
PHYSICAL REVIEW A 109, 012414 (2024)

Reachability deficit of variational Grover search

Xiao-Wei Li ,1 Xiao-Ming Zhang,2,3 Bin Cheng,2,4 and Man-Hong Yung1,5,6,*

1Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

3Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China
4Centre for Quantum Software and Information, Faculty of Engineering and Information Technology,

University of Technology Sydney, New South Wales 2007, Australia
5Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology,

Shenzhen 518055, China
6Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

(Received 25 September 2023; accepted 21 December 2023; published 9 January 2024)

The quantum approximate optimization algorithm (QAOA) is promising for achieving quantum computational
advantage with near-term quantum devices. It was numerically shown that the QAOA cost functions exhibit a
phenomenon called reachability deficit (RD), where the success probability cannot reach unity until the circuit
depth exceeds a certain critical value. However, an in-depth theoretical understanding of RD remains lacking.
Here we focus on a variational variant of Grover search on multiple marked solutions as a prototype for analyzing
the RD problem, where we further relax the criterion of reachability by tolerating a certain probability of failure.
Specifically, we obtain a general analytical expression relating the critical depth of the quantum circuit to the
solution density. In the dilute limit, the critical depth is consistent with the Grover bound, exhibiting a robust
quadratic scaling that is insensitive to the failure probability. Moreover, we also find that the projective mixing
Hamiltonian performs significantly better than the traditional mixing Hamiltonian in the QAOA, although it is
less favorable in terms of physical implementation. However, by taking into account two-body interactions in
the mixing Hamiltonian, the performance becomes on par with the projective mixing Hamiltonian at the cost of
O(n2) additional terms. These results represent a simplified but insightful model of the QAOA, fully addressing
the dependence of required circuit depth over the ground-state degeneracy.
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I. INTRODUCTION

Variational quantum-classical hybrid algorithms have been
attracting increasing attention in the field of quantum com-
putation. In particular, the quantum approximate optimization
algorithm (QAOA) is becoming a promising algorithm for
near-term quantum devices due to its simplicity and low cir-
cuit depth. The QAOA was originally developed for solving
combinatorial optimization problems such as max-cut prob-
lems [1], the maximum independent set [2], the binary paint
shop problem [3], binary linear least squares [4], and Max
E3LIN2 [5]. It is also widely used to solve practical problems,
including portfolio optimization [6], tail assignment [7], pro-
tein folding [8], and wireless scheduling [9]. Moreover, it has
also been generalized to other problems besides combinatorial
optimization problems, such as Grover search [10,11] and a
linear system solver [12].

The original version of the Grover search algorithm
achieves a quadratic quantum speedup for the problems of
searching for a target item in an unstructured data set [13].
It has been generalized to multitarget cases [14] with a
nonzero but sufficiently low failure probability. Subsequently,
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modified versions achieving unit success probability were also
proposed [15–18].

On the other hand, it has been shown that the performance
of the QAOA depends on the circuit depth and problem den-
sity of a specific problem, which characterizes the difficulty of
the problem [19,20]. In Ref. [19] Akshay et al. showed that for
problems like Boolean satisfiability problems and variational
Grover search, there are fundamental limits on the perfor-
mance. When the circuit depth p is lower than a critical value,
the minimum cost function can never be achieved regardless
of the optimization process. This phenomenon is called the
reachability deficit. Akshay et al. found that the critical depth
is mostly determined by the problem density, a quantity that
measures the difficulty of the problem; for k-SAT, it is defined
as the ratio of the problem’s constraints to variables.

Specifically, in Ref. [19], a single-target version of the
variational search problems was considered as one of the
examples to explore the reachability deficit of the QAOA.
It was observed that there exists a critical depth p∗. If the
QAOA depth of the circuit is lower than p∗, the ground-state
energy cannot be reached, which means that the target cannot
be perfectly found. It was observed that p∗ increases quadrat-
ically with the number of variables N , which is consistent
with the Grover scaling O(

√
N ). However, the value of p∗

is just estimated with numerical estimation. The exact value
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of p∗ and the minimal cost function that can be reached are
still to be determined. Moreover, the generalized problems in
different scenarios such as the multitarget search cases are yet
to be explored.

In this study we investigate the reachability deficit prob-
lem in variational Grover search, where the cost function is
the failure probability of finding the targets. In contrast to
the constraint-to-variable ratio, we find that the performance
of the variational Grover search is contingent on the solu-
tion density, the ratio of marked items number M to total
items number N . Interestingly, the optimal search depth p ex-
hibits a monotonic decrease with increasing solution density.
To quantitatively assess the problem’s difficulty, we propose
a measure, termed problem hardness, represented by α :=
− log2(M/N ). Consequently, we explore multitarget search
scenarios and provide analytical expressions for the minimal
cost function C∗

p (α) attainable at a given problem hardness α

and QAOA depth p.
In particular, we analytically compute the minimum cost

function corresponding to any circuit depth. We present a crit-
ical problem hardness αc(ε) that delineates the achievement of
a given failure probability requirement in a single-layer vari-
ational quantum search. Specifically, if the problem hardness
falls below this critical value, the failure probability require-
ment can be met using a single layer of the QAOA. Notably,
when the failure probability tolerance is set to zero, we obtain
the problem hardness corresponding to perfect search, defined
as αc = 2, which aligns with prior research [21]. Moreover,
we derive the expression for the critical depth p∗

ε(α) that satis-
fies the failure probability requirement C∗

p (α) � ε for a given
problem hardness α. When the circuit depth is greater than
or equal to the critical depth, the search satisfying the failure
probability requirement can always be achieved. We conduct
numerical simulations to validate our analytical results and the
numerical results closely match the analytical predictions.

To further investigate the reachability deficit problem,
we employ numerical simulations utilizing lower-order Pauli
approximations of the projective operator (|+〉〈+|)⊗n as
the mixing Hamiltonian. Our results demonstrate that a
contracted mixing Hamiltonian exacerbates the reachability
deficit. Nonetheless, at least within the scope of the problem
hardness in simulations, our findings highlight that the critical
depth for the first-order approximation, in which the mixing
Hamiltonian is set to

∑
i Xi, scales as O(

√
N/M ). In addi-

tion, numerically, the second-order approximation
∑

i Xi +∑
i j XiXj asymptotically approaches the performance level of

the projective operator with increasing problem hardness. This
suggests that employing more localized mixing Hamiltonians
as alternatives to projective operators can better accommo-
date the constraints of the noisy intermediate-scale quantum
(NISQ) era.

II. VARIATIONAL GROVER SEARCH AS A QUANTUM
APPROXIMATE OPTIMIZATION ALGORITHM

A. Quantum approximate optimization algorithm

In the QAOA approach, there are two Hamiltonians HC

and HB, corresponding to the cost Hamiltonian and the mix-
ing Hamiltonian (or the driver Hamiltonian), respectively.

The cost Hamiltonian is related to the optimization prob-
lem, whereas the mixing Hamiltonian is designed to be
noncommutative to the cost Hamiltonian. A depth-p QAOA
ansatz is generated by alternately applying the unitary op-
erators VB(βi ) = e−iβiHB and VC (γi ) = e−iγiHC to the initial
state |+〉⊗n, with a total of 2p parameters (γ1, β1, . . . , γp, βp).
In the beginning, the ansatz state with parameters γ =
(γ1, . . . , γp) and β = (β1, . . . , βp) is prepared in the form

|ψ (γ,β)〉 =
p∏

i=1

e−iβiHB e−iγiHC |+〉⊗n. (1)

After the preparation of an ansatz state, the measurement is
performed to obtain the expectation of the cost function

Cp(γ,β) := 〈ψ (γ,β)|HC |ψ (γ,β)〉. (2)

Then classical optimization loops are applied to minimize the
expectation of the cost function.

B. Variational Grover search

In the Grover search algorithm [13,14,22], we are
given an oracle unitary operator Uw for the set of targets
w = {w1,w2, . . . ,wM} such that Uw|x〉 = |x〉 if x /∈ w and
Uw|x〉 = −|x〉 if x ∈ w. The goal is to obtain the target state

1√
M

∑
k |wk〉. The Grover search algorithm consists of R =

O(
√

N/M ) repeated applications of the Grover iterate G :=
UsUw, where Us := 2(|+〉〈+|)⊗n − I is the Grover diffusion
operator. Here n denotes the number of qubits, N := 2n rep-
resents the total number of items, and I denotes the identity
operator. The resulting state after applying R Grover iterates
is given by

|ψ〉 = GR|+〉⊗n, (3)

where n = log2 N is the number of qubits and |+〉⊗n :=
(H |0〉)⊗n is the equal superposition state. While this algo-
rithm generally achieves success with a probability close to
1 in most cases, it is important to note that the unit success
probability cannot be guaranteed in every specific case.

For this reason, variable phases are introduced into the
Grover iterate, which is given by

G(φ, θ ) := Us(θ )Uφ(φ), (4)

where Us(θ ) := (1 − eiθ )(|+〉〈+|)⊗n − I and Uw(φ) := (1 −
eiφ )

∑
k |wk〉〈wk| − I . Note that G(π, π ) = G. There ex-

ist various approaches to determine these phase variables,
encompassing recursive methods [23], analytical methods
[15–18], and variational methods [10,11].

In this paper we use the framework of the variational
Grover search proposed in Ref. [11]. We introduce this frame-
work in the following and point out it is a QAOA.

C. Variational Grover search as a QAOA

In the QAOA approach of variational Grover search, the
cost Hamiltonian of variational Grover search can be set as

HC := I −
M∑

k=1

|wk〉〈wk|. (5)
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Subsequently, following the QAOA protocol, we have
VC (φi ) = e−iφiHC = I − (1 − eiφi )

∑
k |wk〉〈wk|, up to a global

phase. Thus, VC (φi ) can be considered as the generalization of
Uw to allow a phase difference, and VC (π ) = Uw. The mixing
Hamiltonian HB is set as

HB = (|+〉〈+|)⊗n, (6)

which gives VB(θi ) = eiθiHB = I − (1 − eiθi )(|+〉〈+|)⊗n. A
variational unitary based on HC and HB can be constructed
as

Up(θ,φ) =
p∏

i=1

V (θi, φi ), (7)

where

V (θi, φi ) := VB(θi )VC (φi ). (8)

With initial state |+〉⊗n, we obtain an ansatz for the depth-p
QAOA

|ψp(θ,φ)〉 = Up(θ,φ)|+〉⊗n. (9)

Equation (9) reduces to Grover search algorithm by setting
φ1 = θ1 = · · · = φp = θp = π .

Since the goal of Grover search is to approach the target
state 1√

M

∑
k |wk〉, a depth-p variational searching problem is

equivalent to minimizing the cost function

Cp(θ,φ) = 〈ψp(θ,φ)|HC |ψp(θ,φ)〉

= 1 −
M∑

k=1

|〈ψp(θ,φ)|wk〉|2.
(10)

It is worth noting that Pr(k) := |〈ψp(θ,φ)|wk〉|2 represents
the probability of sampling the kth target in the ansatz state.
Therefore, the cost function Cp(θ,φ) = 1 −∑M

k=1 Pr(k) rep-
resents the probability of failure to sample the target states,
i.e., the probability of search failure.

The ansatz and transformation can be effectively viewed as
two-dimensional states and SU(2) unitary operators, respec-
tively. We define

|0̄〉 := 1√
N − M

∑
x/∈w

|x〉, |1̄〉 := 1√
M

M∑
k=1

|wk〉,

and β := 2 arcsin(
√

M/N ). The initial state can be rewritten
as

|+〉⊗n = cos
β

2
|0̄〉 + sin

β

2
|1̄〉. (11)

Accordingly, in the two-dimensional subspace spanned by
{|0̄〉, |1̄〉}, the action of the unitary at each QAOA layer
U (θi, φi ) can be represented as a product of two rotations (up
to a global phase), since

V (θi, φi ) = ei(θi+φi )/2Rn(θi )Rz(φi ). (12)

Here Rn(θi ) := e−iθi (sin βX̄+cos βZ̄ )/2 and Rz(φi ) := e−iφi Z̄/2 with
X̄ := |0̄〉〈1̄| + |1̄〉〈0̄| and Z̄ := |0̄〉〈0̄| − |1̄〉〈1̄|. In this way, the
problem is reduced to an optimization problem in a two-
dimensional subspace spanned by {|0̄〉, |1̄〉}. For more details
on the above content, see Refs. [16–18].

III. MAIN RESULTS

A. Critical problem hardness

In the context of a search problem with M marked
items among a total of N items, the scale of multiple-target
Grover search is O(

√
N/M ) (see Ref. [22]). Consequently,

the difficulty of variational Grover search exhibits a negative
correlation with the solution density, defined as the fraction
of marked items M/N . To quantify the difficulty of variational
Grover search, we introduce the concept of problem hardness,
defined as α := − log2(M/N ), providing a measure of the
reachability deficit.

The definition of problem hardness aims to capture the dif-
ficulty inherent in a search problem. When M = 1, α reduces
to the metric in Ref. [19] for a single-target search problem.

As a function of problem hardness, the minimal cost func-
tion achievable by a depth-p QAOA circuit is defined as

C∗
p (α) := min

(θ,φ)
Cp(θ,φ, α), (13)

where the hardness-dependent cost function is

Cp(θ,φ, α) := 〈ψp(θ,φ)|HC |ψp(θ,φ)〉. (14)

Here the dependence of the cost function on problem hardness
α is implicit in both the cost Hamiltonian and the correspond-
ing unitary operators VC .

Next we give an analytical expression for the minimal cost
function C∗

p (α).
Theorem 1. Given the problem hardness α and the depth

p, the minimal cost function C∗
p (α) achievable by a depth-p

QAOA circuit is given by

C∗
p (α) = cos2

[
min

{
π

2
, (2p + 1) arcsin(2−α/2)

}]
. (15)

We give the proof in Appendix A. According to Theorem 1,
when the number of targets decreases, the problem hardness
α increases and so does the minimal cost function C∗

p (α). This
implies that the search problem becomes more difficult for the
QAOA when there are fewer targets, which is consistent with
our intuition.

Here we would like to identify a critical problem hardness
αc so that the corresponding search problem can be solved
perfectly even for depth-1 QAOA circuits. Formally, we have
C∗

1 (α) = 0 if and only if α � αc. Note that the definition
above is valid for arbitrary qubit number n. Intuitively, when
α � αc, the number of marked items in the search problem
is excessively large compared to the total number of items,
which makes it easy to solve, even for a depth-1 QAOA.
Moreover, we can also relax the definition to ε-approximate
critical problem hardness. For ε > 0, define an ε-approximate
critical problem hardness αc(ε) such that when α � αc(ε),
we have C∗

1 (α) � ε. Since the cost function represents the
probability of search failure, this relaxation means that the
algorithm allows a failure probability of no more than ε.

We would like to establish an analytical expression for αc

and αc(ε). With the analytical expression of Eq. (15), we can
obtain analytical expressions for the ε-approximate critical
problem hardness αc(ε).

Corollary 1 (critical problem hardness). In the variational
Grover search, the ε-approximate critical problem hardness is
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given by

αc(ε) = − log2

[
sin2

(
1
3 arccos

√
ε
)]

. (16)

For ε � 1, we have arccos(
√

ε) = π/2 − √
ε + O(ε3/2)

and Eq. (16) can be represented in the asymptotic form

αc(ε) ≈ − log2

(
1

4
−

√
ε

2
√

3

)
. (17)

Correspondingly, the critical solution density M/N is

M

N
≈ 1

4
−

√
ε

2
√

3
. (18)

When ε = 0, the critical problem hardness is αc = 2, cor-
responding to M = N/4. This implies that when M � N/4,
perfect Grover search can be achieved with only a single
depth. We note that this observation has been discussed in
Ref. [21] for the multitarget Grover search.

B. Reachability deficit of variational Grover search

Here we analyze reachability deficit (RD) for variational
Grover search. In Ref. [19], the reachability of a depth-p
QAOA for a given problem is the difference between C∗

p (α)
and the minimum eigenvalue of HC . For search problems, the
form of HC has a minimum eigenvalue of 0. Therefore, the
reachability of a depth-p QAOA ansatz solving the search
problem is equal to C∗

p (α), which depends on the problem
hardness α and depth p.

Recall that when the problem hardness α � αc, the search
problem can be solved perfectly by depth-1 QAOA circuits.
So in this regime there will be no reachability deficit. With
that, we formally define the reachability deficit below, which
is adapted from Ref. [19].

Definition 1 (reachability deficit). For any search problem
with problem hardness α > αc, reachability deficit dictates
that there is a critical depth p∗(α) for variational Grover
search such that for p < p∗(α), we have C∗

p (α) > 0.
Recall that C∗

p (α) > 0 means that the QAOA circuit does
not reach the global minimum, regardless of the classical
optimization. Since the QAOA is an approximation algorithm,
the exact solution is not achievable in most cases. Therefore,
it is appropriate to extend the definition of RD to allow for a
small failure probability ε.

Definition 2 (ε-approximate reachability deficit). Given an
ε > 0, for any search problem with problem hardness α >

αc(ε), ε-approximate reachability deficit dictates that there is
a critical depth p∗

ε(α) for variational Grover search such that
for p < p∗

ε(α), we have C∗
p (α) > ε.

The critical depth in this definition can be obtained from
Theorem 1 by solving C∗

p (α) = ε for p.
Corollary 2 (critical depth). In variational Grover search,

for a fixed problem hardness α, the smallest circuit depth to
achieve the minimal cost function C∗

p (α) � ε is given by

p∗
ε(α) =

⌈
arccos

√
ε

2 arcsin(2−α/2)
− 1

2

⌉
. (19)

When the failure probability ε � 1 and α 
 1, the critical
depth asymptotically exhibits the form

p∗
ε(α) ≈

⌈
π − 2

√
ε

4

√
N

M
− 1

2

⌉
. (20)

Note that if ε = 0 and N 
 M, we obtain the notable Grover
search scale [22]

p∗(α) ≈
⌈

π

4

√
N

M
− 1

2

⌉
. (21)

In words, for a fixed large hardness, the critical depth decays
linearly with the square root of the failure probability

√
ε from

the Grover search scale, when ε � 1. On the other hand, being
similar to Eq. (18), we obtain the relation between a given
depth p∗

ε and the solution density M/N :

M

N
= sin2

(
arccos

√
ε

2p∗
ε + 1

)
. (22)

We also construct the optimal search strategies reaching
the minimal cost function C∗

p (α). We discuss one below and
give others in Appendix B. First, one takes p QAOA blocks
(or Grover iterates) with both angles set to π so that the state
is close enough to the target state. Here “close enough” means
that the target will be missed if another π rotation block is
applied. Then the rotation angle for the last step is adjusted in
order to reach Cp+1 = 0. More specifically, the two angles in
the last block are given by

φp+1 =arccos
{− cot

[(
p + 1

2

)
β
]

cot β
}
, (23)

θp+1 =2 arccot(− tan φp+1 cos β ), (24)

where β = 2 arcsin(2−α/2). This parameter set was first ob-
tained in Ref. [15]. Note that, according to Corollary 2, we
have p + 1 = p∗(α) (see Appendix B for a detailed discus-
sion).

The analytical results derived above represent an optimum
performance that can be achieved. To further verify the practi-
cal feasibility and effectiveness of the variational optimization
process, we numerically simulate the QAOA for the Grover
search problem. We minimize the cost function by the BFGS
optimizer provided by the PYTHON library SCIPY [24]. The
numerical results for the critical depth p∗

ε(α) to reach Cp � ε

are shown in Fig. 1. The numerical results are close to the
optimum performance that can be achieved. Moreover, the
relation between Cp and the depth p is shown in Fig. 2(a)
and the relation between Cp and the density α is shown in
Fig. 2(b).

C. Case of the lower-order mixing Hamiltonian

The discussion above is based on the mixing Hamiltonian
HB = (|+〉〈+|)⊗n, whose Pauli expansion is given by

HB = 1

2n

(
I⊗n +

n∑
l=1

Pl

)
, (25)
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FIG. 1. Critical depth p∗
ε (α) versus the problem hardness α. Here

ε is the required failure probability. The dash-dotted line, dotted line,
and solid line represent the analytical results for ε values of 10−1,
10−2, and 10−3 respectively. The pentagons, diamonds, and circles
correspond to the numerical results for the three required failure
probabilities. The horizontal axis indicated by the arrow is the critical
density αc. The inset is a close-up of the main panel.

where

Pl =
n−l+1∑
i1=1

n−l+2∑
i2>i1

· · ·
n∑

il >il−1

Xi1 Xi2 · · · Xil . (26)

FIG. 2. Reachability deficit of variational Grover search. (a) Nu-
merical simulation of the minimum cost function C∗

p versus problem
hardness α. As the problem hardness increases, the minimum cost
function monotonically increases. (b) Numerical simulation results
of the minimum cost function C∗

p as a function of circuit depth p.
The results show that as the depth increases, the minimum cost
function monotonically decreases. In addition, for a given problem
hardness, there exists a critical depth such that when the circuit depth
exceeds the critical depth, the minimum cost function C∗

p = 0 can be
achieved.

Here we have defined Xi := I⊗i−1 ⊗ σx ⊗ I⊗n−i. The highest-
order term X1X2 · · · Xn includes the operation at all qubits, so
HB requires a many-body interaction with all qubits involved.

We define the qth-order mixing Hamiltonian as the cutoff
of Eq. (25) up to the qth term (the zeroth-order term I is
removed for the sake of simplicity)

H (q)
B :=

q∑
l=1

Pl . (27)

Note that Eq. (27) reduces to Eq. (25) when q = n (up to a
factor 1/2n).

In Ref. [10], an algorithm employing a variational search
approach was presented, utilizing the first-order mixing
Hamiltonian H (1)

B = ∑
i Xi. However, it should be noted that

this method, as described in the literature, can ensure only
a 50% probability of successfully locating the desired result.
Consequently, it becomes intriguing to investigate the perfor-
mance of lower-order mixing Hamiltonians and their potential
to achieve flawless search outcomes through the utilization
of an optimizer. To address this question comprehensively,
we conducted a numerical analysis of the reachability deficit
associated with variational Grover searches employing low-
order mixing Hamiltonians. The specific details of the
numerical method employed for this investigation are outlined
in Appendix C.

In Fig. 3(a) we present numerical simulations investigating
the performance of first-order and second-order approximate
mixing Hamiltonians in a single target search with n = 6
qubits. The simulations entail optimizing the results based on
various initial guesses. A comparison is made with the case
where the mixing Hamiltonian is HB = (|+〉〈+|)⊗n. For dif-
ferent mixing Hamiltonians, we use a fixed cost Hamiltonian
HC (see Appendix C). Our findings consistently demonstrate
that HB achieves the first C∗

p value for all QAOA depths
p. Furthermore, as the order q increases, the values ob-
tained for different q converge towards the value achieved
by HB. Notably, the second-order approximation already ex-
hibits a comparable performance to HB, and even with a
first-order mixing Hamiltonian, we achieve perfect search
outcomes.

We further conduct simulations to examine the relationship
between the critical depth p∗(α) and the problem hardness α

while considering different mixing Hamiltonians. The simula-
tion involves a system of 12 qubits, as illustrated in Fig. 3(b).
The figure depicts the shaded area, with the upper and lower
edges determined by

pup(α) = 7π

24 arcsin(2−α/2)
+ 2, (28)

plow(α) = π

4 arcsin(2−α/2)
− 1

2
, (29)

respectively. It is worth noting that as the problem hardness
increases, the behavior of the first-order approximate mixer
gradually approaches the upper edges of the shaded region.
Consequently, we can ascertain its critical depth numeri-
cally, considering it to be approximated by pup as defined in
Eq. (28). This indicates that even for a first-order approxima-
tion, the critical depth required to achieve perfect variational
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FIG. 3. Numerical simulation of the reachability deficit for
the first-order and second-order approximate mixing Hamiltonian.
(a) Minimum cost function C∗

p versus circuit depth p. (b) Critical
depth p∗(α) vs problem hardness α. The blue solid line represents
the case where the mixing Hamiltonian is HB = (|+〉〈+|)⊗n and
the red dash-dotted and green dotted lines represent the cases of
first-order and second-order approximate mixing Hamiltonians, re-
spectively. We simulate a six-qubit system with a problem hardness
α = 6 in (a). The results show that a higher-order approximate mix-
ing Hamiltonian may have better performance, with HB having the
best performance. The upper and lower edges of the shaded area
in (b) are given by expressions of pup and plow in Eqs. (28) and
(29), respectively. Note that the first-order approximation asymp-
totically conforms to the upper boundary numerically, while the
second-order approximation approaches the behavior in the case
of HB.

Grover search is O(2α/2), i.e., O(
√

N/M ). In addition, the
asymptotic behavior of the second-order approximate mixing
Hamiltonian approaches that of HB.

Hence, in scenarios where the practical implementation of
nonlocal interactions proves challenging, employing a lower-
order approximation of HB can be a viable alternative, with
the expectation of achieving comparable performance. This
insight indicates that using a more localized mixed Hamilto-
nian as a feasible alternative to projection operators has great
potential, especially in the mitigation of constraints of the
NISQ era.

IV. CONCLUSION

This study delved into the reachability deficit problem
in variational Grover search, with the failure probability of
finding targets as the cost function. We introduced the notion
of problem hardness as a convenient metric for quantifying
problem complexity, which is a rescaling of the solution den-
sity and is compatible with the single-target search scenario
presented in Ref. [19].

In our investigation of multitarget search scenarios, we
analytically computed the minimum cost function for any
circuit depth. We established a critical problem hardness that
determines the feasibility of meeting a given failure probabil-
ity requirement in a single-depth variational quantum search.
If the problem hardness falls below this critical value, a single
layer of the QAOA is sufficient to meet the failure probability
requirement. For zero failure probability tolerance, we identi-
fied the problem hardness corresponding to a perfect search,
defined as αc = 2, which aligns with prior research [21].
Furthermore, we derived an expression for the critical depth
that ensures satisfying the failure probability requirement for a
given problem hardness. Whenever the circuit depth is greater
than or equal to the critical depth, the search fulfilling the
failure probability requirement can be achieved. To validate
our analytical results, we conducted variational optimization
simulations, which closely matched the analytical predictions,
confirming their achievable. However, the analysis method
employed in this paper exclusively pertains to the variational
Grover search. Applying our methodology to more complex
QAOA applications is left for future exploration.

To explore deeper into the reachability deficit problem,
we conducted numerical simulations employing low-order
Pauli approximations of the projective operator as the mixing
Hamiltonian. The results underscore the detrimental im-
pact of a contracted mixing Hamiltonian on the reachability
deficit. Nevertheless, within the simulation range of problem
hardness, we observed that the critical depth for the first-
order approximation scaling is O(

√
N/M ). Additionally, the

second-order approximation asymptotically approaches the
performance level of the projective operator with increasing
problem hardness. This insight suggests the promising poten-
tial of utilizing more localized mixing Hamiltonians as viable
alternatives to projective operators, especially in the context
of the NISQ era.

In summary, our research advances the understanding of
the reachability deficit problem in variational Grover search,
offering valuable insights into optimizing search perfor-
mance and exploring alternative mixing Hamiltonians. These
findings contribute to the development and applicability of
variational quantum algorithms in practical quantum comput-
ing scenarios.
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APPENDIX A: PROOF OF THEOREM 1

Lemma 1. Letting γi := 2 arcsin(sin β sin θi
2 ) and � :=

2acos
√

Cp − β, we have

|�| �
p∑

i=1

|γi|. (A1)

Proof. Because Cp = 1 − |〈1̄|ψp(θ, φ)〉|2 = 1 −
|〈1̄|Up(θ, φ)|+〉⊗n|2, a unitary Up(θ, φ) approaching the
cost function Cp can always be written as

Up(θ, φ) = Rz(∗)Ry(�′)Rz(∗), (A2)

where the y-rotation angle |�′| � |�| and the asterisk denotes
arbitrary angle values.

We perform z-y-z decomposition on Rn(θi )Rz(φi),
which gives Rn(θi )Rz(φi) = Rz(∗)Ry(γi)Rz(∗), where
γi = 2 arcsin(sin β sin θi

2 ). We further define γ1:q ∈ [−π, π ]
as the angle satisfying

q∑
i=1

Rn(θi )Rz(φi) = Rz(∗)Ry(γ1:q)Rz(∗). (A3)

Note that γ1:1 = γ1 and �′ = γ1:p. In the following, we show
by induction that when |γ1:q| ∈ [0, π ],

|γ1:q| �
q∑

i=1

|γi| (A4)

is satisfied for all q ∈ [1, p].
When q = 1, Eq. (A4) is trivially satisfied. When

q > 1, we have
∑q−1

i=1 Rn(θi )Rz(φi ) = Rz(∗)Ry(γ1:q−1)Rz(∗).
Therefore, Rn(θp)Rz(φq)

∑q−1
i=1 Rn(θi )Rz(φ) = Rz(∗)Ry(γq)

Rz(∗)Ry(γ1:q−1)Rz(∗) = Rz(∗)Ry(γ1:q)Rz(∗), or equivalently

Ry(γq)Rz(∗)Ry(γ1:q−1) = Ry(γ1:q). (A5)

After performing the expansion Rz(α) = cos(α/2)I −
i sin(α/2)σz and Ry(α) = cos(α/2)I − i sin(α/2)σy for
each element in Eq. (A5), we can find the relation
cos2(∗) sin2[(γq + γ1:q−1)/2] = sin2(γ1:q/2). So we have
sin2[(γq + γ1:q−1)/2] � sin2(γ1:q/2). Therefore, when
|γ1:q| ∈ [0, π ], we have |γ1:q| � |γ1:q−1| + |γq|. We can
immediately obtain |γ1:q| �

∑q
i=1 |γi| by mathematical

induction.
So Eq. (A4) is satisfied for all q. Because |�| � |�′| =

|γ1:p|, Lemma 1 holds true. �
Based on Lemma 1, the proof of Theorem 1 is as follows.
Proof. According to Lemma 1 and noting that γi ∈

[−2β, 2β], we obtain |2βp| � |�| = 2acos
√

Cp − β. When
|(2p + 1) arcsin(2−α/2)| � π/2 we have Cp � cos2[(2p +
1) arcsin(2−α/2)]. Therefore, Cp � C∗

p is necessary.

Then we just need to construct a searching parameter set
with Cp = C∗

p . Actually, Ref. [15] has shown that the perfect
quantum search can be realized by a set of π rotations plus an
adjustment step. More specifically, C∗

p can be reached with the
parameter set

φi =

⎧⎪⎪⎨
⎪⎪⎩

π, i < p∗

arccos{− cot[(p∗ − 1
2 )β] cot β}, i = p∗

0, i > p∗,

θi =

⎧⎪⎪⎨
⎪⎪⎩

π, i < p∗

2arccot(− tan φi cos β ), i = p∗

0, i > p∗,

(A6)

where β = 2 arcsin(2−α/2). In this way C∗
p can be reached

with above parameter set, so Theorem 1 holds true. �

APPENDIX B: OPTIMAL STRATEGIES
FOR GROVER SEARCH

Theorem 1 gives a fundamental upper bound of achievable
p∗(α). On the other hand, the protocols saturating the upper
bound is not unique. Here we introduce three distinct schemes,
each capable of attaining the target state with a probability of
1 when the depth p = p∗(α).

1. Phase-matching Grover search

The first scheme is phase-matching Grover search, which
was first proposed by Long et al. [17]. Consider a con-
straint φ1 = φ2 = · · · = φp := φ and θ1 = θ2 = · · · = θp :=
θ , which means that Up(θ,φ) defined in Eq. (7) is equivalent
to a rotation in the Bloch sphere,

Up(θ,φ) = Rm(pα), (B1)

where the rotation Rm(·) and angle α are defined by

Rm(α) := Rn(θ )Rz(φ). (B2)

We denote the axis of this rotation by m. The necessary
condition of optimal search is that m must be perpendicular
to the Bloch vector of both states |+〉⊗n and |1̄〉, since the
trajectory must pass through the start and end points. This
condition is just the phase-match condition, which requires
φ = −θ . Based on this constraint, we can solve the optimal
parameter setting by a geometric method; the result is

φ = −θ = ±2 arcsin

(
sin( π

4p+2 )

sin(β/2)

)
. (B3)

Since sin[π/(4p + 2)]/sin(β/2) � 1, we can immediately
check that this parameter setting requires that p � p∗(α). The
trajectories of the states in this scheme on the Bloch sphere
are shown in Fig. 4(a).

2. Brassard’s algorithm

The second scheme has been given in main text. Here we
explain why p + 1 = p∗(α). Based on the fact that 〈0̄|1̄〉 = 0,
we can solve the parameters of the last step (θ, φ) through the
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FIG. 4. Trajectory of the states in each depth for different optimal algorithms. (a) Phase-matching Grover search (Long’s algorithm), In
this scheme, the trajectory of the quantum state does not lie on the geodesic of the Bloch sphere, but the arc length for each step is uniform.
(b) Brassard’s algorithm, whose parameter setting is given in the main text. In this scheme, the trajectory lies on the geodesic of the Bloch
sphere. For the first p − 1 steps, the arc length for each step is 2β, while the arc length for the final step is determined by π − (2p + 1)β to
ensure that the final trajectory lands on the south pole of the Bloch sphere. (c) Equal interval geodesic scheme. In this scheme, the trajectory
lies on the geodesic of the Bloch sphere and the arc length for each step is (π − β )/p.

equation [15]

〈0̄|Rn(θ )Rz(φ)[Rn(π )Rz(π )]p|+〉⊗n = 0. (B4)

In Eq. (23), since the domain of definition of arccos(x) is
[−1, 1], we must have∣∣cot

[(
p + 1

2

)
β
]

cot β
∣∣ � 1. (B5)

Note that (p + 1
2 )β is close to π/2 and we have π/2β − 3

2 �
p � π/2β − 1

2 . Thus, the depth p that satisfies the require-
ment is given by

p =
⌈

π

2β
− 3

2

⌉
, (B6)

and hence we have p + 1 = p∗(α) when we set β =
2 arcsin(2−α/2). The trajectories of the states in this scheme
on the Bloch sphere are shown in Fig. 4(b).

3. Equal interval geodesic scheme

Finally, we introduce a scheme known as the equal interval
geodesic scheme. This scheme assumes that the trajectory of
each step follows a geodesic curve, with an equal variation
of the polar angle. For the state |ψm〉 = cos βm

2 |0̄〉 + sin βm

2 |1̄〉,
where β0 := β and βm := m(π − β )/p (m > 0), we solve the
equation |ψm〉 = Rn(θm)Rz(φm)|ψm−1〉 to obtain the expres-
sions

φm = arccos

(
sin βm + cot β(cos βm − cos βm−1)

sin βm−1

)
,

θm = arccos

×
(

sin βm−1 cos φm cos β − sin β cos βm−1√
1 − (sin βm−1 sin β cos φm + cos β cos βm−1)2

)
.

(B7)

This scheme offers a systematic approach to determine the
values of φm and θm, providing a structured trajectory for the
quantum states. In Fig. 4(c) we depict the trajectories of the
states in this scheme on the Bloch sphere.

Since the domain of the arccos function is [−1, 1], accord-
ing to the first of Eqs. (B7), we have the inequality

−1 � sin βm + cot β(cos βm − cos βm−1)

sin βm−1
� 1. (B8)

This leads to βm−1 � βm � βm−1 + 2β. By the definition of
βm, we immediately have

p � π

2β
− 1

2
. (B9)

This is consistent with the expression for the critical depth
p∗(α) as presented in Eq. (21), since when p � p∗(α), a
perfect search can be achieved.

APPENDIX C: DETAILS OF NUMERICAL SIMULATION

For simplicity, we set the target items to the last M items.
In this way, HC has the form

HC =

⎡
⎢⎢⎢⎢⎣

1
1

. . .

0
0

⎤
⎥⎥⎥⎥⎦. (C1)

Thus, the unitary operator VC (φ) is given by

VC (φ) =

⎡
⎢⎢⎢⎢⎣

1
1

. . .

eiφ

eiφ

⎤
⎥⎥⎥⎥⎦. (C2)

Considering α is an integer, we then have that m = log2 M =
n − α is also an integer. Thus, the unitary operator for integer
m can be constructed as the quantum gate shown in Fig. 5(a).
Here we use the phase shift gate

PS(φ) =
[

1 0
0 eiφ

]
. (C3)

In fact, the quantum gate in Fig. 5(a) means that if all of the
control qubits and the target qubit are in |1〉, the correspond-
ing states obtain a phase eiφ , regardless of the value of the
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FIG. 5. Construction of unitary operators (a) VC (φ) and (b) VB(θ ). (a) VC (φ) = (I2n−2m ) ⊕ (eiφI2m ). The first m qubits remain idle, while
the subsequent α qubits are subjected to a controlled phase shift gate. (b) VB(θ ) = H⊗n(eiθ ⊕ I2n−1)H⊗n. For details see Refs. [11,25].

idle qubits. For the case when the target items are located at
other positions, the corresponding VC (φ) can be constructed
by adjusting the positions of idle qubits and applying some X
unitary transformations.

Since (|+〉〈+|)⊗n = H⊗n(|0〉〈0|)⊗nH⊗n and VB(θ ) = I −
(1 − eiθ )(|+〉〈+|)⊗n, the circuit of the unitary operator VB(θ )
can be constructed as in Fig. 5(b). For more details, refer to
Refs. [11,25].

We have utilized the PYTHON library MINDQUANTUM [26]
to simulate the quantum circuits of variational Grover search,
as well as the versions with lower-order approximation mixing
Hamiltonians. In the classical optimization part, we utilized
the BFGS and SLSQP optimizers from the PYTHON library
SCIPY [24]. For the versions involving low-order approx-
imation mixing Hamiltonians, the following scheme was
employed for selecting initial parameters.

(i) For a single layer of the QAOA, we randomly ini-
tialize the parameters and repeat the optimization process
30 times. We select the instance with the first cost func-
tion value and store its corresponding optimal parameters
in (θ∗(1),φ∗(1) ).

(ii) For multiple layers of the QAOA, the initial parameters
are determined by the optimal parameters of the previous
layer. Specifically, we set the initial guesses as

θ(p) = θ∗(p−1) ⊕ θ
∗(p−1)
p−1 , (C4)

φ(p) = φ∗(p−1) ⊕ φ
∗(p−1)
p−1 . (C5)

Here θ(p) = [θ (p)
1 , . . . , θ

(p)
p ] and φ(p) = [φ(p)

1 , . . . , φ
(p)
p ] are the

parameters of the p-depth QAOA ansatz.
This initialization scheme is inspired by the work presented

in Ref. [27]. It demonstrates good optimization perfor-
mance for first-order and second-order versions. However,
higher-order approximation mixing Hamiltonians encounter
significant challenges in escaping local minima. Additionally,
as the order q increases, the number of multiqubit gates grows
polynomially with respect to qubit number n in VB(θ ), making
circuit simulation more difficult.
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