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Variational quantum algorithms offer fascinating prospects for the solution of combinatorial optimization
problems using digital quantum computers. However, the achievable performance in such algorithms and the
role of quantum correlations therein remain unclear. Here, we shed light on this open issue by establishing a tight
connection to the seemingly unrelated field of quantum metrology: Metrological applications employ quantum
states of spin ensembles with a reduced variance to achieve an increased sensitivity, and we cast the generation
of such squeezed states in the form of finding optimal solutions to a combinatorial MaxCut problem with an
increased precision. By solving this optimization problem with a quantum approximate optimization algorithm
(QAOA), we show numerically as well as on an IBM Quantum chip how highly squeezed states are generated in
a systematic procedure that can be adapted to a wide variety of quantum machines. Moreover, squeezing tailored
for the QAOA of the MaxCut permits us to propose a figure of merit for future hardware benchmarks. Exploiting
the connection, we show how the performance can be improved by warm-starting the optimization algorithm
with the squeezed state.
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I. INTRODUCTION

The quantum approximate optimization algorithm
(QAOA) [1] is a promising approach for solving
combinatorial optimization problems using digital quantum
computers [2,3]. In this framework, combinatorial problems
such as the MaxCut and MAX-SAT are mapped to the task
of finding the ground state of an Ising Hamiltonian [4–6].
QAOA uses constructive interference to find solution states
[7], and it has better performance than finite-time adiabatic
evolution [8]. However, it remains an outstanding challenge to
characterize the role of quantum effects such as entanglement
in QAOA.

Here, we show how concepts from quantum metrology
shed light onto the influence of squeezing and entanglement
in the performance of QAOA. Illustratively, the connection is
established through the insight that (a) the aim of QAOA is
to obtain the ground state as precisely as possible, while (b)
quantum metrology leverages entanglement between particles
to generate states that permit precision beyond the capaci-
ties of any comparable classical sensor [9–11]. For example,
squeezed states can increase sensitivity for detecting phases
[12], magnetic fields [13], and gravitational waves [14]. The
most sensitive states for phase estimation are Dicke states
[10,15], where all qubits are equally entangled. We substan-
tiate this connection through numerically exact calculations
and data gathered on IBM Quantum hardware with up to eight
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qubits. Our analysis shows how the search for an optimal
solution to the MaxCut problem on a complete graph through
QAOA generates Dicke states, with squeezing [16,17] and
multipartite entanglement [18,19]. Based on this, we propose
the amount of squeezing generated as an application-tailored
performance benchmark of QAOA, which is able to capture
the depth dependency of QAOA better than quantum vol-
ume [20–22], and can be used to detect errors. Our work
thus further strengthens the intimate links between quan-
tum metrology and quantum information processing [23–26].
Moreover, we show that warm-starting the optimization of
a weighted MaxCut problem with a squeezed state can pro-
vide enhanced performance. We also discuss the parameter
regimes, compared for different platforms, where a metrologi-
cal task using a mulitparty-entangled squeezed state generated
through QAOA could become advantageous over fast repeti-
tions with simple unsqueezed states.

In the rest of this paper, we first provide some background
in quantum optimization and spin squeezing (Sec. II). Then,
QAOA is formally connected to the generation of entangled
squeezed states (Sec. III), which was subsequently demon-
strated numerically. Based on squeezing, then we develop
a benchmark tailored for QAOA (Sec. IV), and assess the
ability of superconducting qubits to run QAOA on fully con-
nected problems while simultaneously creating Dicke states
and estimate the number of entangled particles (Sec. IV C).
Finally, we extend this connection for application in metrol-
ogy and quantum optimization (Sec. V). In the Appendixes,
we describe why squeezed states are entangled (Appendix A),
define and connect multipartite entanglement to quantum
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FIG. 1. Metrologically useful squeezing generated by a depth-three QAOA for the MaxCut problem in a complete graph of 12 nodes.
(a) Fully connected unweighted graph with the nodes and edges colored according to one of the 924 possible maximum cut configurations.
(b) Wigner quasiprobability distribution of the symmetric Dicke state D12

6 , an idealized example of a squeezed state and the target for our
QAOA. (c) Circuit representation of QAOA with alternating application of cost function and mixer Hamiltonian. The Bloch spheres and
histograms from (d) to (j) show the state after the corresponding gate in the optimized QAOA circuit with (γi, βi ) given by (0.199, 0.127),
(0.306, 0.087), and (4.592, 1.518) for i = 1, 2, and 3, respectively. Negativity in the Wigner distribution indicates that the states are non-
Gaussian [27]. The squeezing (in black), energy expectation 〈ĤC〉 (in blue), and overlap probability density |〈D12

6 |ψ〉|2 with the target Dicke
state (in orange) are shown inside each histogram.

Fisher information and squeezing (Appendix B), explain
the discontinuities observed in the benchmark in Fig. 3(b)
(Appendix C), discuss the details of the optimization method
used to obtain the parameters {γ,β} (Appendix D), give de-
tails of the ibmq_mumbai (Appendix E), discuss metrological
gain in different hardware (Appendix F), explain why in-
creasing the duration of ĤC is not helpful compared to the
alternating layers in QAOA (Appendix G), discuss the ad-
vantages of using multiple layers of QAOA (Appendix H),
and describe the complex energy landscape for an instance
of MaxCut problem of a random graph of ten vertices
(Appendix I).

II. BACKGROUND

In this section, we introduce QAOA for optimization
problems such as MaxCut (Sec. II A), and describe how
spin squeezing is generated in collective-spin observables
(Sec. II B).

A. Combinatorial optimization on quantum computers

Universal quantum computers can address hard classical
problems such as quadratic unconstrained binary optimization
(QUBO), which is defined through

min
x∈{0,1}n

xT �x with � ∈ Rn×n. (1)

In QAOA, the binary variables xi are mapped to qubits through
xi = (1 − zi )/2 → (1 − Ẑi )/2, where Ẑi is a Pauli spin op-
erator with eigenstates |0〉 and |1〉. The result is an Ising
Hamiltonian ĤC whose ground state is the solution to Eq. (1)
[4]. The standard QAOA then applies p layers of the unitaries
exp(−iβkĤM ) exp(−iγkĤC ), with k = 1, . . . , p, to the ground
state of a mixer Hamiltonian ĤM , such as −∑

i X̂i where X̂i is
a Pauli operator, to create the trial state |ψ (β, γ )〉. A classical
optimizer seeks the β = (β1, . . . , βp) and γ = (γ1, . . . , γp)

that minimize the energy 〈ψ (β, γ )|ĤC |ψ (β, γ )〉, which is
measured in the quantum processor.

As an example problem, MaxCut aims at bipartitioning the
set of nodes V in a graph G(V, E ) such that the sum of the
weights ωi, j of the edges (i, j) ∈ E traversed by the cut is
maximum, i.e.,

max
z∈{−1,1}n

1

2

∑
(i, j)∈E

ωi, j (1 − ziz j ). (2)

Consider the problem instance with ωi, j = 1,∀(i, j), i.e., an
unweighted fully connected graph labeled Gn [see Fig. 1(b)].
Dividing V into two sets of size as equal as possible creates a
maximum cut.

B. Squeezing

Squeezed states are entangled states with a reduced vari-
ance of one observable at the cost of an increased variance
in noncommuting observables. A large body of experimental
work exists addressing the generation of squeezing in various
platforms [25,28–32]. Squeezing can also detect multipartite
entanglement among qubits [33–37].

In our setting, we are interested in squeezing within an
ensemble of n qubits (whose symmetric subspace can be
seen as a qudit with length � = n

2 ). Consider a coherent
state, such as the collective superposition |+〉⊗n, where
|+〉 = (|0〉 + |1〉)/

√
2. This state has a variance of σ 2

css = n
4 ,

commonly called the shot noise, in the collective observable
L̂z = 1

2

∑n
i=1 Ẑi. By evolving |+〉⊗n, e.g., under the nonlinear

one-axis-twisting (OAT) operator L̂2
z = 1

4 (n + ∑
i 	= j ẐiẐ j ),

the state is stretched over the collective Bloch sphere. The
direction with reduced variance can be transferred to the
z coordinate by rotating the state around the x axis with
L̂x = 1

2

∑n
i=1 X̂i [16,30,38]. The resulting n-particle state is

called number squeezed along z when the observed variance
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is below σ 2
css, i.e., if the squeezing parameter

S [dB] = 10 log10

(
Var(L̂z)

σ 2
css

)
(3)

is negative [16,17].

III. CONNECTING SQUEEZING TO QAOA

In a quantum circuit representation, the steps described
above for the generation of squeezed states coincide with a
single-layer QAOA sequence [see Fig. 1(c)]:

(i) The application of Hadamard gates to |0〉⊗n initializes
the system in |+〉⊗n, the ground state of the mixer Hamiltonian
ĤM .

(ii) The evolution under the OAT operator corresponds
to applying the unitary exp(−iγ1ĤC ) with the cost function
ĤC ∝ L̂2

z . On the qubit level, this corresponds to controlled-Z

gates generated by ẐiẐ j between all qubits i and j.
(iii) The rotation around the x axis to reveal the squeezing

corresponds to the unitary exp(−iβ1ĤM ), i.e., an application
of the mixer.

Interestingly, the cost function ĤC ∝ L̂2
z is a special

instance of the MaxCut problem [Eq. (2)]. For even n, the
set of all maximum cuts corresponds to the symmetric Dicke
state [15]

Dn
k =

(
n

k

)−1/2 ∑
i

Pi(|1〉⊗k ⊗ |0〉⊗(n−k) ), (4)

with k = n
2 . Here, Pi(·) denotes a permutation of all states with

k particles in |1〉 and n − k particles in |0〉. For odd n, the
set of all maximum cuts corresponds to (Dn

�n/2� + Dn

n/2�)/

√
2.

These states are maximally squeezed along z and are the most
useful for metrological applications [10]. The QAOA cost
function Hamiltonian to minimize in this problem is ĤC =
1
2

∑
i< j (ẐiẐ j − 1) = L̂2

z − n2

4 I. Therefore, QAOA tasked to
find the maximum cut of a fully connected unweighted graph
will maximize the squeezing. This relation thus translates ana-
log metrological protocols [30] to a digital quantum processor.
In addition, by formulating the constraints that an arbitrary
Dicke state Dn

k imposes on the spins as a QUBO, we can
generate Dn

k for arbitrary k (see Sec. V A).

A. QAOA as generator of squeezing

To illustrate the connection between QAOA and squeez-
ing, we numerically simulate a system with n = 12 qubits
and follow the usual QAOA protocol, using ĤC = L̂2

z − n2

4 I,
ĤM = −2L̂x, and p = 3 (Appendix D). We depict the gener-
ated collective qudit state using the Wigner quasiprobability
distribution as well as the probability distribution over the
spin eigenvalues {m = 〈L̂z〉 + n

2 } at each step [see Figs. 1(d)–
1(j)]. Each application of ĤC stretches the Wigner distribution,
making it resemble an ellipse with the major axis tilted with
respect to the equatorial plane of the qudit Bloch sphere. As
[ĤC, L̂z] = 0, this operation does not alter the distribution of
〈L̂z〉. Next, the mixer operator rotates the Wigner distribution
back towards the equator, thereby transferring the squeez-
ing to the operator L̂z. After three layers, the final state has
an overlap with the symmetric Dicke state of 96% and the

squeezing number reaches S = −9.71 dB. Crucially, noise-
less QAOA with less layers produces less squeezing (e.g., see
depth-one QAOA; Appendix G).

B. Multipartite entanglement

The squeezing in collective spin observables can further be
related to entanglement. We employ three different criteria:

(E1) If n
4 > 〈L̂2

z 〉, the state violates a bound on separable
states [37]. Any squeezed state (Var(L̂z) < n

4 ) at the equator
(〈L̂z〉 = 0) is witnessed as entangled by this criterion (Ap-
pendix A). Here, 〈L̂2

z 〉 = 0.32 < n
4 = 3, which is close to the

minimal value of 0 achieved by the Dicke state.
(E2) If the quantum Fisher information for a pure state

ψ , FQ[ψ,O] = 4Var(O), is larger than (sk2 + r2), where s =
�n/k� denotes the integer division of n by k, and r is the
remainder, at least (k + 1) particles are entangled [18,19].
Here, FQ[ψ, L̂y] = 84.48 and the final state has multipartite
entanglement between at least 9 out of 12 particles (Ap-
pendix B).

(E3) Specifically for Gaussian states, one can approxi-
mately estimate the number of entangled particles k assuming
the identity FQ/n � σ 2

css/Var(L̂z) [30] (Appendix B), which
here yields k = 11. We will use this estimate below in the
hardware results where direct access to FQ is not possible
(Sec. IV C).

C. Metrology

Increasing the number of measurements also reduces the
variance of a phase estimation. It is thus important to analyze
when QAOA-prepared squeezed states can be convenient for
a metrological task, as compared to simply repeating various
shots with an unsqueezed coherent time. With that motivation,
we study the time taken to measure a phase θ with the coherent
spin state (CSS) versus QAOA-generated Dicke states within
different hardware architectures (but without an attempt at
comparing the different architectures to each other, which
often have different aims and boundary conditions that are
difficult to compare on an even footing). The coherent state
is easily prepared by a single rotation around the y axis.
It has no entanglement, and m measurements of the phase
θ have a variance bound by 
2θ � 1/(mN ). By contrast,
a QAOA-prepared state with FQ above the (k + 1)-partite
entangled limit takes more time to prepare than the CSS, but
it requires a smaller number of measurements to reach the
same variance since 
2θ � 1/(mkN ) is lowered by a factor
of 1/k [19].

One may then wonder whether, in a practical application,
the improved precision can offset the larger preparation time.
Crucially, the optimization cost of QAOA can be ignored in
these considerations since the optimal γ and β parameters
are reusable across different measurements and experiments.
We therefore compute the duration of a single measurement
repetition trepet, which is the sum of the duration of the gates
in the circuit to prepare the state tgates and the readout time
including the reset of the measurement apparatus trr, i.e.,
trepet = tgates + trr. The gate duration for the coherent spin state
tCSS
gate is the duration of a single-qubit gate, while the QAOA

protocol requires two-qubit gates, whose number can depend

012413-3



SANTRA, JENDRZEJEWSKI, HAUKE, AND EGGER PHYSICAL REVIEW A 109, 012413 (2024)

TABLE I. Duration of key operations presented as orders of mag-
nitude only. The entangling operations for the transmons, trapped
ions, and cold atoms are the two-qubit CNOT gate, the Mølmer-
Sørensen gate, and the one-axis twisting Hamiltonian, respectively.

Platform Single-qubit Entanglement Readout and reset trr

Transmons 10 ns [44] 100 ns [21] 100 µs [45]
Trapped ions [46] 15 µs 200 µs 300 µs +5 ms [47]
Cold atoms (BEC) 10 ms [30] 1 s

on the available universal gate set and the hardware connec-
tivity.

The QAOA-generated states are advantageous when the
time tQAOA = tQAOA

repet mQAOA to achieve a certain precision is
smaller than the time tCSS = tCSS

repetmCSS to achieve the same
precision with coherent states. If the QAOA-prepared state
achieves FQ = kN , we have for equal precision mQAOAk =
mCSS; i.e., the QAOA-prepared states are advantageous if

tQAOA
gates + trr < k

(
tCSS
gates + trr

)
. (5)

a. Superconducting qubits. The duration of a QAOA layer
is impacted by the qubit connectivity. Each QAOA layer on N
linearly connected superconducting qubits requires 3(N − 2)
layers of simultaneously executable controlled-NOT (CNOT)
gates which includes SWAP gates [39]. Under the assumption
that QAOA can create (k + 1)-partite entanglement in p =
log2(k) layers [40], the duration tQAOA

gates = 3(N − 2) log2(k)tcx

with tcx the duration of a CNOT gate. Here, we neglected
the duration of single-qubit gates. With k = N , Eq. (5)
yields

3(N − 2) log2(N )tcx + trr � Ntrr (6)

which, for large N and the durations in Table I, amounts to

N � 2trr/(3tcx ) = 21000/3. (7)

Although the linear layout of the hardware poses a limit
on when QAOA-generated states remain useful, this limit is
extremely high. Assuming noisy hardware achieves only a
finite k, one has

(N − 2) log2 N < (k − 1)trr/(3tcx). (8)

For k = 2, e.g., the QAOA-generated states would remain
advantageous up to about 60 qubits arranged in a linear chain,
which lies at the size limit of the current hardware. These
numbers are conservative estimates that can be significantly
increased by improved noise resilience and higher hardware
connectivity.

b. Trapped-ion qubits. Large multipartite entangled states
of trapped ions can be generated by a single application of
the Mølmer-Sørensen (MS) gate [41,42], where interaction
strength among all qubit pairs is equal [43]. Therefore, if we
neglect the duration of single-qubit gates, tQAOA

gates only depends

on the number of QAOA layers p = log2(k), and tQAOA
gates =

log2(k)tms with tms being the duration of a MS gate. Following
Table I, QAOA-generated (k + 1)-partite entangled states are
therefore advantageous when

log2(k)tms � (k − 1)trr ⇒ k
1

k−1 � 2trr/trm = 225. (9)

Since k1/(k−1) is a decreasing function, QAOA-generated
states are always advantageous in trapped-ion setups.

c. Cold atoms. We now consider cold atoms in Bose-
Einstein condensates which can, e.g., manipulate states with
of the order of 400 atoms [30]. Following QAOA, we
assume that log2(k) layers of the one-axis-twisting Hamilto-
nian interleaved with x rotations can generate (k + 1)-partite
entanglement. The squeezed state is thus created in a time
tQAOA
gates = log2(k)tOAT. We neglect the duration of x and y rota-

tions. Equation (5) implies log2(k)tOAT < (k − 1)trr, showing
that given a Bose-condensed atom cloud of fixed size it is
always favorable to create spin-squeezed states for metrology
since tOAT � trr (see Table I).

IV. QAOA-TAILORED HARDWARE BENCHMARKS

The performance of quantum computing hardware is of-
ten measured by metrics such as randomized benchmarking
[48–50] and quantum process tomography [51,52], which
focus on gates acting on typically one to two qubits, while
quantum volume (QV) (Sec. IV A) is designed to measure the
performance of a quantum computer as a whole [20–22]. For
certain applications, these are complemented by specifically
designed benchmarks, e.g., for quantum chemistry [53], gen-
erative modeling [54,55], variational quantum factoring [56],
Fermi-Hubbard models [57], and spin Hamiltonians [58]. It
is of particular interest to identify such application-tailored
benchmarks also for variational algorithms, as these employ
highly structured circuits. This necessity is well illustrated
by considering the QV: the circuit complexity of a 2n QV
system is equivalent to a p = 2 QAOA running on n linearly
connected qubits.

A. Quantum volume

A processor with a quantum volume of QV = 2n can
reliably, as defined by the generation of heavy output
bit-strings, execute circuits that apply n layers of SU(4) gates
on random permutations of n qubits [20]. When transpiled to
a line of n qubits, QV circuits result in n layers of SU(4) gates
that have at most � n

2� individual SU(4) gates simultaneously
executed on the qubits [21]. In between these SU(4) layers,
there are at most � n

2� SWAP gates (see Fig. 2). Furthermore,
each SU(4) and SWAP gate require at most and exactly three
CNOT gates, respectively [59]. Under these conditions, the
total number of CNOT gates is at most

3n
⌊n

2

⌋
+ 3(n − 1)

⌊n

2

⌋
, (10)

SU(4) SU(4) SU(4) SU(4)× × ×
SU(4) SU(4)

×
SU(4)

×
SU(4) SU(4)

×
SU(4)× × × × ×

SU(4)
×
SU(4)

×
SU(4)

×
SU(4)

×
SU(4)

×
SU(4)

FIG. 2. Example of a six-qubit quantum volume circuit as pre-
sented in Ref. [21], which shows the layers of SU(4) and SWAP gates.
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which approaches 3n2 as n becomes large. By comparison,
the cost operator of QAOA circuits of complete graphs
transpiled to a line requires exactly 3

2 n(n − 1) − n + 1 CNOT

gates, approaching 3n2/2 for large n. This suggests that a 2n

quantum volume is a good performance indicator for a depth
p = 2 QAOA on n qubits. Importantly, this comparison is
only possible as long as the QAOA circuit is executed using
the same error mitigation and transpilation methods as those
employed to measure QV [22]. However, QV fails to capture
the depth dependency p of QAOA. The benchmark that we
develop overcomes this limitation as the QAOA depth should
be chosen such that the measured squeezing is maximum.
This also provides the maximum p for which it makes sense
to run QAOA on the benchmarked noisy hardware.

B. Proposed benchmark

As the above section shows, QV fails to properly cap-
ture the dependency on p as QAOA circuits on complete
graphs are deeper than their width. As Ref. [60] shows
using entropic inequalities, if the circuit is too deep a clas-
sical computer can sample in polynomial time from a Gibbs
state while achieving the same energy as the noisy quan-
tum computer. That bound is based on the fidelity of layers
of gates, which is, however, often overestimated when built
from fidelities of gates benchmarked in isolation, e.g., due to
cross-talk [39].

Since the solution to the MaxCut problem on the fully con-
nected unweighted graph Gn is known, we propose squeezing
as a good hardware benchmark for QAOA to complement
other performance metrics. For our proposed benchmark,
we first label the quantum numbers of L̂z + n

2 by m ∈
{0, 1, . . . , 2�}, which correspond to cuts of size c(m) =
m(n − m) on Gn. We relate squeezing to a QAOA performance
metric through the following question: Given the squeezing S
in the trial state, what is the probability Pα (n,S ) of sampling
a cut with size c(m) greater than a given α fraction of the
maximum cut size cmax = n2/4?

Here, α can be seen as an approximation ratio. By def-
inition, cuts with c(m) > αcmax must satisfy m−(α) < m <

m+(α) for even n, where m±(α) = n
2 (1 ± √

1 − α). Under a
QAOA trial state |ψ (β, γ )〉 with a distribution pm over m [see
Fig. 3(a)], the probability to sample cuts larger than αcmax is
thus

Pα (n) =
�m+(α)�∑

m=
m−(α)�
pm. (11)

We now make the simplifying assumption that the distribu-
tion pm is a Gaussian N ( n

2 , σ ), where the standard deviation
σ—the only free variable for fixed n—is, by definition, in one-
to-one correspondence to the squeezing S = 10 log10(4σ 2/n).
In summary, the benchmark (i) relates squeezing to the
probability of sampling good solutions, a QAOA perfor-
mance metric, (ii) captures the ability of QAOA to create
entangled states (Sec. III B), and (iii) is as susceptible to
hardware noise as other fully connected QAOA circuits
(Sec. IV E).

We illustrate the benchmark by numerically computing
Pα (n,S ) as a function of n and the squeezing S in the

FIG. 3. Benchmarking QAOA with squeezing. (a) Probability
distribution (pm, red solid line) and normalized cut size (cm/cmax,
blue dashed line) simultaneously plotted against m = 〈L̂z〉 + n

2 for
n = 30. States with normalized cut size more than α lie in m ∈
[
m−(α)�, �m+(α)�]. These yield the shaded area under the proba-
bility pm, which is the figure of merit Pα defined in Eq. (11). (b) Pα

showing how the probability of sampling high-value cuts changes
with the squeezing S and the number of qubits, n, calculated using
trial Gaussian distributions.

Gaussian distribution pm(S ). Since the ground state of Gn is
highly degenerate, we select a high value of α, e.g., 99.9%.
At fixed n, an increased squeezing (more negative) increases
Pα [see Fig. 3(b)], as cuts with a larger size receive more
weight. In addition, Pα has discontinuous jumps at ndis., where
z = � ndis.

2

√
1 − α� ∈ Z+ (Appendix C). In between disconti-

nuities, Pα diminishes with increasing n because σ increases
∝ √

n for fixed S , which reduces the weight attributed to
high-value cuts.

C. Benchmarking superconducting qubits

We now evaluate the benchmark on gate-based supercon-
ducting transmon qubits [61]. We measure the squeezing on
the IBM Quantum system ibmq_mumbai using QISKIT [62]
for four, six, and eight qubits (Appendix E). Since the chosen
qubits have a linear connectivity, we use a line swap strategy
[39,63] to create the all-to-all qubit connectivity required by
the squeezing circuit, shown in Fig. 4(a) for p = 1. This cir-
cuit is then transpiled to the cross-resonance-based hardware
[64,65] employing a pulse-efficient strategy instead of a CNOT

decomposition [66] using QISKIT PULSE [67]. The optimal
value of the variational parameter γ is found with a noiseless
simulation for each n. We use readout error mitigation [68,69],
which on average improves the best measured squeezing by
−0.7 ± 0.1 dB averaged over all three n ∈ {4, 6, 8}. At depth
one, a sweep of the tomography angle β1 reveals a squeezing
of −4.80, −4.18, and −4.02 dB whereas noiseless simula-
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FIG. 4. Squeezed states generated on superconducting qubits.
(a) A quantum circuit implementing a single QAOA layer for the
MaxCut problem on a six-qubit system, producing a state with a
reduced variance along the z axis. (b) Squeezing measured with the
quantum circuit in (a). The dashed lines show a noiseless QASM sim-
ulation. (c) The pm distribution of the four-qubit state with −5.96 dB
squeezing generated by a depth-two QAOA with optimal parame-
ters γ1 = 0.918, γ2 = −0.257, β1 = −0.711, and β2 = −2.175. The
gray histogram shows the state (H |0〉)⊗n.

tions reach −5.14, −5.90, and −6.56 dB for n = 4, 6, and
8, respectively. These metrological gains are comparable to
prior works in trapped ions [42,70–74] (Appendix F). Given
the measured squeezing, we compute a P99.9%(n,S ) of 61.5%,
49.1%, and 42.6%, respectively. Furthermore, we run a depth-
two QAOA on the fully connected four-qubit graph to create
a state with a −5.96 dB squeezing [see Fig. 4(c)], which
results in P99.9%(4,−5.96) = 68.2%. These results indicate
that the potential to generate squeezing in a four-qubit system
is limited by the variational form at depth one. By contrast, in
systems with six and eight qubits, the squeezing generated in
practice is limited by the large number of CNOT gates at depth
one (40 and 77, respectively). Criterion (E1) witnesses the
generated states in both simulation and hardware as entangled
[see Fig. 5(a)]. In a noiseless simulation of a depth-one QAOA
of system sizes n = 4, 6, 8, criterion (E2) witnesses at least
four-, four-, and five-qubit entanglement, respectively. In the
noisy hardware implementation, estimate (E3) suggests these
numbers to still reach 4, 3, and 3, respectively.

D. Squeezing as a good benchmark
for arbitrary QUBO problem

From a hardware perspective, although Gn is a specific
problem, its QAOA circuit is representative of the noise
of an arbitrary fully connected QUBO problem since the
gates constituting a generic cost function exp(−iγkĤC ) can

qubits (p) F/n(Ly) k S(dB) k
n=4 (1) 2.83 4 -4.80 4
n=6 (1) 3.27 4 -4.18 3
n=8 (1) 4.12 5 -4.02 3
n=4 (2) 3 4 -5.96 4
n=12 (3) 7.04 9 — -

Simulation 
(E2)

Hardware 
(E3)#qubits

(p)
Simula
-tion

Hard
-ware

Upper
bound

n=4 (1) 0.31 0.33 1
n=6 (1) 0.38 0.57 1.5
n=8 (1) 0.44 0.79 2
n=4 (2) 0 0.25 1
n=12(3) 0.32 — 3

(a) (b)

FIG. 5. Entanglement from squeezing and quantum Fisher in-
formation. (a) The values of 〈L̂2

z 〉 (E1) obtained in simulation and
hardware are close to zero, indicating that the states are in the vicinity
of entangled Dicke states. (b) Number of entangled particles k cal-
culated from FQ[L̂y] (E2) in simulation, and estimated for hardware
using (E3).

be implemented with virtual Z rotations and CNOT gates
[75]. Indeed, the difference between the pulse schedules only
amounts to phase changes, indicated by circular arrows in
Fig. 6(c). The duration of the QAOA pulse schedule and the
absolute amplitude of the pulses are thus independent of the
variables � in the QUBO [see Eq. (1)] and the variational
parameters γ and β [compare Figs. 6(b) and 6(c)]. There-
fore, much like quantum volume, the hardware benchmark
based on squeezing captures effects such as limited qubit
connectivity, unitary gate errors, decoherence, and cross-talk.
Furthermore, from a hardware perspective, the squeezing
circuit is also the hardest to implement since QUBOs

FIG. 6. Cross-resonance pulse schedules of the squeezing circuit
and an arbitrary QUBO. (a) Quantum circuit of a general four-
qubit fully connected cost operator e−iγ ĤC transpiled to qubits 0,
1, 3, and 5 of ibm_lagos. (b) Pulse schedule of the cost opera-
tor used to generate the symmetric Dicke state, i.e., ωi, j = 1 ∀i, j.
(c) Pulse schedule of a MaxCut instance with edge weights ω0,1 =
ω0,2 = ω1,3 = −1 and ω0,3 = ω1,2 = ω2,3 = 1. The circular arrows
show where the phase shifts differ from the pulse schedule in (b).
[(d) and (e)] MaxCut graph corresponding to the pulse schedules
in (b) and (c), respectively. The duration of a single sample of
the arbitrary waveform generators is dt = 0.222 ns. The light and
dark pulses show the in-phase and quadrature of each complex
amplitude pulse applied to control channels U0, U5, and U8 of
ibm_lagos.
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FIG. 7. Squeezing as a function of the strength of gate noise
modeled as bit-flip errors. A bit-flip error is added to every CNOT

gate by two-qubit Pauli channels, P2 = P1 ⊗ P1, where P1 =√
perrorX + √

1 − perrorI . The squeezing approaches zero as gate
errors increase, showing the validity of squeezing as an application-
tailored hardware benchmark.

that are not fully connected, i.e., ∃ (i, j) | �i, j = 0, require
less pulses.

E. Error detection by spin squeezing

As undesired processes destroy fragile quantum superposi-
tions, the degree of squeezing is sensitive to the noise levels of
the quantum device. To illustrate this, we run our depth-three
QAOA example of Fig. 1 on a noisy simulator. After each
CNOT gate, we include a Pauli bit-flip error with strength
perror. We observe that the squeezing rapidly decays towards
zero as perror increases, resulting in a nonsqueezed state (see
Fig. 7). This simple simulation demonstrates that gate errors
destroy the fragile correlations needed to create a squeezed
state. Conversely, the ability (or inability) to realize squeezing
through QAOA can be used as a tool to estimate the errors in
a circuit experiment.

V. EXTENSION

In this section, we extend the connection between QAOA
and metrology to create arbitrary Dicke states and warm-
starting QAOA with partially squeezed states for random
MaxCut problems.

A. Creating arbitrary Dicke states

We can create arbitrary Dicke states [Eq. (4)] by
minimizing a QUBO cost function with QAOA. Let
|xn−1 · · · x0〉 be a basis state in which qubit i is in state
xi ∈ {0, 1}. Each basis state in Dn

k satisfies the equa-
tion

∑n−1
i=0 xi = k, which is a constraint on the binary

variables xi. We express this constraint as the QUBO
problem

min
x∈{0,1}n

(
k −

n−1∑
i=0

xi

)2

. (12)

TABLE II. The parameters (γi, βi ) of an optimized depth-three
QAOA circuit to create k = 1, 2, 3, 4, 5 Dicke states.

No. spin up, k γ1 β1 γ2 β2 γ3 β3

1 0.101 0.903 0.317 1.324 1.506 −0.155
2 0.093 1.106 0.427 1.409 1.457 −0.068
3 0.149 1.205 1.645 1.576 0.472 −0.076
4 0.111 1.220 0.441 1.690 1.028 0.062
5 0.231 1.340 1.643 1.500 1.774 0.004

The solution to this optimization problem is a superposition
of all basis states with k qubits in the excited state, i.e., Dn

k .
We apply the change of variables xi = (zi + 1)/2 to rewrite
(k − ∑

i xi )2 as

k2 − kn + n

4
(n + 1) +

(n

2
− k

) n−1∑
i=0

zi + 1

2

∑
i< j

ziz j . (13)

After promoting each zi variable to a Pauli spin operator Ẑi,
Eq. (13) yields a cost Hamiltonian to minimize

ĤC =
(n

2
− k

) n−1∑
i=0

Ẑi + 1

2

∑
i< j

ẐiẐ j . (14)

When k = n/2, we recover the MaxCut problem on the sym-
metric graph. For k 	= n/2, we have an extra term (n/2 −
k)

∑
Ẑi that biases the total spin towards 〈Ẑ〉 = k. The Hamil-

tonian in Eq. (14) can therefore be used to generate the Dicke
state Dn

k with QAOA.
For n = 12 qubits, we use the cost Hamiltonian in

Eq. (14) to simulate the generation of Dicke states with k =
1, 2, 3, 4, 5. With three QAOA layers, we obtain fidelities in
excess of 80% (see Fig. 8). The corresponding QAOA param-
eters γ and β are shown in Table II.

B. Warm-starting QAOA with squeezed states

In this section, we explore how far the symmetric MaxCut
problem that has a Dicke state as a ground state can help
solve nontrivial MaxCut problems with asymmetric edge
weights. We show how such squeezed states increase the
likelihood of sampling good cuts on graphs with random
edge weights. Each edge ωi, j of a graph is sampled from
a Gaussian distribution N (μ, ε) and then rounded to one
decimal place to increase the separation in the cut values of
the graph. We compare standard QAOA with p layers to a
QAOA with ps + p layers in which the first ps layers have
fixed parameters to produce a squeezed state. Both methods,
therefore, have 2p parameters that require optimization for
each graph instance. For the second approach, in addition, 2ps

parameters are optimized once with the symmetric MaxCut
problem as a target and are reused for different problem
instances. For each n ∈ {4, 6, 8, 10, 12}, we sample 100
graph instances from N (μ, ε) for which we choose μ = 4
and ε = 0.5 and optimize the cut value for varying p. The
resulting energy normalized to the minimum energy and
averaged over the 100 graph realizations is used to compare
both methods. To ensure that p layers always produce a
result that is at least as good as the one for p − 1 layers, we
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Target k=1 Target k=2 Target k=3 Target k=4 Target k=5

FIG. 8. Metrologically useful arbitrary Dicke states generated by a depth-three QAOA by minimizing the cost Hamiltonian in Eq. (14).
The top panels show the Wigner quasiprobability distribution on the Bloch spheres. The bottom panels show the corresponding histograms of
the total spin operator 〈Ẑ〉 = m. The orange numbers in each histogram show the overlap probability density |〈D12

k |ψ〉|2 with the target Dicke
states.

bootstrap the optimization parameters. The initial guess of the
parameters for layer p is based on the optimized parameters
of layer p − 1, i.e., (β1, β2, . . . , βp, γ1, γ2, . . . , γp)initial =
(βopt

1 , β
opt
2 , . . . , β

opt
p−1, 0, γ

opt
1 , γ

opt
2 , . . . , γ

opt
p−1, 0).

QAOA initialized with squeezed states, shown as orange
circles and green stars in Fig. 9, significantly improves the
average energy when compared to QAOA initialized from an
equal superposition, shown as blue triangles in Fig. 9. We
observe little improvement in solution quality with increasing
p. We attribute this to the complexity of the optimization land-
scape which has many local minima, even at depth one, due to
the interference of the frequencies generated by the different
edge weights (see Fig. 13). In the four-qubit case, the energy
for p � 3 layers of both methods is comparable. As the system
size is increased, we observe a greater advantage for QAOA
initialized with a squeezed state. These results indicate that,
when solving a family of problems, it may be advantageous to
initialize QAOA with a state that corresponds to the average
problem even when such a problem is trivial to solve.

VI. CONCLUSION

In summary, the generation of squeezed states that are
useful for metrology can be cast as a MaxCut problem, which
in turn can be addressed with variational algorithms. The
procedure that we illustrated in the creation of a 12-qubit
Dicke state can be implemented on universal quantum com-
puting platforms, such as superconducting qubits or trapped
ions, as well as on special purpose machines such as BECs
trapped in optical tweezers [30]. Interestingly, an enhance-
ment of squeezing within the multilayer QAOA protocol
is not equivalent to simply applying the L̂2

z operator for
a longer period, as the mixer Hamiltonian periodically in-
tervenes (Appendix H). Our results show how variational
algorithms may generalize existing protocols and provide sys-
tematic guidance for the creation of highly squeezed states
for metrology. By contrast to, e.g., Refs. [25,76–78], which
use variational quantum algorithms with a hardware native
Ansatz to enhance phase sensitivity, the QAOA approach

to create squeezing encapsulates the structure of the target
state in the variational form which may reduce the num-
ber of parameters to optimize. In a similar vein, we foresee
that custom states beyond Dicke states may be generated by
QAOA if they can be cast as solutions of a combinatorial
optimization problem. In addition, we suggested squeezing
as a QAOA-specific hardware benchmark. This benchmark
is both portable across hardware platforms and captures
hardware-specific properties such as limited qubit connectiv-
ity and cross-talk.
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FIG. 9. Advantage of QAOA initialized with squeezed states.
The blue triangles show standard QAOA initialized from a coherent
spin state. The orange circles and green stars show QAOA initialized
with a spin-squeezed state created with ps = 1 and 2 QAOA layers,
respectively. The x axis is the QAOA depth after the initial state
and the y axis is the energy normalized to the ideal value. The
markers and error bars indicate the average and variance of 100 graph
instances drawn from N (4, 0.5) with different sizes n = 4 (top) to
n = 12 (bottom). Squeezed initial states boost the average energy
of the QAOA optimized state as shown by the orange and green
markers having an energy that is closer to the ideal energy than the
blue markers. The energy increases only modestly as p increases due
to the complexity of the optimization landscape.

APPENDIX A: ENTANGLEMENT FROM SQUEEZING

Measurements of collective spin observables can reveal
entanglement. In particular, separable states satisfy [37]

〈
L̂2

x

〉 + 〈
L̂2

y

〉
� n

2

(
n

2
+ 1

2

)
⇐⇒ n

4
�

〈
L̂2

z

〉 = Var(L̂z).

(A1)

The second implication is reached using the identity 〈L̂2〉 =
〈L̂2

x 〉 + 〈L̂2
y 〉 + 〈L̂2

z 〉 = n
2 ( n

2 + 1), and 〈L̂z〉 = 0 for our target
states. Any squeezed state defined through Eq. (3) violates
the relation above and is thus entangled. Moreover, 〈L̂2

x 〉 +

n=4 n=6 n=8 n=12
1 1 1 1
2 2 2 2
2.5 3 2.75 3
4 3.33 4 4
— 4.33 4.25 4.5
— 6 5 6
— — 6.25 6.17
— — 8 6.67
— — — 7.5
— — — 8.67
— — — 10.17

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
k=11

#qubits
(p)

F/n
(Lx)

k F/n
(Ly)

k k

n=4 (1) 1.21 2 2.83 4 3.26 4
n=6 (1) 1.03 2 3.27 4 3.89 5
n=8 (1) 1.33 2 4.12 5 4.51 6
n=4 (2) 3 4 3 4 4
n=12(3) 6.66 8 7.04 9 9.37 11

Simulation

k=4 k=3

(a) (b)

(c)

FIG. 10. Multipartite entanglement from quantum Fisher in-
formation and number squeezing. (a) FQ witnessing k-partite
entanglement for different n. (b) In the simulations, FQ obtained with
L̂y is larger than L̂x . The numbers of entangled particles (k) estimated
from squeezing (σ 2

css/Var(L̂z ) = 10−S/10 ) are close to the numbers
obtained from FQ[L̂y] for most cases. In a proper Dicke state as
obtained with n = 4(p = 2), the Var(L̂z ) becomes extremely small,
leading to the very large value of σ 2

css/Var(L̂z ) seen in the fourth row.
(c) Illustrative examples of k-partite entanglement as entanglement
depth.

〈L̂2
y 〉 reaches the maximum n

2 ( n
2 + 1) in the Dicke state [37],

which is the same as having Var(L̂z) = 0. In Fig. 5(a), we
show how the obtained values of 〈L̂2

z 〉 are close to the
minimum limit zero, revealing the existence of significant
entanglement.

APPENDIX B: MULTIPARTITE ENTANGLEMENT,
QUANTUM FISHER INFORMATION, AND SQUEEZING

A pure state of n qubits, written as a product |ψ〉 =
⊗M

j=1|ψ j〉, is k-partite entangled when at least one state |ψ j〉
contains nonfactorizable k qubits [18,79]. This definition is
the same as the entanglement depth [80] [see Fig. 10(c)].
A sufficient condition for (k + 1)-partite entanglement stems
from the quantum Fisher information FQ: a state reaching
FQ[ρn,O] > (sk2 + r2)—where s = �n/k� denotes the inte-
ger division of n by k, and r is the remainder—is at least
(k + 1)-partite entangled [18,19].

While FQ is becoming a useful witness for entanglement
in quantum many-body systems [81–86], its origin is as a key
figure of merit in quantum metrology, where FQ quantifies the

distinguishability of a state ρ from ρ ′ = e−iθOρeiθO, gener-
ated by the Hermitian operator O with infinitesimal θ . Thus,
a large FQ implies a high measurement precision for estimat-
ing the value of θ [87,88]. For pure states ψ , the quantum
Fisher information becomes simply FQ[ψ,O] = 4Var(O)ψ
[89], whereas for mixed states it provides a lower bound on
the variance.

The target state of the QAOA for MaxCut on Gn, the Dicke
state, is invariant under a unitary evolution generated by L̂z

but is highly sensitive to rotations around the x or y axes
of the collective Bloch sphere [30]. Thus, to obtain a large
FQ, it is advantageous to choose O = L̂x or—even more so—
O = L̂y. We report FQ in Fig. 10(b) for both O = L̂x, L̂y and
the resulting k-partite entanglement witnessed by it for the
ideal simulations. In this ideal scenario of noiseless numerical
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simulations, the large values of FQ[ψ, L̂x,y] are directly related
to the antisqueezing of the final state along the equator of the
Bloch sphere.

In the hardware, where the system is no longer in a pure
state, it is considerably more challenging to directly access FQ

[81,90]. However, for Gaussian states, one can nevertheless
use the empirical relation [30]

FQ/n[L̂y] � σ 2
css/Var(L̂z) = 10−S/10 (B1)

between FQ and squeezing. For the simulation, the estimated
k using this relation is close to the exact estimation from FQ

in most of cases [see Fig. 10(b)], except for the depth-three
QAOA, where the states are no longer Gaussian [27]. Assum-
ing that the above relation holds for depth-one QAOA, where
the states are expected to be Gaussian, we obtain the estimates
for k-partite entanglement in the hardware implementation
reported in Fig. 5(b) of the main text.

APPENDIX C: DISCONTINUITIES IN THE QAOA
HARDWARE BENCHMARK

According to Eq. (11), the states in the domain
(
m−�, �m+�) are included in Pα , where m±(n, α) = n

2 ±
n
2

√
1 − α. Since �m+� and 
m−� must both be integers, the

span of the domain �m+� − 
m−� remains constant over a
large n range and changes abruptly when � n

2

√
1 − α� ∈ Z

changes value. We denote the values of n at which such
changes occur as ndis, which correspond to the discrete jumps
along the n axis in Fig. 3(b) of the main text. For α = 99.9%
and n even, we obtain discontinuities in P99.9% at ndis =
64, 128, 190, 254.

APPENDIX D: OPTIMIZATION METHOD

The 12-qubit example in the main text is run with the
QISKIT QAOA Runtime program [39]. To optimize the {γ,β}
we use the simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm [91] which simultaneously optimizes
multiple parameters and can handle noisy environments. We
do not initialize the optimizer with values for the learning rate
and a perturbation. Instead, we let SPSA calibrate itself in the
first 25 iterations. To obtain good solutions we allow SPSA a
maximum of 500 iterations and gather a total of 215 shots per
iteration.
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FIG. 11. Coupling map of ibmq_mumbai with the qubits
used shown in violet. The four-, six-, and eight-qubit data
were measured on the linearly connected qubits {19, 22, 25, 26},
{14, 16, 19, 22, 25, 26}, and {12, 13, 14, 16, 19, 22, 25, 26}, respec-
tively, chosen based on the CNOT gate fidelity.

TABLE III. Properties of the relevant CNOT gates as reported by
ibmq_mumbai on the date of the circuit execution. The average T1 of
the selected qubits is 155 ± 43 µs.

CNOT gate

Qubit pair Error (%) Duration (ns) Qubit T1 (µs)

(12, 13) 0.77 548 12 166
(13, 14) 1.26 320 13 137
(14, 16) 1.04 348 14 174
(16, 19) 0.77 747 16 118
(19, 22) 0.66 363 19 227
(22, 25) 0.58 484 22 122
(25, 26) 0.50 348 25 194

0.80 ± 0.27 451 ± 155 26 103

APPENDIX E: HARDWARE DETAILS

The superconducting qubit data are gathered on the
ibmq_mumbai system which has 27 fixed-frequency qubits
connected through resonators; its coupling map is shown in
Fig. 11. We chose a set of qubits that form a line with the
smallest possible CNOT gate error. Each circuit is measured
with 4000 shots. The properties of the device such as T1 times
and CNOT gate error are shown in Table III.

APPENDIX F: COMPARISON OF METROLOGICAL GAIN

The squeezing generated by QAOA in the superconduct-
ing hardware (see Fig. 5) is comparable to prior trapped-ion
works whose aim was to generate highly entangled states
(see Fig. 2 of Ref. [10]). Even more, our depth-three
QAOA simulations with 12 qubits indicate that, with lower
CNOT error rates, superconducting qubit hardware may reach
−9.7 dB of squeezing. The same method could also be
applied in trapped ions, where the QAOA circuit—thanks to
the trapped-ion all-to-all connectivity—is particularly com-
pact (Sec. III C). In addition, our method has a number
of advantages over variational Ansätze specifically devel-
oped for a metrological phase-estimation scenario [25,76–
78]. For example, Marciniak et al. [25] (i) use a cost
function particularly tailored for sensing tasks that opti-
mize the phase sensitivity of their quantum sensor, (ii) use
a very general variational Ansatz consisting of entangling
and decoding unitaries containing rotation once and one-axis
twisting operations twice in different directions, following the
established knowledge in quantum metrology, and (iii) use
a linear phase estimator with an unknown parameter a to
estimate the phase from spin measurement, where a also has
to be optimized.

By contrast to (i), our cost function is the energy that also
creates an entangled state. By contrast to (ii), our variational
Ansatz is grounded in QAOA, i.e., a Trotterized version of
adiabatic computing with a classical optimization that inherits
the performance guarantee in the limit p → ∞. By contrast to
(iii), our results can be applied to enhance phase sensitivity but
are not limited to it. Indeed, the optimization does not include
any phase estimator, potentially making the approach useful
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(a) (b)

(c)

FIG. 12. Illustration of the importance of alternating the cost
function and the mixer operator. (a) A fragmented Wigner distri-
bution on the Bloch sphere is obtained when ĤC is applied with
γ = γ1 + γ2 + γ3 from Fig. 1. (b) For the state in (a) no squeezing
is observed at any β. The inset shows the probability distribution at
β = π/4, corresponding to S = 8 dB, i.e., over-squeezing. (c) The
energy landscape of the depth-one QAOA reveals that the lowest
energy it can reach is −35.47, which is inferior to −35.68 obtained
in depth-three QAOA.

for other problems while also reducing the number of parame-
ters to optimize. These three points result in a variational form
with fewer parameters to optimize than a general variational
form and thus is, in principle, easier to optimize. Furthermore,
the approach chosen in our paper allows us to benefit from the
vast literature on optimizing QAOA parameters, of which the
truncated quantum annealing [92] (TQA) initialization is just
one example.

APPENDIX G: INCREASING THE DURATION OF ĤC

Squeezing is generated by L̂2
z [30], which suggests that

simply applying ĤC ∝ L̂2
z for a longer duration, corresponding

to a larger coefficient γ in the QAOA, may transform the
coherent state to a squeezed state, after which we can use the
mixer ĤM to reveal the squeezing along L̂z as in the main text.
In this way, one layer of QAOA would suffice to create any
squeezing which would also require fewer CNOT gates than
when p > 1. To test this hypothesis, we run depth-one QAOA
using γ = γ1 + γ2 + γ3 where the γi are taken from Fig. 1 in
the main text, as they contain the source of “total” squeezing.
The result is a fragmented Wigner distribution on the Bloch
sphere without observable squeezing in any direction [see
Fig. 12(a)]. Furthermore, no squeezing is detected along z for
any value of the tomography angle β [see Fig. 12(b)]. This
finding is in agreement with the known observation that over-
squeezing can be detrimental for precision [93]; however, the
states here do not wrap around points near poles because L̂2

z
and L̂x are not applied simultaneously as in Ref. [93].

APPENDIX H: ADVANTAGES OF MULTILAYER QAOA

One may object to the arguments in Appendix G that the
γ we chose is suboptimal. To address that, in Fig. 12(c), we
numerically map the energy landscape of depth-one QAOA
in the {γ , β} plane. The results reveal a minimum energy
of 〈ĤC〉min = −35.47 which corresponds to |〈D12

6 |ψ〉|2 =
98.53%. These results are inferior to those we obtain from the
depth-three QAOA, i.e., 〈ĤC〉min = −35.68 and |〈D12

6 |ψ〉|2 =
99.08%. Alternating multiple layers of ĤC and ĤM is therefore
advantageous over a single application of the one-axis-
twisting operator.

To quantify the obtainable improvement as a function of
the number of layers used, we can define a new performance
metric 
n

p(%), which compares the energy reduction over the
initial Ansatz obtained by p layers of QAOA with the one
achieved by the ideal target state. In the n = 12 case, the initial
coherent state and the target Dicke state have 〈ĤC〉 = −33
and −36, respectively. Thus, a depth-one QAOA (correspond-
ing to the usual squeezing protocol) can reach a maximum

12

1 = 2.47/3. In contrast, the depth-three QAOA can reach

12

3 = 2.68/3, as shown in Fig. 1. Thus, according to this
metric a depth-three QAOA is 0.21/3 = 7% better than a
depth-one QAOA.

APPENDIX I: COMPLEXITY OF OPTIMIZATION
LANDSCAPE

Complexity of the optimization landscape is shown
in Fig. 13.
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FIG. 13. Complexity of the optimization landscape for an n = 10 vertices graph with edge weights [3.1, 3.5, 3.9, 3.6, 4.6, 4.2, 4.8, 3.8,
4.1, 4.8, 5.0, 4.8, 4.0, 3.8, 3.2, 4.1, 4.2, 4.6, 4.3, 3.5, 3.9, 3.8, 3.2, 3.2, 4.7, 3.7, 4.1, 3.5, 4.1, 4.0, 4.2, 3.6, 4.4, 4.1, 3.5, 4.2, 3.7, 3.4, 4.4, 4.4,
3.6, 4.0, 4.3, 4.9, 4.1] and QAOA depth p = 1. Out of the full landscape, we show the first 0 to 2π portion of the γ landscape in four subplots
γ ∈ [0, π/2], [π/2, π ], [π, 3π/2], [3π/2, 2π ] with different color scales to increase the contrast between the local minima and maxima. This
reveals a large number of local minima. The small improvement in solution quality with increasing p can therefore be attributed to the many
local minima, created from the interference of the frequencies generated by the different edge weights.
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