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Incompatibility of local measurements providing an advantage in local quantum state discrimination
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The uncertainty principle may be considered as giving rise to the notion of incompatibility of observables, a
property that has been carefully analyzed in the literature for single systems. A pack of quantum measurements
that cannot be measured simultaneously is said to form a set of incompatible measurements. Every set of
incompatible measurements has an advantage over the compatible ones in a quantum state discrimination task
where one prepares a state from an ensemble and sends it to another party, and the latter tries to detect the
state using available measurements. Comparison between global and local quantum state discriminations is
known to lead to a phenomenon of “nonlocality.” In this work, we seal a connection between the domains of
local quantum state discrimination and incompatible quantum measurements. We consider the local quantum
state discrimination task where a sender prepares a bipartite state and sends the subsystems to two receivers.
The receivers try to detect the sent state using locally incompatible measurements. We analyze the ratio of the
probability of successfully guessing the state using incompatible measurements and the maximum probability
of successfully guessing the state using compatible measurements. We find that this ratio is upper bounded by a
simple function of robustnesses of incompatibilities of the local measurements. Interestingly, corresponding to
every pair of sets of incompatible measurements, there exists at least one local state discrimination task where
this bound can be achieved. We argue that the optimal local quantum state discrimination task does not present
any “nonlocality,” where the term is used in the sense of a difference between the ratios, of probabilities of
successful detection via incompatible and compatible measurements, in global and local state discriminations.
The results can be generalized to the regime of multipartite local quantum state distinguishing tasks.
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I. INTRODUCTION

The uncertainty principle is one of the fundamental pillars
that influenced the formation of quantum mechanics by in-
troducing us to the concept of incompatibility of observables.
Given two observables, if the operators corresponding to those
observables (within the quantum formalism) can be jointly
measured using a “parent” measurement, then the observables
are called “compatible.” Otherwise, they are “incompatible”
[1–8]. Incompatibility is entirely a single-system property,
i.e., a system considered as a whole even if it possesses multi-
ple constituents. Incompatibility of observables is a signature
quantum mechanical property, absent in classical systems, and
plays an important role in many quantum tasks and phenom-
ena, like quantum key distribution [9–12], quantum steering
[2,3,13–16], and so on.

In a few recent works, connections between minimum-
error quantum state discrimination and incompatibility of
measurements have been explored [1,5,17–20]. The state dis-
crimination task involves a sender, Alice, and a receiver, Bob.
Alice prepares a quantum system in a particular state, taken
from a particular ensemble and then sends the system to Bob,
who is possibly at a distance. The ensemble appears at Alice
with a certain given probability, and along with the quantum
system, Alice may also send the information regarding the
ensemble to Bob. The set of possible ensembles and their
constituents are known to both parties. After receiving the
system, Bob tries to identify the state of the system through
measurements, i.e., Bob tries to distinguish between the states

of the ensemble. It is possible that Bob has access to a fixed set
of measurements. Depending on the available set of measure-
ments, Bob may not be able to identify the state of the system
perfectly. In such a state discrimination problem, Bob can try
to identify the state of the system through what is known as the
minimum-error quantum state discrimination strategy [21–24]
by minimizing the overall probability of error in guessing the
state of the system.

In Ref. [17], the authors considered a particular type of
state discrimination task where the sender may provide some
information about the state before the receiver performs any
measurement. The optimal guessing probability when the pre-
measurement information is provided is equal to the optimal
guessing probability when the information is given after the
measurement if the available set of measurements are com-
patible. This implies that premeasurement information can
improve the situation if the measurements are incompatible.
The maximum advantage one can get from incompatibility
increases linearly with the robustness of incompatibility [18].
There exists certain state discrimination tasks where incom-
patibility provides an advantage, and thus the incompatibility
of measurements can be regarded as a resource [19]. The
collection of the compatible set of measurements forms a
closed and convex set, and in Ref. [5], a witness operator
was formulated to detect incompatible measurements. We
mention here that a relation between quantum state discrim-
ination and channel incompatibility has also been established
[25,26]. Hitherto, in research works where incompatible mea-
surements were examined in the context of their ability to

2469-9926/2024/109(1)/012415(9) 012415-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5738-5245
https://orcid.org/0000-0002-0091-5847
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.012415&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1103/PhysRevA.109.012415


SEN, HALDER, AND SEN PHYSICAL REVIEW A 109, 012415 (2024)

discriminate quantum states, a global state discrimination task
was considered. The receiver was allowed to do measurements
on the entire state considering it as a single entity. We want
to explore the situation where the sender sends each part
of the system to different receivers, so that the receivers,
situating at distant locations, are not able to perform measure-
ment on the entire system, but are only allowed to do local
measurements.

There exists unique and interesting properties of dis-
tributed quantum systems which can provide advantages
in many quantum devices over the corresponding classi-
cal ones. The difference between the ability to distinguish
shared quantum states using global and local operations
provides evidence of the nonlocality present in the consid-
ered situation, which itself is an interesting quantum phe-
nomenon, but is also of crucial importance in several quantum
tasks.

In this work, we try to combine these two fundamental
notions of quantum mechanics, viz. the incompatibility of
quantum measurements and nonlocality in the state discrim-
ination of shared quantum systems. Specifically, we want to
examine if the single-system property of measurement in-
compatibility can influence the quantum state discrimination
protocol of a shared system. Therefore, we consider quantum
state discrimination tasks where more than two parties are
involved. Specifically, a sender, Alice, prepares a quantum
system of more than one subsystem in a particular state and
then sends the subsystems to two or more spatially sepa-
rated parties. These parties try to identify the state of the
system but they are not allowed to employ quantum com-
munication between the spatially separated locations. In this
situation, the allowed class of operations can be categorized
into two groups, depending on the resources available: (i)
local quantum operations (LO) without classical communica-
tion [27–29] and (ii) local quantum operations and classical
communication (LOCC) [30–74]. In Fig. 1, we schematically
present a comparison between the state discrimination tasks
considered in previous literature in the context of determining
the advantage of incompatible measurements with our dis-
crimination task.

We establish connections for the two categories of local
state discrimination tasks with the incompatibility of available
local measurements. See Fig. 2 to get a schematic understand-
ing of the two phenomena which we are trying to bring in the
same context. The spatially separated parties have access to
sets of incompatible measurements, which by employing, they
try to accomplish the given state discrimination task. We de-
rive relations between the probability of successfully guessing
(PSG) the state of the system using local incompatible mea-
surements and incompatibility of the local measurements. We
provide upper bounds, considering LO and LOCC separately,
and analyzing a single round of measurements in the later
case, on the PSG and these upper bounds are the functions
of incompatibility of local measurements. Interestingly, cor-
responding to every set of incompatible local measurements
there exists at least one local state discrimination task in
which this upper bound can be reached. The optimal state
discrimination task which achieves this bound does not exhibit
any “nonlocality.”

FIG. 1. Comparison between the discrimination task considered
in previous literature and the one explored in this paper, with re-
spect to incompatible measurements. Incompatible measurements
are known to provide advantage over compatible ones in certain
quantum state discrimination tasks. We schematically depict such
a discrimination task where a girl, say Alice, randomly chooses a
state from a randomly selected ensemble (among a given set of
ensembles) and sends it to a boy, Bob (see upper panel). Bob has
access to a set of measurements using which he tries to distinguish
the state. In our protocol, Alice again randomly selects a state from
a random ensemble with the only difference being that, in this case,
the ensembles consist of bipartite states. Alice sends each party of the
bipartite state to distant locations, say to Bob1 and Bob2. Bob1 and
Bob2 being located at two different places are unable to perform any
joint operation on the entire state consisting two parts. Thus Bob1
and Bob2 can either do only local operations without any classical
communication (depicted in the middle panel) or local operation
along with classical communication (depicted in the lower panel)
on their part of the system. Whatever be the operations, be it global
or local, the aim of the receivers, i.e., Bob or Bob1 and Bob2 is to
distinguish the received state. For more details see the main text.

II. INCOMPATIBLE MEASUREMENTS AND ROBUSTNESS
OF INCOMPATIBILITY

A set of measurements {Mx}x is called compatible or in-
compatible depending on their joint measurability. The suffix
x, outside the braces in {Mx}x, indicates the running variable
that generates the set. A similar notation is used throughout
the article. If {Mx}x can be measured simultaneously using
a parent measurement G, we say that it is compatible. We
denote the measurement operators, associated with different
outcomes of a measurement Mx and G, by {Ma|x}a and {Gλ}λ,
respectively. The measurement operators corresponding to the
measurements {Mx}x can be expressed in terms of G as

Ma|x =
∑

λ

p(a|x, λ)Gλ, (1)
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FIG. 2. Schematic presentation of the two physical phenomena that we want to relate in this paper. In the left panel, we show the local
state discrimination task, where Alice sends each part of a randomly chosen bipartite state from a randomly selected ensemble (among a given
set of ensembles) to Bob1 and Bob2. The receivers, Bob1 and Bob2, using local operations, want to discriminate the state. In the right panel,
the situation is the same, but here Bob1 and Bob2 are deciding which measurements should be performed to maximize the probability of
successful discrimination. Should the measurement be chosen from an incompatible set of measurements, or would a compatible set provide
more advantage? Here, we do not consider classical communication. Similar figures can be drawn considering classical communication as
well.

where p(a|x, λ) is a conditional probability distribution,
Ma|x, Gλ � 0,

∑
a Ma|x = 1, and

∑
λ Gλ = I ∀a, x, λ with 1

being the identity operator.
Measurements which are not compatible (i.e., not jointly

measurable) are called incompatible measurements. To quan-
tify the incompatibility of a set of measurements {Mk}k , the
robustness of incompatibility (ROI), denoted IM , was intro-
duced in the literature (for example, see Ref. [18]). ROI can
be defined by the minimal amount of noise that is required to
be mixed with a set of incompatible measurements {Mk}k to
make it compatible, i.e.,

IM = min r, (2)

such that
Mc|k + r�c|k

1 + r
=

∑
λ

p(c|k, λ)Gλ, (3)

�c|k � 0,
∑

c

�c|k = 1, (4)

Gλ � 0,
∑

λ

Gλ = 1, (5)

0 � p(c|k, λ) � 1,
∑

c

p(c|k, λ) = 1, (6)

where Mk = {Mc|k}c, i.e., {Mc|k}c are the outcomes of the
measurement Mk . IM denotes the amount of incompatibil-
ity present in the set of measurements {Mk}k . Equation (2)
provides a generic definition for the quantification of in-
compatibility. Specifically, the definition does not depend
explicitly on the nature of {Mk}k , i.e., if it is a set of
projective measurements (PM) or positive operator-valued
measurements (POVM). Thus each element of the set {Mk}k

just satisfies the usual properties of a measurement, Mk � 0
and

∑
c Mc|k = I.. By noise, we mean an arbitrary set of

measurements {�k}k , �k = {�c|k}c, which is mixed with the
set of measurements {Mk}k so that after mixing, the final set of
measurements Mc|k+r�c|k

1+r become compatible. r is the amount
of noise that has to be mixed with {Mk}k to make the final
measurement compatible. The minimization is over r, �c|k ,
Gλ, and probability distributions p(c|k, λ). By minimization
over conditional probability distributions we mean minimiza-
tion over any set of real numbers {p(c|k, λ)}, which satisfies

p(c|k, λ) � 0 for all c, k, and λ, and
∑

c p(c|k, λ) = 1 for
all k and λ. Whenever we do any optimization over condi-
tional probabilities, we use this same concept. {�k}k and {G}
represent measurements with outcomes {�c|k}c and {Gλ}λ,
respectively. These measurements can also be POVM as well
as PM. The constraints on these measurement operators are
mentioned in the expressions (3) to (6).

III. CONNECTION OF INCOMPATIBILITY WITH STATE
DISCRIMINATION PROBLEM

In several articles [5,17–19], it was shown that incom-
patible measurements can provide an advantage over the
compatible ones in certain state discrimination tasks. In
Ref. [18], the authors considered a task involving two peo-
ple where one randomly selects a state from an ensemble
Ey, which was randomly chosen from a given set of en-
sembles {Ey}y, and sends the state to the other. The latter,
after receiving the state, tries to discriminate it using a set of
measurements. Let PC ({Ey}) and PI ({Ey}, {Qx}) be the maxi-
mum probability of successfully guessing the state maximized
over all sets of compatible measurements and the same for
a fixed set of measurements {Qx} for the optimal strategy.
In Ref. [18], a precise mathematical expression is provided
to represent the advantage achievable through incompatible
measurements which goes as follows:

PI ({Ey}, {Qx})

PC ({Ey})
� 1 + IQ.

Here IQ is the ROI of {Qx}. The authors also showed that, for
any set of measurements, there exists a corresponding state
discrimination task for which the bound is achievable.

In this work, we restrict ourselves to a smaller set of oper-
ations, i.e., we consider state discrimination using only local
operations with or without classical communication instead
of global measurements, and try to determine how the above
expression gets modified in the new situation. The considered
state discrimination tasks are discussed in detail below.
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A. State discrimination using only LO without CC

If the spatially separated parties are restricted to perform
local operations only on their subsystems to accomplish the
given state discrimination task, then it is known as state dis-
crimination by LO. We note that, in this scenario, classical
communication among the parties during the local opera-
tions within a round or between the rounds, is not allowed.
However, after all the local operations are accomplished, the
parties can discuss the measurement outcomes to identify the
state of the system [27–29]. Since, in this scenario, classical
communication is not allowed in between the measurements,
we will denote the corresponding probability of a successful
guess using the suffix LOCC.

B. State discrimination task with premeasurement information

In this task, Alice chooses an ensemble Ey of bipartite
states with probability q(y). Then she prepares a quantum
system in a bipartite state ρb|y taken from Ey with probability
q(b|y) and sends the subsystems to Bob1 and Bob2 along
with the information of y. Bob1 and Bob2 have sets of the
measurements {Mk}k and {Nl}l , respectively, which, by using,
Bob1 and Bob2 want to identify the state of the system. We
refer to this as SD1.

C. State discrimination task with postmeasurement information

This task is the same as the preceding one except that,
in this case, Bob1 and Bob2 do not have any information
about y prior to the measurement. After the performance of
measurements, Alice informs them about the particular en-
semble {Ey}, and then, depending on y and the measurement
outcomes, Bob1 and Bob2 make a guess about ρb|y. This state
discrimination task will be referred to as SD2.

Here we consider SD1, i.e., state discrimination with pre-
measurement information, and provide a relation between the
probability of successfully guessing (PSG) the state of the
system by using the local measurements {Mk}k and {Nl}l , and
the incompatibility of these measurements. We consider the
case where only local operations (LO) are allowed.

IV. UPPER BOUND ON THE GUESSING PROBABILITY
USING ONLY LOCAL OPERATIONS WITHOUT

CLASSICAL COMMUNICATION

We consider here the case where Bob1 and Bob2 try to
discriminate the state using LO without CC, and first the
case where they have the knowledge of y prior to the mea-
surement. We restrict Bob1 and Bob2 from using classical
communication. The set of measurements available to Bob1
and Bob2 are locally incompatible. After receiving the state
ρb|y, Bob1 (Bob2) chooses a measurement Mk (Nl ) with prob-
ability p(k|y) [p(l|y)]. The probability of guessing the state
correctly using these measurements is given by

PSD1
LO��CC

=
∑

y,b,k,l,c,d

q(y)q(b|y)tr[ρb|yMc|k

× ⊗Nd|l ]p(k|y)p(l|y)p(b|c, d, y), (7)

where Mc|k and Nd|l are the measurement operators, cor-
responding to the outcomes c, d , associated with the

measurements Mk and Nl , respectively. Note that here state
discrimination with pre-measurement information is consid-
ered. After getting the outcomes c and d , Bob1 and Bob2 call
for a guess regarding the value of b, and this is according
to the probability p(b|c, d, y). Then, the optimal PSG using
measurement Mk and Nl is

PI
LO��CC

({Ey}, {Mk}, {Nl})

= max
p(k|y),p(l|y),p(b|c,d,y)

∑
y,b,k,l,c,d

q(y)q(b|y)

×tr[ρb|yMc|k ⊗ Nd|l ]p(k|y)p(l|y)p(b|c, d, y). (8)

Here, the maximization over conditional probabilities rep-
resent optimization over any set of real numbers which
satisfies the usual properties of a conditional probabil-
ity distribution. For example, for the set of probabilities
{p(k|y)}k the conditions are p(k|y) � 0 for all k and y and∑

k p(k|y) = 1 for all y. The final set of conditional probabil-
ities {pmax(l|y), pmax(l|y), pmax(b|c, d, y)}, which maximize
the function, can be used to strategize the task. Specifically,
if Bob1 and Bob2 choose their measurement Mk and Nl

with probabilities pmax(k|y) and pmax(l|y) and after doing
the measurement, if they guess about the state depending
on the probability distribution pmax(b|c, d, y), they will reach
the maximum probability of success. However, if Bob1 and
Bob2 had locally compatible measurements and obtained the
information of y only after performing the measurement, then
the PSG would be

PSD2
LO��CC

=
∑

y,b,k,l,c,d

q(y)q(b|y)tr[ρb|yMc|k

× ⊗Nd|l ]p(k)p(l )p(b|c, d, y). (9)

Here, the suffix SD2 represents that state discrimination with
postmeasurement information considered. Then the maximum
PSG using locally compatible measurements in SD2, i.e.,
state discrimination with postmeasurement information, can
be written as

PC
LO��CC

(Ey) = max
Mk ,Nl ∈CM,p(k),p(l ),p(c,d,y)

PSD2
LO��CC

, (10)

where the maximization is taken over the set of locally com-
patible measurements CM and the probabilities p(k), p(l ), and
p(c, d, y).

Specifically, Eq. (7) represents the PSG of a shared state
ρb|y when the parties Bob1 and Bob2 know about y before
the performance of any measurement. Thus they choose their
measurements Mk and Nl , respectively, randomly following
the independent probability distributions p(k|y) and p(l|y),
where these probability distributions depend on y. In the next
equation, i.e., Eq. (8), we optimize the probability presented
in Eq. (7) PSD1

LO��CC
over all possible conditional probability

distributions p(k|y), p(l|y), and p(b|c, d, y) to determine the
best strategy for discrimination. In Eq. (9), we consider the
case where Bob1 and Bob2 do not know about y before the
performance of the measurements. Here also they randomly
choose the measurements Mk and Nl , but these random dis-
tributions p(k) and p(l ) do not depend on y. However, after
doing the measurements, Alice tells Bob1 and Bob2 about
y. Hence Bob1 and Bob2 can guess about b, depending on
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the information of y as well as the measurement outputs c
and d . To guess the value of b they follow the probability
distribution p(b|c, d, y). In the final equation, Eq. (10), we
optimize PSD2

LO��CC
, which is expressed in Eq. (9) with respect to

all possible strategies, p(k), p(l ), p(c, d, y), and all possible
pairs of sets of measurements {Mk}k and {Nl}l , which are
locally compatible.

From now on, whenever a set of locally incompatible
measurements will be used for state discrimination, we
will consider that y is known to Bob1 and Bob2 prior to
the measurement, and in state discrimination tasks, byusing
compatible measurements, we will assume that the premea-
surement information about y is not available [5,17–19].

Let the ROIs of the local measurements {Mk}k and {Nl}l

be IM and IN , respectively. Moreover, let the optimization,
shown in Eq. (2) be attained by �∗

c|k , p∗(c|k, λ), G∗
λ for {Mk}

and �∗
d|l , p∗(d|l, λ), H∗

λ for {Nl}. Then, using Eq. (2), one

can find

Mc|k � (1 + IM )
∑

λ

p∗(c|k, λ)G∗
λ,

and Nd|l � (1 + IN )
∑

λ

p∗(d|l, λ)H∗
λ . (11)

We take the tensor product of these two inequations, to find

Mc|k ⊗ Nd|l � (1 + IM )(1 + IN ) (12)
∑
λ,ν

p∗(c|k, λ)p∗(d|l, ν)G∗
λ ⊗ H∗

ν .

We now multiply both sides of the above inequality by
q(y)q(b|y)p(k|y)p(l|y)p(b|c, d, y)ρb|y, and then sum over the
parameters c, d , k, l , b, y. Thereafter, taking the trace, it
becomes

∑
y,b,k,l,c,d

q(y)q(b|y)p(k|y)p(l|y)p(b|c, d, y)tr[ρb|yMc|k ⊗ Nd|l ] � (1+IM )(1+IN )
∑

y,b,k,l,c,d,λ,ν

q(y)q(b|y)p(k|y)p(l|y)p(b|c, d, y)

×p∗(c|k, λ)p∗(d|l, ν)tr[ρb|yG∗
λ ⊗ H∗

ν ]. (13)

We substitute
∑

k,l,c,d p(k|y)p(l|y)p(b|c, d, y)p∗(c|k, λ)p∗(d|l, ν) by a new conditional probability distribution p(b|λ, ν, y).
Thus we have∑
y,b,k,l,c,d

q(y)q(b|y)tr[ρb|yMc|k ⊗ Nd|l ]p(k|y)p(l|y)p(b|c, d, y) � (1 + IM )(1 + IN )
∑

y,b,λ,ν

q(y)q(b|y)p(b|λ, ν, y)tr[ρb|yG∗
λ ⊗ H∗

ν ].

(14)

The expression
∑

y,b,λ,ν q(y)q(b|y)p(b|λ, ν, y)tr[ρb|yG∗
λ ⊗

H∗
ν ] represents the PSG using a single pair of local

measurements, viz., {Gλ}λ and {Hν}ν . Hence, it would be
less than PC

g,LO��CC
({Ey}), which is the PSG, optimized over all

compatible measurements. So we can write
∑

c,d,k,l,b,y

q(y)q(b|y)tr[ρb|yMc|k ⊗ Nd|l ]p(k|y)p(l|y)p(b|c, d, y)

� (1 + IM )(1 + IN )PC
LO��CC

({Ey}). (15)

The above relation holds for all probability distributions
p(k|y), p(l|y), and p(b|c, d, y). Hence it also holds if we max-
imize the left-hand side of the above inequality with respect
to these probabilities. Therefore we obtain

PI
LO��CC

({Ey}, {Mk}, {Nl}) � (1 + IM )(1 + IN )PC
LO��CC

({Ey}),

so that

PI
LO��CC

({Ey}, {Mk}, {Nl})

PC
LO��CC

({Ey})
� (1 + IM )(1 + IN ). (16)

Note that the numerator and the denominator of Eq. (16) are
for local operations without classical communication.

The same bound remains valid when Bob1 and Bob2 are
allowed to use classical communication along with local op-
erations. That is, if the maximum PSG using local operation
and classical communication (LOCC) in the presence of the
same set of incompatible measurements {Mk} and {Nl} are

PI
LOCC({Ey}, {Mk}, {Nl}) and the maximum PSG using com-

patible measurements are PC
LO��CC

({Ey}), then

PI
LOCC({Ey}, {Mk}, {Nl})

PC
LOCC({Ey})

� (1 + IM )(1 + IN ), (17)

See Sec. I of the Supplementary Material [75] for a proof. It
should be noted that the numerator and the denominator of
Eq. (17) are for local operations and classical communication.

Though the right-hand side (RHS) of the inequalities (16)
and (17) are the same, the left-hand sides (LHS) of the
same, by definition, differ significantly. Specifically, the LHS
of Eq. (16) represents the ratio of PSGs in the state dis-
crimination by using local operations without any classical
communication, whereas the LHS of Eq. (17) describes the
ratio of PSGs in the state discrimination when classical com-
munication is allowed along with local operations. Certainly,
if we individually compare the numerator and denominator of
the LHS of Eq. (16) with Eq. (17), we see PI

LO��CC
� PI

LOCC and

PC
LO��CC

� PC
LOCC, but interestingly, the ratios are found to be

upper bounded by the same quantity (1 + IM )(1 + IN ), which
is the same as for LO without CC.

Instead of this bipartite state discrimination task, we can
also consider an n-partite state discrimination task, where Al-
ice prepares an n-partite system and then sends the subsystems
to Bob1, Bob2, and so on. After receiving the subsystems,
Bob1, Bob2, . . ., Bobn tries to identify the state using a
set of local measurements, say {O1

k1
}k1 , {O2

k2
}k2 , . . ., {On

kn
}kn ,
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respectively. Let the ROI of {Oi
ki
}ki be Ii. Using the same

technique as described in the above, it is possible to show the
following:

PI
LO��CC/LOCC

({Ey},
{
O1

k1

}
,
{
O2

k2

}
, . . .

)

PC
LO��CC/LOCC

({Ey})
�

n∏
i=1

(1 + Ii ). (18)

Let us revert back to the scenario of two Bobs. Correspond-
ing to every pair of incompatible measurements {Mk}k and
{Nl}l , there exists at least one LO (which is a subset of LOCC)
state discrimination task for which this upper bound can be
achieved. Before discussing the actual scenario, let us first
state the semi-definite program (SDP), through which ROI of
a set of measurements, can be expressed.

The forms of the primal SDPs to determine the ROIs of the
measurements {Mk}k , and {Nl}l are given by

1 + IM = min
s,{G̃c}

s

such that
∑

c

Dc(c|k)G̃c � Mc|k

∑
c

G̃c = s1, G̃c � 0. (19)

Here, s = 1 + r, where r is defined in Eq. (2). G̃c = sGc
and the positivity of �c|k in Eq. (2), leads to the inequality∑

c Dc(c|k)G̃c � Mc|k , where p(c|k, λ) = ∑
c Dc(c|k)p(c|λ),

c = c1c2 . . . cn, a string of outcomes, and Dc(c|k) = δc,ck . The
IM defined in Eq. (19) quantifies the incompatibility of the
set of measurements available on Bob1’s side. In a similar
manner, the incompatibility of the set of measurements {Nl}l

accessible to Bob2 can also be defined. The corresponding
SDP can be formulated as

and 1 + IN = min
t,{H̃d}

t

such that
∑

d

Ed(d|l )H̃d � Nd|l

∑
d

H̃d = t1, H̃d � 0. (20)

Mathematically, the parameters s and t carry the same
meaning, with the only difference being that the optimal s and
t are equal to the unity added with the ROI of measurements
available on Bob1’s side and Bob2’s side, respectively.

The corresponding dual SDPs can be expressed as

1 + IM = max
X,{wck}

tr

⎡
⎣∑

c,k

wckMc|k

⎤
⎦

such that X �
∑
c,k

wckDc(c|k), (21)

wck � 0, tr[X ] = 1,

and 1 + IN = max
Y,{zdl }

tr

⎡
⎣∑

d,l

zdlNd|l

⎤
⎦

such that Y �
∑
d,l

zdlEd(d|l ), (22)

zdl � 0, tr[Y ] = 1,

where wck , X , zdl , and Y are the dual variables. See Ref. [18]
for a more detailed treatment of these primal and dual prob-
lems.

We consider the dual variables w∗
ck , X ∗, z∗

dl , and Y ∗ for
which the optimizations in Eqs. (21) and (22) are achieved
and write

1 + IM = tr

⎡
⎣∑

c,k

w∗
ckMc|k

⎤
⎦ and 1 + IN = tr

⎡
⎣∑

d,l

z∗
dlNd|l

⎤
⎦.

(23)

Let us now introduce some new variables, given by

M∗ = tr

⎡
⎣∑

c,k

w∗
ck

⎤
⎦, N∗ = tr

⎡
⎣∑

d,l

z∗
dl

⎤
⎦,

q∗(cd, kl ) = tr[w∗
ck]tr[z∗

dl ]

M∗N∗ ,

and ρ∗
cd|kl = w∗

ck ⊗ z∗
dl

tr[w∗
ck]tr[z∗

dl ]
= w∗

ck ⊗ z∗
dl

M∗N∗q∗(cd, kl )
. (24)

The dual variables w∗
ck and z∗

dl are positive, hermitian op-
erators. So, ρ∗

cd|kl is a quantum state. We now state the
corresponding state discrimination task: Alice can choose an
ensemble E∗

kl with probability q∗(kl ) which consists of bipar-
tite states ρ∗

cd|kl . The probability of choosing a state ρ∗
cd|kl from

Ekl is q∗(cd|kl ) = q∗(cd,kl )
q∗(kl ) , q∗(kl ) = ∑

cd q∗(cd, kl ). Then,
Alice prepares a quantum system in the state ρ∗

cd|kl and the
subsystems are sent to Bob1 and Bob2. The task of Bob1
and Bob2 is to identify cd . To complete the task successfully,
Bob1 and Bob2 choose measurements from the sets of mea-
surements {Mk}k and {Nl}l . Since, in the case of SD1, Bob1
and Bob2 know the ensemble from which Alice has chosen
the state, prior to their measurements, they can choose the
measurement based on the information of kl . Let us assume
that Bob1 and Bob2 choose the measurements Mk′ and Nl ′

with probabilities p(k′|kl ) and p(l ′|kl ), respectively. However,
in the case of SD2, the information of kl is considered to
be unknown before the performance of the measurements.
Thus the measurements have to be chosen independently of
the value of kl . We assume that, for SD2, the measurements
Mk′ and Nl ′ are chosen with probabilities p(k′) and p(l ′),
respectively.

The operators associated with the measurements Mk′ and
Nl ′ are given by {Mc′|k′ }c′ and {Nd ′|l ′ }d ′ . For SD1, i.e., state
discrimination with premeasurement information, we con-
sider a specific strategy, i.e., p(k′|kl ) = δkk′ , p(l ′|kl ) = δll ′ ,
and p(cd|c′, d ′, kl ) = δcc′δdd ′ . It can be proved that this state
discrimination task achieves the bound. The proof is pre-
sented in Sec. II of the Supplementary Material [75]. The
state discrimination task can be generalized to n parties, and
correspondingly, the bound given in inequality (18) can also
be proved to be achievable.

V. LOCAL BOUNDS VERSUS THE GLOBAL ONE

In Ref. [18], the authors considered a state discrimination
task that is different from the ones considered until now and
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where only two parties were involved, say Alice and Bob. In
that protocol, Alice chose an ensemble Ey with probability
q(y). She then prepared a quantum system in a state ρb|y,
taken from Ey with probability q(b|y). After its preparation,
she sent the entire quantum system to Bob. She also informed
Bob about the value of y. Bob’s task was to identify b. Since,
in that situation, Bob was holding the complete state, i.e.,
was not sharing the state with any third party, he was able
to do the measurement on the entire system. Thus the restric-
tion of local operations and classical communication was not
applicable. However, there Bob was also allowed to perform
only a set of measurements, say {Qx}x. We remember that the
suffix x, written outside the second bracket of the expression
{Qx}x, indicates the running variable which generates the set.
At this point, depending on the information of y, Bob chose
a particular measurement Qx from the set of measurements
{Qx}x with probability p(x|y). The maximum PSG using the
set of measurements {Qx}x can be denoted by PI ({Ey}, {Qx}).
The maximum PSG optimized over the set of compatible
measurements, when no information is available about y until
the measurement is performed, can be denoted as PC ({Ey}). It
was shown in Ref. [18] that

PI ({Ey}, {Qx})

PC ({Ey})
� 1 + IQ, (25)

where IQ is the ROI of {Qx}x. This is certainly a “global”
bound on the achievable advantage of incompatibility because
here the entire state is available to Bob for measurements.
In this paper, we considered the state to be shared be-
tween two distant parties, Bob1 and Bob2, who were only
allowed to do local operations and classical communica-
tion on their parts of the system. Thus we determined a
“local” bound on the achievable advantage of incompatibil-
ity. We now want to compare the global bound, expressed
in Eq. (25), with the local ones, obtained in Eqs. (16)
and (17).

Let the incompatibility of the set of global mea-
surements {Mk ⊗ Nl} be IM⊗N . It can be shown that
1 + IM⊗N = (1 + IM )(1 + IN ). (See Sec. III of the
Supplementary Material [75] for a proof.) Since LO is
a subset of LOCC and LOCC is a subset of separable
operations [31,76], we have PI

LO��CC
({Ey}, {Mk}, {Nl}) �

PI
LOCC({Ey}, {Mk}, {Nl}) � PI ({Ey}, {Mk ⊗ Nl}) � (1 +

IM⊗N )PC ({Ey}, {Mk ⊗ Nl}), for any set of ensembles {Ey}.
However, PC

LO��CC/LOCC
({Ey}, {Mk}, {Nl}) � PC ({Ey}, {Mk ⊗

Nl}) is also true because there exist examples for which such
an equality holds. For instance, let us consider that Alice
has only one ensemble E0, i.e ., q(y) = δy,0. The ensemble
consists of equally probable two-qubit maximally entangled
states. Since the states are orthogonal, they can be globally
distinguished (by measuring onto the basis of the states). Thus
we have PC (E0) = 1. But even if classical communication
is allowed, they can never be deterministically distinguished
using LOCC [35]. Thus PC (E0) < PC (E0). Hence, we can
say the bounds given in Eqs. (16) and (17) restrict the PSG

using incompatible measurements more than what would, in
general, be possible via the previously known global bound.

VI. ABSENCE OF NONLOCALITY IN OPTIMAL LOCAL
STATE DISCRIMINATION

Since 1 + IM⊗N = (1 + IM )(1 + IN ), we see the bounds on
the ratios of the probabilities, i.e., on PI

LO��CC/LOCC
/PC

LO��CC/LOCC
,

given in Eqs. (16) and (17) are equal with the global bound
on PI/PC presented in Ref. [18]. For each set of local mea-
surements, there exists a corresponding state discrimination
task where the bounds are achievable. This indicates that
there is no “nonlocality” present in the ratio of the success
probabilities using incompatibility measures, in the optimal
state discrimination process. Here, “nonlocality” is being used
in the sense of a difference between the ratios of the probabili-
ties, in global and local state distinguishability. Note, however,
that nonlocality in the individual probabilities might still be
present, which might have canceled out at the time of taking
the ratios.

VII. CONCLUSION

Incompatibility of observables is a signature quantum me-
chanical property, which is active in arguably all quantum
tasks. It was known that incompatibility can be used as a
resource in quantum state discrimination protocols.

The behavior of shared systems is a widely researched
topic which offers various fascinating results. These can then
be used to develop quantum technologies. The difference be-
tween the ability to distinguish shared quantum states using
global and local operations provides evidence of the nonlo-
cality present in the considered situation.

In this paper, we tried to forge a bridge between the
efficiency of local quantum state discrimination using incom-
patible measurements and the relevant quantum measurement
incompatibility. We considered local quantum state discrimi-
nation tasks, where in one case, only local quantum operations
were allowed, and in the other, unidirectional classical com-
munication was allowed along with the local operations. We
presented an upper bound on the ratio of the probability of
successfully guessing the sent quantum state using incompat-
ible measurements and the maximum probability of the same
using any set of compatible ones. This upper bound is the
same for both local operations and local operations assisted by
unidirectional classical communication, and is an achievable
bound in at least one local quantum state discrimination ex-
ercise. We compared the local bound with the existing global
bound. We showed that the optimal local quantum state dis-
criminations do not reveal any nonlocality in the ratios of the
probabilities between incompatible and compatible measure-
ments.
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