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Hybrid quantum learning with data reuploading on a small-scale superconducting
quantum simulator

Aleksei Tolstobrov ,1,2,* Gleb Fedorov,1,2,3 Shtefan Sanduleanu ,1,2,3 Shamil Kadyrmetov ,1 Andrei Vasenin ,4,1

Aleksey Bolgar,4,1 Daria Kalacheva ,4,1,3 Viktor Lubsanov ,1 Aleksandr Dorogov ,1 Julia Zotova ,4,1,3 Peter Shlykov,1

Aleksei Dmitriev,1,3 Konstantin Tikhonov,5 and Oleg V. Astafiev 4,1

1Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
2Russian Quantum Center, 121205 Skolkovo, Moscow, Russia

3Laboratory of Superconducting Metamaterials, National University of Science and Technology ‘MISIS’, 119049 Moscow, Russia
4Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia

5L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

(Received 1 June 2023; accepted 6 December 2023; published 8 January 2024)

Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum
algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model using
quantum hardware simulator (a linear array of four superconducting transmon artificial atoms) trained to
solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary
and multilabel tasks, achieving classification accuracy around 95%, and a hybrid quantum model with data
reuploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the
inference time in experimental conditions and compare the performance of the studied quantum model with
known classical solutions.
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I. INTRODUCTION

Over the last years, high attention has been paid to the
idea of using parameterized quantum circuits (PQC) as uni-
versal approximating models for machine learning (ML) tasks
[1–4], inspired by research on variational quantum algorithms
(VQA). There are many types of VQA [5] from which quan-
tum neural networks (QNN) seem to be the most attractive
for solving classical ML problems. While various architec-
tures for QNNs have been suggested, including convolutional
[6], generative-adversarial [7,8], recurrent [9] networks, it is
still not clear how to overcome the general trainability issues
[10–13] when such models have high quantum volume; this
is an area of active research [14–16]. In recent works it has
been shown that a small-scale QNN can outperform its clas-
sical counterpart with a close number of trainable parameters
[17,18]. However, it is not yet known whether optimizing a
parametrized quantum circuit can lead to an algorithm that
may outperform any state-of-the-art classical algorithm. It is
known that even a single-qubit quantum circuit is enough to
solve nontrivial classification tasks [19,20], there is potential
in using quantum kernel estimation to support vector ma-
chines [21,22], and it is supposed that PQC-based models may
have advantages in expressivity and generalization [23–27].
Also, PQC unitarity automatically ensures effective weight
normalization [1], which is useful for recurrent models. To
date, the idea has found a few experimental realizations on
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various physical platforms, the most prominent being trapped
ions and superconducting artificial atoms [3,28–31].

To achieve quantum advantage for a certain ML task is to
find a PQC that will train or perform inference faster, or with
less resources, or with higher accuracy than is currently pos-
sible using classical computational devices. For classification
problems, this is achievable probably only with a classically
intractable θ-parameterized (θ ∈ Rm) PQC used to map a
feature vector x ∈ Rn to a higher-dimensional feature Hilbert
space vector |�(x, θ)〉, or, more generally, a density matrix
ρ(x, θ) lying in the space of unit-trace Hermitian operators
[2–4]. Then the prediction is found by performing single-
or multiqubit measurements upon ρ(x, θ), optionally using
quantum state tomography (QST) [17]. It can be shown that
at that last step a linear classifier is formed for ρ(x, θ) [32]. It
follows that the classes should be significantly easier to sepa-
rate in the new feature space than in the original, in similarity
to classical dimensionality reduction approaches [33,34].

Preprocessing of x and postprocessing of measurement
outcomes, for example, by simultaneously trained classical
neural networks, seems to improve model performance. As
the model combines both classical and quantum mappings,
we use the term hybrid deep quantum learning model [17,35].
Finally, there may be variations in how the data are inserted in
the PQC. Usually, each value from the input data vector x is
written to the parameter of a single gate in the circuit. How-
ever, recent studies showed that recording the same parameter
multiple times over different gates of PQC ( the so-called data
reuploading) significantly improves its expressivity [4,19].

In this work, we experimentally train a small hybrid
model to solve several problems of supervised learning on
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TABLE I. Physical parameters for the four leftmost transmons.
Idling (“parking”) point frequencies ω(i)

ge and readout resonator fre-
quencies ω(i)

r are given, decoherence times are measured when the
transmons are in their idling points, near the “sweet-spots.” Precise
gate durations are also listed.

Transmon 1 2 3 4

ωge/2π , GHz 5.80 4.96 6.05 4.94
T1, µs 7.2 9.3 8.0 10.5
T ∗

2 , µs 3.8 4.1 3.7 3.9
ωr/2π , GHz 7.16 7.24 7.31 7.40
tX,Y , ns 40 40 40 40
tiSWAP, ns 25 27 27

well-known datasets: bit-string parity (PARITY), diagnosing
breast cancer by biopsy results (CANCER), discerning wine
cultivars by their physical and chemical parameters (WINES),
and recognizing handwritten digits (MNIST) [36]. We report
an experiment employing loading image datasets into a PQC
via convolutions and the classification of all ten digits from
the MNIST dataset. As a small-scale prototype of a quantum
hardware device used to evaluate the quantum part of the
model, we use a linear array of superconducting transmon arti-
ficial atoms with nearest-neighbor interactions [29,37,38]. We
show that four qubits with, at most, two hundred parameters is
enough to reach test accuracies higher than 90% for all studied
datasets. As we find experimentally and confirm numerically,
the algorithm is sufficiently resistant to imperfections in gate
operations and can be implemented with currently available
quantum devices without error correction.

II. LEARNING SIMPLE DATASETS

An optical image of the experimental device is shown in
Fig. 1(a). The chip hosts eight artificial atoms forming a linear
chain with nearest-neighbor interactions [29]. Each transmon
has an individual measurement resonator and two control lines
to change the flux through the superconducting quantume
interference device (SQUID) of the transmon and to excite
it with microwave radiation. In this study, we use only the left
half of the chain (four transmons). The physical parameters of
the device are presented in Table I.

A. Training the device

The architecture of the four-qubit PQC that is run on the
device is shown in Fig. 1(b). Gaussian driving pulses with
controllable amplitude are used for single-qubit operations
(tX,Y = 40 ns) and smoothed rectangular dc pulses for two-
qubit operations (tiSWAP = 25 ns), details of the calibration
are presented in Appendix A. Each layer of operations has
a duration of tl = 80 ns, which includes an idling margin to
account for variations of propagation delay among the control
lines. Total PQC execution time is tPQC = 1460 ns (including
500 ns for readout); however, we have to use a trep = 50 µs
repetition period to allow the system to return to the state of
thermal equilibrium with the environment of 20 mK, denoted
as |∅〉. This repetition period can be significantly reduced

TABLE II. Summary of the dataset properties. For PARITY, due
to the low number of samples for a four-bit task train or test split
was equal. For the remaining two datasets the splitting was 2/1. ∗

Cross-validated accuracy, averaged over six different random splits.

Dataset PARITY CANCER WINES MNIST

# samples 16 569 178 1797
# features 4 30 13 56
# classes 2 2 3 10
Accuracy 1.0 0.95∗ 0.94∗ 0.90

though to 1 to 5 µs, by using unconditional reset protocols
[39,40].

Controlled evolution of a real quantum system ends in a
statistically mixed state ρ(x, θ), having limited resemblance
to the PQC target state |�(x, θ)〉, and this is supposed to be
the main restriction for VQA development on larger noisy
intermediate-scale quantum (NISQ) devices [11]. However,
while in our case the PQC execution time tPQC is comparable
to the average decoherence time T2 ≈ 4 µs, we are still able to
successfully perform training and inference.

The feature vectors x ∈ R4 are presented to the PQC by
single-qubit X rotations of the first layer. The corresponding
angles are calculated by applying the inverse tangent function
to {xi}. For datasets CANCER and WINES, we use a decision
tree classifier to choose the four most relevant components
of the feature vector. Selected features for WINES dataset are
“proline,” “flavanoids,” “color intensity,” and “alcohol”; for
the CANCER dataset “worst radius,” “worst concave points,”
“worst texture,” and “mean texture.” For a certain dataset, we
will denote as X , Y the sets of feature vectors and correspond-
ing labels, and as T , T̃ : T ∪ T̃ = X the train and test feature
subsets, respectively. The information about used datasets is
summarized in Table II.

Additionally, we merge into the first layer four components
θ1−4 of the weight vector θ ∈ R15 by adding them to the
respective feature angles [30]. This operation is necessary to
shorten PQC by combining layers of encoding and optimiza-
tion.

The larger part of Hilbert space can be reached by the
image |�(x, θ)〉, the better expressivity of the model, and thus
the PQC must be sufficient to generate fully entangled states.
However, higher expressivity might lead to training problems
of the algorithm, so the model should not be too complex.
While it is possible to optimize the structure of the circuit
along with tuning its parameters θ [16], we use a V-shaped
sequence of fixed two-qubit operations, interleaved by two
layers of single-qubit X and Y rotations, as the entangling
block. This structure allows us to effectively use a large part
of the Hilbert space of four qubits, has sufficient flexibil-
ity and is easy to calibrate. We use only roughly calibrated
quasi-ISWAP gates [41,42]. Their exact matrix representation
does not significantly affect the expressivity of the circuit,
which we check in numerical simulations and connect with
the Kraus-Cirac decomposition theorem [43]. The detailed
information about calibration of single-qubit and two-qubit
operations can be found in Appendix A. Fortunately, there is
no need to know exactly which final state ρ(xi, θ) is prepared,
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FIG. 1. (a) Micrograph of the eight-transmon device used as the quantum hardware (false colored). The chip is symmetric, one of the
two transmission lines (purple) is visible. Readout resonators (red), microwave antennas (yellow), and flux control lines (blue) address each
transmon individually. T-shaped shunting capacitors are shown in green. (b) Structure of the PQC. The polar angles of single-qubit X , Y
rotations constitute the parameter vector θ while two-qubit operations are fixed. (c) Distributions of 〈σ (1)

z 〉 for two classes versus training
iteration for CANCER dataset. (d) Cost and accuracy convergence, calculated for both T and T̃ for comparison. (e) Measured cost function
landscape for T̃ around the found minimum in the linear hull of two random orthogonal directions θ′, θ′′. Accuracies are indicated at several
local minima. (f) A 1D slice of cost function, shown in (e) with a dashed line. (g) Output of the circuit 〈σ (1)

z 〉 showing expected harmonic
dependence on θ components, data for θ1
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Wines

FIG. 2. Training process of classifiers for all three simple problems. [(a)–(c)] Accuracy versus the number of iterations. [(d)–(f)] Same for
the cost function. [(g)–(i)] Distributions of 〈σ (1)

z 〉 for two classes during training process. For wines dataset accuracies of all three “one-versus-
others” classifiers and total accuracy are plotted. In picture (i) the distribution of 〈σ (1)

z 〉 for these classifiers is plotted.

contrary to quantum chemistry problems [5]. As there are
many possible structures for PQCs, numerical performance
analysis some of them is provided in Appendix B.

The last four layers are an arbitrary Euler rotation of the
first qubit via an Y -X -Y sequence and a measurement. The
prediction g(xi, θ) = Tr[ρ(xi, θ)σ (1)

z ] is calculated by running
the PQC repeatedly and averaging the σ (1)

z outcomes. Then
it is thresholded at g(xi, θ) = 0 to obtain the binary predic-
tion. With such an output, k-class classification is possible
to realize by training k one-versus-others models with proper
optimal parameters {θ1, . . . , θk}, or k(k − 1)/2 pairwise clas-
sifiers [35].

We optimize θ using stochastic gradient descent (SGD)
with the per-sample logarithmic cost function defined by

L[g(xi, θ), yi] = log2 (1 + exp[−yig(xi, θ)β]) + γ |θ|2, (1)

which favors the label yi ∈ {−1, 1} and the prediction g(xi, θ)
to have the same sign, and grows linearly in |g(xi, θ)| when
they have opposite signs. We find that choosing large β = 10
to strongly penalize sign difference is beneficial to the training
process. The regularizing term γ |θ|2 with γ = 0.2 allows to
penalize the model for overfitting. While important for the
image recognition task below, it is not necessary for simple
datasets. We also check that, for the studied datasets, the
quadratic cost yields comparable training performance.

The full cost is calculated as the expectation value
E[L[g(xi, θ), yi]] over a chosen data subset S , so i : xi ∈ S ,
with S being T , or T̃ , or a minibatch B of size b. The jth com-
ponent of its gradient over θ can be conveniently computed
using the parameter-shift rule [1,24], which requires only two
measurements at θ j ± π/2. We use the PENNYLANE library
[44] with a custom software wrapper to our experimental
setup to perform both the automated differentiation and the

optimization. Figures 1(c) and 1(d) shows a visualization of
the training process for the CANCER dataset with 569 samples
and 2-to-1 T -to-T̃ split [45]. Figure 1(c) shows the distribu-
tion of the model predictions for x ∈ T̃ at each training step.
Each iteration consists of one gradient evaluation and a Nes-
terov accelerated [46] SGD step over xi ∈ B, b = 64. At the
beginning of the training, the two classes are indistinguishable
while at the end of the training algorithm the distributions of
g(x, θ) for the two classes almost do not overlap. The accuracy
of the algorithm on both T and T̃ steadily increases with the
number of iterations, reaching approximately 95% in about
ten iterations. We also do not observe any systematic decline
in accuracy if the training is further continued. To correct for
the statistical fluctuations of the accuracy estimation due to the
particular realization of the sampling for the T -to-T̃ split, we
use the cross-validation method, averaging results over several
different splits.

Following [12], we also study the behavior of the cost func-
tion calculated over x ∈ T̃ near the found optimum. Using a
known visualization method [47], we plot a two-dimensional
(2D) slice of the 15-dimensional (15D) parameter space, a
square in the linear hull of two normalized orthogonal ran-
dom vectors θ′, θ′′ added to the optimal vector θ∗. From
Figure 1(e) it can be seen that, even for such a small PQC,
the minimum indeed is not unique which can lead to trap-
ping of the algorithm, and that the cost is nonconvex in the
original space [47]. We also find that setting θ∗ = 0 in this
experiment yields similar topography with local minima cor-
responding to above 80% accuracies, so a moderately good
solution can be found just by moving along a randomly chosen
direction.

We also check experimentally that the dependence of
g(xi, θ) on each of the parameters θ j is harmonic, according
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FIG. 3. Image recognition for MNIST. (a) The PQC used to process larger feature vectors. (b) Data encoding into parameters of single-qubit
operations, using convolutional kernels. (c) Confusion matrix to analyze the performance of each classifier. Each intersection of ith row and
jth column shows the percentage of pictures belonging to the ith class and recognized as elements of jth class. Nondiagonal elements show
misclassifications. (d) Visualization of training process of the classifier. The dependence of the accuracies on the number of iterations for ten
one-versus-others classifiers and total accuracy are shown.

to theory, and show in Fig. 1(g) how g(xi, θ) varies with θ1,
the first and the deepest parameter in the circuit, when the
other parameters and the input features x are set to zero. As
can be seen, due to the inaccuracies in the calibration of the
two-qubit gates and nonnegligible decoherence, the value of
the prediction never reaches “+1” in contrast to what one
would expect from the PQC structure for θ1 = π .

B. Performance analysis

In Fig. 2 we summarize the model training and perfor-
mance on all three datasets, see also Table II. In the PARITY

problem, four-bit sequences should be decided to contain even
or odd numbers of “1”’s. This problem is a simple test which
displays the reproducibility of quantum operations and the
sensitivity of the model in capturing class change even when
a single bit is flipped, which is difficult for classical models
[48]. Having only 16 samples, we split the dataset equally and
calculate the cost function on the full subset T ≡ B, b = 8.
At the optimal point, the accuracy reaches 100%, as there
exists an analytical solution composed of four CNOT gates
[49], which can be mimicked by our ansatz. At the same time,
the cost function does not reach zero due to the imperfections
of quantum operations and decoherence.
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FIG. 4. Calibration of two-qubit operations. (a) Frequency trajectories of the four transmons during three sequential ISWAP operations
for neighboring pairs. When frequencies of one pair are brought into resonance, frequencies of the adjacent transmons are shifted to reduce
residual interaction. The areas in which resonances occur are highlighted with dotted ellipses. [(b)–(d)] Calibration of ISWAP gates. For pictures
(b), (c), and (d) excited qubits are Q1, Q2, Q3 and measured qubits are Q2, Q3, Q4, correspondingly. The dependence of the first excited state
population of measured qubit on interaction duration and flux pulse amplitude is shown. The points with the largest population exchange are
marked, and corresponding parameters are used for two-qubit operations.

The CANCER problem, already briefly presented above, is
also binary, but has a significantly larger dataset which allows
a better splitting ratio and puts the model under a more strin-
gent test in terms of performance. As it can be seen from
Fig. 1(b), with trep = 50 µs and averaging over 1000 repe-
titions, the measurement of 〈σ (1)

z 〉 takes 50-ms time. In our
setup, rewriting the pulse sequence waveforms to update the
gates in the PQC takes comparable time (it could be reduced
at least an order of magnitude, though with better hardware).
To find the gradient of the cost function calculated on a single
xi, it is necessary to measure 〈σ (1)

z 〉 for 2m + 1 sets of angles
θ ∈ Rm. Evaluating the gradient for the circuit from Fig. 1(b)
over m = 15 variables takes tgrad = 1.55 s, which with the
additional time for rewriting the controlling sequences gives
about 3 s. Then, for a batch size b = 64, one iteration takes
around btgrad = 3 min. Finally, reaching the accuracy plateau
in around 20 iterations, as in Figs. 1(c) and 1(d), takes around
1 h.

As an elementary test of the model capability to solve mul-
tilabel classification problems, we use the three-class WINES

dataset. Multilabel classification is done by training three
“one-versus-others” binary classifiers aiming to detect each

of the cultivars. Then, for a given x ∈ T̃ , we choose among
the three found θ1−3 the one delivering the highest value to
g(x, •), and predict the class accordingly. We find that all of
three one-versus-others classifiers exhibit similar training be-
havior, an accuracy of classification starts from approximately
1/3, reaches a value of 90% in 1ent iterations, and slightly
fluctuates further, which is normal for minibatch learning. As
a result, the total classification accuracy is also slightly above
90%; the cross-validation procedure gives a value of 94%.

III. RECOGNITION OF HANDWRITTEN DIGITS

The feature space dimension m = 4 for the datasets consid-
ered above is obviously quite small. The situation is different
for the image recognition problem: even for a downsampled
and cropped MNIST picture of size 8 × 7 pixels with intensities
ranging from 0 to 1, the feature space is equipotent to R56.
Choosing a particular way to load information from this space
into the quantum state of just four qubits is not a trivial task.
We use an approach combining the data reuploading con-
cept [19] and convolutional neural networks (CNN) [17,50].
For preprocessing we use normalization and inverse tangent
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FIG. 5. Comparison of the different PQCs architectures for classification of CANCER dataset. [(a)–(d)] Possible structures of PQCs. (e)
Numerical modeling of the accuracy versus learning rate dependence for considered PQCs. (f) Numerical modeling of the accuracy versus
angles θ and φ dependence for PQC (a) and dataset CANCER.
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FIG. 6. Possible PQC architectures for the image recognition problem.
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transformation of the features. We use a modified PQC with
the structure similar to the one shown in Fig. 1(a), given in
Fig. 3(a). In Fig. 3(b), we illustrate how the 8 × 7 images
are padded with a zero bottom row and then divided in 3 × 3
partially overlapping local receptive fields (LRF) moving with
stride 2 in both directions [50]. LRFs traverse the image twice,
so there are 24 weight kernels in total. Pixels belonging to
the ith LRF Fi are convolved with weights w

(i)
j , and, with the

addition of a bias βi, are converted to angles θ1−24:

θi = βi +
∑

x j∈Fi

w
(i)
j x j .

In contrast to conventional CNN, the kernels for each LRF are
independent, which makes the model more flexible. The last
three parameters θ25−27 are independent, so with an addition
of a final bias β0 to the output of the PQC, the total weight
dimension is 244. We use the parameter-shift rule to compute
θ gradients of the loss function and chain rule to obtain w

(i)
j

and βi gradients.
In contrast to the circuit in Fig. 1(a), the feature data are

now recorded in multiple layers. The information about every
pixel is also written several times.

The model was tested on a subset of the MNIST dataset, see
Table II, by training ten separate one-versus-others classifiers
to be able to distinguish between all ten digits. There is a
strong (1/9) disproportionality in the quantities for each of the
corresponding pairs of classifiers, which might lead to training
problems. To overcome these problems, we perform dataset
balancing by adding copies of elements of a smaller class with
added Gaussian noise to the training dataset. After that, the
number of elements in the two classes becomes the same. The
training process is visualized in Fig. 3(d): the total ten-digit
accuracy steadily increases from approximately 10% in the
beginning (random guessing) to approximately 90% after 100
iterations. The accuracy of individual classifiers varies from
100% for “six versus others” to 92% for “eight verus others,”
which decreases the full accuracy to 90%. To analyze the
errors, we construct a confusion matrix, which is shown in
Fig. 3(c), and find that most confusion is caused by the “8”
classifier, with most misclassifications between “8” and “3,”
which looks reasonable. In all likelihood, the accuracy could
be further improved, however, as the training for Fig. 3 had
taken around 100 h, we did not continue it further. We found in
numerical simulations that suggested PQC is not optimal, and
classification accuracy might be increased to approximately
93% with nearly the same number of circuit layers. The de-
tailed analysis of possible circuit architectures is presented in
Appendix B. We also tested the model on the FASHION MNIST

dataset [51]. As for the classical models [51], the classification
accuracy for the FASHION MNIST dataset turned out to be worse
than for the MNIST dataset. We achieve only 85% accuracy for
four different types of clothes, while for four digits “0–3” we
report 98% accuracy.

IV. CONCLUSION

We experimentally implement a supervised quantum learn-
ing algorithm in a chain of superconducting qubits to
solve multilabel classification and image recognition prob-
lems. We first realize loading image datasets onto PQC via

convolutions, present a suitable gate sequence and a training
algorithm. This algorithm allows us to achieve classification
accuracy 90% for the MNIST dataset. Our classification algo-
rithm is convenient for implementation on near-term quantum
devices without error correction because it is sufficiently re-
sistant to imperfections and requires measurement of only
one qubit. We note that the presented model does not yet
outperform even the simplest classical model, such as the
linear classifier, which achieves an accuracy of 95% with only
570 trainable parameters. This means though that it is possible
to obtain 95% accuracy using a PQC with only one layer
and one qubit by training ten one-versus-other classifiers if
a linear combination of all features is recorded in the angle of
single-qubit operations. However, the main work in that case
will be performed by a classical computer, while to achieve
the advantage in quantum machine learning the right balance
between the classical and quantum parts of the model should
be found. For example, replacing the last low-dimensional
layers of a convolutional network with a PQC could be a
direction of further study.

We also address the issue of the low speed of inference
that we observe in practice with a real device. Despite the
fact that we use state-of-the-art gate durations (10-s of ns),
and the fact that the superconducting quantum computing
platform currently features the fastest known gates (compared
with silicon, with 100-s of ns [52], and trapped atom or ion
or diamond platforms, with 100-s of µs [53–55]), the training
process is currently orders of magnitude slower than for the
classical machine learning methods. We note, however, that
the training time of the hybrid model presented here could
be significantly reduced by implementing an unconditional
reset instead of simple waiting [39,40] (about 50 times faster)
and training only one multilabel classifier using multiplexed
readout instead of ten binary classifiers. Thus, the training of
our model for the MNIST dataset could be reduced from 100
hours to approx. 12 min., which is more competitive. It is also
possible to reduce the total number of layers in the PQC by
performing several two-qubit operations in parallel.

To solve more complex tasks in the domain of quantum
machine learning it is necessary to realize very fast gates on
a supremacy-scale register of qubits. While in this work we
do not notice a significant impact of gradient decay on the
performance of quantum classifiers, increasing the number of
qubits will require an ingenious circuit architecture to cope
with that problem. In the classical machine learning, a similar
problem was overcome by using skip connections [56] and
batch normalization [57], but at the moment it is not known
whether any analogs of these techniques could be reasonably
implemented in the quantum case and further research is nec-
essary.

Experimental data are available upon reasonable request
from the corresponding authors.
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APPENDIX A: SINGLE-QUBIT AND TWO-QUBIT
OPERATIONS

During the training process, we use parameterized single-
qubit operations and fixed two-qubit operations. Single-qubit
gates with variational parameters were implemented by using
fixed duration (40 ns) microwave pulses with a Gaussian en-
velope. To change the rotation angle θ , we vary the amplitude
of pulses, as θ is proportional to the area of their envelope. To
change the rotation axis (X or Y ) we vary the phase of pulses
(choosing 0 or π/2, respectively).

For the realization of two-qubit operations, the transmon
frequencies are tuned into resonance by fast flux pulses, as
shown in Fig. 4(a); the resonance regions are highlighted
with ellipses. Taking into account the capacitive interaction
between the transmons, this procedure leads to the realization
of a so-called “f-Sim”-like two-qubit gate [42]. It consists of
single-qubit rotations due to changes in the frequency of the
transmons and of a two-qubit part. As we include single-qubit
rotations before and after the two-qubit gates in the PQC,
the single-qubit part can be automatically compensated during
training process. Thus we can limit ourselves to considering
only the two-qubit part of the gate

f-Sim(θ, φ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iφ

⎞
⎟⎟⎠. (A1)

To calibrate the flux pulses, we measure two-qubit
chevron-type oscillations. In this experiment, one of the trans-
mons in the pair is excited by a π pulse and then brought
close to resonance with its pair transmon. The population of
the latter is recorded versus amplitude and duration of the
flux pulse. The resulting dependencies for the three pairs of
adjacent transmons are shown in Figs. 4(b) to 4(d). We maxi-
mize the population transfer, so that θ ≈ π/2. We also directly
measure the nonzero phase φ due to the ZZ interaction to be
≈0.1π in a separate Ramsey-type experiment.

To address the robustness of the PQC performance to in-
accuracies of the parameters θ and φ, we numerically study

TABLE III. Comparison of different PQC architectures for im-
age recognition problem. In the first column the corresponding
circuit label from Fig. 6 is shown.

PQC LRF size Stride Parameters Layers Accuracy

a 2 × 2 1 248 27 0.95
c 2 × 2 2 92 15 0.925
b 2 × 2 2 164 17 0.93
c 3 × 3 2 244 15 0.9
a 3 × 3 1 376 27 0.77

the dependence of the accuracy of the classification for the
CANCER dataset on θ and φ. This result is shown in Fig. 5(f).
It can be seen that the classification accuracy remains
almost unchanged and the convergence is preserved for θ ∈
[0.2π, 0.8π ] and φ ∈ [−0.5π, 0.5π ].

APPENDIX B: ALTERNATIVE CIRCUIT
ARCHITECTURES

During our investigation we were focused on only one
PQC architecture for simple datasets and one architecture
for the more complex MNIST dataset. The chosen architecture
provides a sufficient degree of entanglement using a relatively
small number of layers. We can also consider PQC in which
two-qubit operations between qubits 1,2 and 3,4 are done
simultaneously. Possible structures of these PQCs are shown
in Figs. 5(a) to 5(d). We numerically tested the ability of
these PQCs to solve binary classification problems using the
CANCER dataset. The dependence of cross-validation accuracy
on learning rate for these circuits is shown in Fig. 5(e). As
it can be seen, the best accuracy does not depend signifi-
cantly on the choice of PQC. For experimental realization
it is convenient to use PQC without simultaneous two-qubit
operations. This is the reason why we choose PQC (a) for our
experiments.

The PQC for image recognition has many control pa-
rameters, for example, the size of the LRF or stride. These
parameters may strongly affect the final classification accu-
racy. Possible architectures of PQCs are shown in Fig. 6. To
find the optimal circuit, we conducted numerical simulations
for various PQCs and control parameters. The results of our
numerical modeling are summarized in Table III. It can be no-
ticed that the choice for experimental realization architecture
of PQC [Fig. 6(c)] with size of LRF 3 × 3 and stride 2 does
not allow to achieve the highest accuracy of classification.
Using a circuit with nearly the same number of layers, the
total accuracy might be improved to approximately 93%.
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[3] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Nature (London)
567, 209 (2019).

[4] S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kübler, H. J.
Briegel, and V. Dunjko, Nat. Commun. 14, 517 (2023).

[5] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
Nat. Rev. Phys. 3, 625 (2021).

[6] I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273
(2019).

012411-9

https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41467-023-36159-y
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41567-019-0648-8


ALEKSEI TOLSTOBROV et al. PHYSICAL REVIEW A 109, 012411 (2024)

[7] P.-L. Dallaire-Demers and N. Killoran, Phys. Rev. A 98, 012324
(2018).

[8] S. Lloyd and C. Weedbrook, Phys. Rev. Lett. 121, 040502
(2018).

[9] J. Bausch, in Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, virtual, edited by H. Larochelle,
M. Ranzato, R. Hadsell, M.-F. Balcan, and H.-T. Lin (2020),
https://researchr.org/publication/Bausch20.

[10] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Nat. Commun. 9, 4812 (2018).

[11] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio,
and P. J. Coles, Nat. Commun. 12, 6961 (2021).

[12] E. R. Anschuetz and B. T. Kiani, Nat. Commun. 13, 7760
(2022).

[13] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, PRX
Quantum 3, 010313 (2022).

[14] T. Volkoff and P. J. Coles, Quantum Sci. Technol. 6, 025008
(2021).

[15] A. A. Mele, G. B. Mbeng, G. E. Santoro, M. Collura, and P.
Torta, Phys. Rev. A 106, L060401 (2022).

[16] Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao, npj Quantum
Inf. 8, 62 (2022).

[17] Y. Zeng, H. Wang, J. He, Q. Huang, and S. Chang, Entropy 24,
394 (2022).

[18] T. Hur, L. Kim, and D. Park, Quantum Mach. Intell. 4, 3
(2022).

[19] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.
Latorre, Quantum 4, 226 (2020).

[20] A. Pérez-Salinas, D. López-Núñez, A. García-Sáez, P. Forn-
Díaz, and J. I. Latorre, Phys. Rev. A 104, 012405 (2021).

[21] Y. Liu, S. Arunachalam, and K. Temme, Nat. Phys. 17, 1013
(2021).

[22] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush,
S. Boixo, H. Neven, and J. R. McClean, Nat. Commun. 12, 2631
(2021).

[23] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-
Dickstein, in Proceedings of the 34th International Conference
on Machine Learning (PMLR, 2017), Vol. 70, pp. 2847–2854.

[24] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Phys. Rev.
A 101, 032308 (2020).

[25] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and
S. Woerner, Nat. Comput. Sci. 1, 403 (2021).

[26] Y. Du, Z. Tu, X. Yuan, and D. Tao, Phys. Rev. Lett. 128, 080506
(2022).

[27] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A.
Sornborger, L. Cincio, and P. J. Coles, Nat. Commun. 13, 4919
(2022).

[28] D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N. H.
Nguyen, C. H. Alderete, A. Perdomo-Ortiz, N. Korda, A.
Garfoot, C. Brecque et al., Sci. Adv. 5, eaaw9918 (2019).

[29] H.-L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S.
Li, F. Liang, J. Lin, Y. Xu et al., Phys. Rev. Appl. 16, 024051
(2021).

[30] W. Ren, W. Li, S. Xu, K. Wang, W. Jiang, F. Jin, X. Zhu, J.
Chen, Z. Song, P. Zhang, H. Dong, X. Zhang, J. Deng, Y. Gao,
C. Zhang, Y. Wu, B. Zhang, Q. Guo, H. Li, Z. Wang et al., Nat.
Comput. Sci. 2, 711 (2022).

[31] T. Dutta, A. Pérez-Salinas, J. P. S. Cheng, J. I. Latorre, and
M. Mukherjee, Phys. Rev. A 106, 012411 (2022).

[32] M. Schuld and F. Petruccione, Machine Learning with Quantum
Computers (Springer International Publishing, Cham., 2021),
pp. 217–245.

[33] L. van der Maaten and G. Hinton, J. Mach. Learn. Res. 9, 2579
(2008).

[34] L. McInnes, J. Healy, N. Saul, and L. Großberger, J. Open
Source Software 3, 861 (2018).

[35] W. Li, P.-C. Chu, G.-Z. Liu, Y.-B. Tian, T.-H. Qiu, and S.-M.
Wang, Quantum Eng. 2022, 5701479 (2022).

[36] UCI, Machine learning repository, https://archive.ics.uci.edu/
ml/index.php.

[37] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[38] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill et al., Phys. Rev. Lett. 111,
080502 (2013).

[39] K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio,
R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Phys. Rev.
Lett. 110, 120501 (2013).

[40] P. Magnard, P. Kurpiers, B. Royer, T. Walter, J.-C.
Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz,
A. Blais, and A. Wallraff, Phys. Rev. Lett. 121, 060502
(2018).

[41] A. Dewes, Ph.D. thesis, Université Pierre et Marie Curie-Paris
VI, 2012.

[42] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A.
Megrant, J. Kelly, Z. Chen, K. Satzinger, R. Barends et al.,
Phys. Rev. Lett. 125, 120504 (2020).

[43] B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 (2001).
[44] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V.

Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A.
Asadi et al., arXiv:1811.04968

[45] K. K. Dobbin and R. M. Simon, BMC Med. Genomics 4, 31
(2011).

[46] Yu. E. Nesterov, Dokl. Akad. Nauk SSSR 269, 543 (1983).
[47] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, in Advances

in Neural Information Processing Systems, edited by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Curran Associates, Inc., 2018), Vol. 31.

[48] G. De Palma, B. Kiani, and S. Lloyd, in Advances in Neu-
ral Information Processing Systems, edited by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R.
Garnett (Curran Associates, Inc., 2019), Vol. 32.

[49] D. Riste, M. P. Da Silva, C. A. Ryan, A. W. Cross, A. D.
Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and B. R.
Johnson, npj Quantum Inf. 3, 16 (2017).

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Proc. IEEE 86,
2278 (1998).

[51] H. Xiao, K. Rasul, and R. Vollgraf, arXiv:1708.07747.
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