievable. Then, with
probability (1 − p′), the parties fail and they use the second
layer. Again, they get success with probability p′. So, the
overall optimal SCP under rLOCC using our measurement
strategy is p′ + (1 − p′)p′ = 0.6186 > 0.5, with p′ = 0.3825
and where the site percolation threshold for the triangular
lattice is 0.5. So, clearly QEP using our measurement strategy
succeeds where CEP alone had failed.

In the above, we discussed an example where we started
with φ1 = 0.28, i.e., the corresponding nonmaximally entan-
gled state is given by |φ〉 = √

0.72 |00〉 + √
0.28 |11〉. For

the layers with this nonmaximally entangled state, we saw
that when we use rLOCC, CEP fails but QEP works. More
precisely, under rLOCC, the bound of (15) is strict for CEP,

but if one uses QEP, then, it is possible to go beyond this
bound.

The above is interesting due to the following reasons.
(1) We have introduced the concept of entanglement per-

colation under rLOCC.
(2) rLOCC is motivated from the real-life scenarios. Imple-

mentation of rLOCC must be easier compared to full LOCC.
(3) Another important point is that if we look into the

protocol of Ref. [44], then under rLOCC, their protocol fails.
That is because they use measurements in the Bell basis on
both the layers jointly. In contrast, our measurement strategy
succeeds under rLOCC.

(4) When we do not get an advantage of QEP over CEP
using our strategy, apparently, it seems that our strategy is
weak. However, we find an advantage when there is more than
one layer and under rLOCC.

(5) Lastly, in the context of entanglement percolation, we
find a nontrivial feature in a many-layer scenario which is not
occurring in the single-layer scenario.

IV. CONCLUSION

Entanglement percolation is an interesting technique to dis-
tribute entangled states between two or more nodes of a lattice
that can be arbitrarily distant. It is important to note that it can-
not be decided in advance as to which nodes at the distant ends
would be connected in the end, but the important thing is that
such a connection between the distant ends can be established
for some nodes. We have used both single- and double-layered
honeycomb lattices, made of nonmaximally entangled pure
bipartite quantum states. We have provided a quantum mea-
surement strategy involving three-, two-, and single-qubit
measurements, to obtain Greenberger-Horne-Zeilinger (cat)
states shared between an arbitrarily large number of lattice
nodes. The cat states can then be reduced to a two-qubit Bell
state shared between faraway nodes.

A feature of our strategy is that after our entanglement
swapping measurement on the initial hexagonal lattice, every
other node with all their qubits is totally removed from the
protocol and does not play any further role in the strategy,
which is significantly different from the measurement strategy
used in Ref. [48]. The resources used in an entanglement
percolation strategy are the entangled states of the original
lattice and the measurements performed in between. The num-
ber of measurements performed is potentially an important
parameter for estimating the noise effects on a realization of
the strategy. We have compared our entanglement percolation
strategy with existing ones in the literature with respect to
both these resources and our result shows that an experimental
realization based on our measurement strategy will potentially
have lower noise effects than in those based on the strategies
in Refs. [44,48]. This is when we use a single-layered honey-
comb lattice.

Moreover, our measurement strategy is effective for entan-
glement percolation under rLOCC—an experiment-friendly
restriction to the LOCC class—in a double-layered honey-
comb lattice. In particular, we have reported advantage of
quantum entanglement percolation over its classical counter-
part under the restricted class of operations. Under the same
restriction, the strategy of Ref. [44] does not succeed in real-
izing entanglement percolation.
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[42] A. Sen(De), U. Sen, and M. Żukowski, Phys. Rev. A 68, 062301

(2003).
[43] S. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 57, 822

(1998).
[44] A. Acín, J. I. Cirac, and M. Lewenstein, Nat. Phys. 3, 256

(2007).
[45] A. L. Efros, Physics and Geometry of Disorder: Percolation

Theory (Science for Everyone) (Mir, Moscow, 1986);
G. Grimmett, Percolation (Springer-Verlag, Berlin,
1999).

[46] S. Perseguers, J. I. Cirac, A. Acín, M. Lewenstein, and J. Wehr,
Phys. Rev. A 77, 022308 (2008).

[47] G. J. Lapeyre, J. Wehr, and M. Lewenstein, Phys. Rev. A 79,
042324 (2009).

[48] S. Perseguers, D. Cavalcanti, G. J. Lapeyre Jr., M. Lewenstein,
and A. Acín, Phys. Rev. A 81, 032327 (2010).

[49] S. Perseguers, G. J. Lapeyre Jr., D. Cavaclanti, M. Lewenstein,
and A. Acín, Rep. Prog. Phys. 76, 096001 (2013).

[50] S. Broadfoot, U. Dorner, and D. Jaksch, Europhys. Lett. 88,
50002 (2009).

[51] P. Schwerdtfeger, A. Burrows, and O. R. Smits, J. Phys. Chem.
A 125, 3037 (2021).

[52] A. Zelenskiy, T. L. Monchesky, M. L. Plumer, and B. W.
Southern, Phys. Rev. B 103, 144401 (2021).

[53] Y. Li, J. Yuan, X. Zhou, and X. Li, Phys. Rev. Res. 3, 033274
(2021).

[54] D. de Matteis, M. De Luca, E. M. T. Fadaly, M. A. Verheijen,
M. Lopez-Suarez, R. Rurali, E. P. A. M. Bakkers, and I. Zardo,
ACS Nano 14, 6845 (2020).

[55] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 104, 045122
(2021).

[56] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos (Kluwer Academic, Dordrecht, The
Netherlands, 1989).

[57] N. D. Mermin, Am. J. Phys. 58, 731 (1990).

012419-8

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/nphys1157
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1080/095003400148367
https://doi.org/10.1088/1367-2630/4/1/346
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.93.210501
https://doi.org/10.1142/S0219749906001888
https://doi.org/10.1103/PhysRevA.87.052319
https://doi.org/10.1103/PhysRevA.88.042329
https://doi.org/10.1103/PhysRevA.92.052330
https://doi.org/10.1016/j.physleta.2018.04.033
https://doi.org/10.1103/PhysRevA.100.052304
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/PhysRevA.56.3446
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1103/PhysRevA.63.052313
https://doi.org/10.1209/epl/i2006-10408-x
https://doi.org/10.1109/TIT.2010.2048442
https://doi.org/10.1103/PhysRevResearch.2.043355
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevA.65.052325
https://doi.org/10.1103/PhysRevA.67.062314
https://doi.org/10.1103/PhysRevA.98.062304
https://doi.org/10.1016/j.aop.2020.168281
https://doi.org/10.1016/j.physleta.2021.127143
https://doi.org/10.1103/PhysRevA.103.032408
https://arxiv.org/abs/2004.01419
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevLett.83.1046
https://doi.org/10.1103/PhysRevA.63.022301
https://doi.org/10.1103/PhysRevA.60.1912
https://doi.org/10.1103/PhysRevLett.83.1455
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1111/j.1749-6632.1995.tb38959.x
https://doi.org/10.1103/PhysRevA.68.062301
https://doi.org/10.1103/PhysRevA.57.822
https://doi.org/10.1038/nphys549
https://doi.org/10.1103/PhysRevA.77.022308
https://doi.org/10.1103/PhysRevA.79.042324
https://doi.org/10.1103/PhysRevA.81.032327
https://doi.org/10.1088/0034-4885/76/9/096001
https://doi.org/10.1209/0295-5075/88/50002
https://doi.org/10.1021/acs.jpca.1c00012
https://doi.org/10.1103/PhysRevB.103.144401
https://doi.org/10.1103/PhysRevResearch.3.033274
https://doi.org/10.1021/acsnano.0c00762
https://doi.org/10.1103/PhysRevB.104.045122
https://doi.org/10.1119/1.16503


QUANTUM ENTANGLEMENT PERCOLATION UNDER A … PHYSICAL REVIEW A 109, 012419 (2024)

[58] A. W. Harrow, A. Hassidim, D. W. Leung, and J. Watrous,
Adaptive versus nonadaptive strategies for quantum channel
discrimination, Phys. Rev. A 81, 032339 (2010).

[59] B. L. Higgins, A. C. Doherty, S. D. Bartlett, G. J. Pryde, and
H. M. Wiseman, Multiple-copy state discrimination: Thinking
globally, acting locally, Phys. Rev. A 83, 052314 (2011).

[60] V. Katariya and M. M. Wilde, Evaluating the advantage of adap-
tive strategies for quantum channel distinguishability, Phys.
Rev. A 104, 052406 (2021).

[61] M. Banik, T. Guha, M. Alimuddin, G. Kar, S. Halder,
and S. S. Bhattacharya, Phys. Rev. Lett. 126, 210505
(2021).

[62] J. Pauwels, S. Pironio, E. Z. Cruzeiro, and A. Tavakoli, Phys.
Rev. Lett. 129, 120504 (2022).

[63] E. Schrödinger, Naturwissenschaften 23, 807
(1935).

[64] D. Stauffer and A. Aharony, Introduction to Percolation Theory
(Taylor & Francis, London, 1992).

012419-9

https://doi.org/10.1103/PhysRevA.81.032339
https://doi.org/10.1103/PhysRevA.83.052314
https://doi.org/10.1103/PhysRevA.104.052406
https://doi.org/10.1103/PhysRevLett.126.210505
https://doi.org/10.1103/PhysRevLett.129.120504
https://doi.org/10.1007/BF01491891

