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Local topological switch for boundary states in quantum walks
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Localization is a critical phenomenon in quantum walks that has attracted much attention in quantum
simulations. In this paper, we present a unified framework for investigating the localization due to two causes,
single-position defects and topology. Furthermore, we show that a specific phase defect can act as a topological
switch, which can turn on (off) topological boundary states between two regions with the same (different)
topological numbers. Remarkably, the localized state turned on by the switch is protected by topological features.
Thus, the switch is a topologically nontrivial defect that significantly differs from ordinary defects. Our results
provide new intuitive insight into the topological features of quantum walks and shed new light on manipulating
quantum walks.
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I. INTRODUCTION

Quantum walks (QWs) provide a powerful and versatile
platform for quantum information processing [1–10]. As the
quantum analogy of classical random walks, QWs describe
the evolution of a quantum particle (walker) on a lattice.
One key characteristic of a QW is the ballistic behavior of
the spreading of the walker [11,12], which has inspired its suc-
cessful use in accelerating the resolution of search problems
[13–18]. In contrast to ballistic spreading, it is possible to trap
the walker in specific locations through properly engineering
[19–28], which plays a vital role in quantum simulations
based on QWs [29–36]. Recently, quantum simulation based
on QWs, as a state-of-art technique, has provided a powerful
way to explore topological phenomena [37–46].

There are intriguing connections between topology and
disorder, an important cause of localization inspired by An-
derson localization [35,36,47–52]. On one hand, introducing
topology can suppress the localization caused by the static
disorder, resulting in the phenomenon known as topological
Anderson localization transition [53,54]. On the other hand,
topological boundary states are robust against disorder [55].
However, it remains an open question as to what the relation-
ship is between localizations caused by single-position defects
[56–60] and nontrivial topological boundaries.

Intuitively, single-position defects and nontrivial topo-
logical boundaries are two completely distinct causes of
localization. This is because defects typically activate local-
ization in homogeneous QWs, where coin operations on either
side of the position are the same. On the contrary, a topo-
logical boundary state appears at the nontrivial topological
boundary of which the two sides have different topological
numbers.

*gnep.eux@gmail.com

In this paper, we investigate the localization at a certain
position through an intuitive way that combines localization
states on either side of the position. The coin operation at that
position determines which localized states can be combined.
This approach provides a unified framework for investigating
localizations caused by single-position defects and topology.
Based on this approach, we explore the effects of defects on
topological boundary states. Notably, we introduce a specific
phase defect that can deterministically activate topological
edge states at the boundary between two regions with the
same topological number. This phase defect also has the po-
tential to eliminate conventional topological boundary states,
providing a topological switch for the boundary state. Interest-
ingly, the activated localized state is ensured and protected by
topological features in the same manner as the conventional
topological boundary state. Therefore, the switch is a topo-
logically nontrivial defect that is significantly different from
ordinary defects.

This paper is organized as follows. In Sec. II, we introduce
a feature of the eigenstates of QWs. Based on this feature, we
introduce our method to obtain these eigenstates in Sec. III.
In Sec. IV, we present our main results of switching on and
off the topological boundary state. Finally, we summarize our
work in Sec. V.

II. SPLIT-STEP QW

In a one-dimensional discrete-time QW, the basis of the
walker is |x, δ〉 = |x〉 ⊗ |δ〉, which is composed of the position
state |x〉 for x ∈ Z and the coin state |δ〉 for δ ∈ {±1}. The
dynamics of the QW are governed by iteratively implement-
ing the coin-flipping operation C = ∑

x∈Z |x〉〈x| ⊗ Cx fol-
lowed by the conditional shift operation S = ∑

x∈Z,δ=±1 |x +
δ〉〈x| ⊗ |δ〉〈δ|, where Cx ∈ SU(2) is the coin operation at the
position x.

In this paper, we consider the split-step QW, where each
step comprises two iterations of the coin and shift operations,
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resulting in the step operation of each step as W = SCSC. In
this case, the walker only appears at even positions after each
step when it starts at even positions. Starting with an initial
state |�0〉, the state after step t is |�t 〉 = W t |�0〉.

In the following, let us consider a particular property
of eigenstates |ψ〉 of the QW operator W . According to
the eigenequation W |ψ〉 = λ |ψ〉 with eigenvalues λ ∈ {C :
‖λ‖ = 1}, it is easy to have the following equality between
two probabilities: ‖ 〈x,−δ〉 ψ‖2 + ∑

x′∈(Zδ+δx) ‖ 〈x′〉 ψ‖2 =
‖ 〈x,−δ|W |ψ〉 ‖2 + ∑

x′∈(Zδ+δx) ‖ 〈x′|W |ψ〉 ‖2 for arbitrary
x and δ, where 〈x| is a simplification of 〈x| ⊗ 1c with
1c being the identity operator of coin space. Substi-
tuting the operator W , the probability on the right-
hand side can be further deduced into ‖ 〈x, δ|C |ψ〉 ‖2 +∑

x′∈Z+ ‖ 〈x′ + δx| |ψ〉 ‖2, which implies ‖ 〈x,−δ| |ψ〉 ‖2 =
‖ 〈x, δ|C |ψ〉 ‖2. Therefore, for any eigenstate |ψ〉, the action
of coin operation Cx on the coin state |ψx〉 = 〈x〉 ψ at the
position x is equivalent to the action of a new coin operation
as

X (ω+, ω−) = ∑
δ=±ωδ|δ〉〈−δ|, (1)

which is an inversion operation with certain additional phases
ωδ ∈ {C : ‖ωδ‖ = 1}. In other words, an eigenstate |ψ〉 of a
QW is also an eigenstate of a new QW with coin operation Cx

at the position x being changed to X (ω+, ω−).
Without loss of generality, let us separate the eigenstate |ψ〉

into two parts as

|ψ〉 = α+ |ψ+〉 + α− |ψ−〉 , (2)

where ‖α+‖2 + ‖α−‖2 = 1, ‖ |ψ+〉 ‖ = ‖ |ψ−〉 ‖ = 1, and
αε |ψε〉 is the part of |ψ〉 corresponding to a side of the po-
sition 0 with 〈x, δ| αε |ψε〉 = 〈x, δ〉ψ for (x ∈ Zε ∧ δ = ±) ∨
(x = 0 ∧ δ = −ε), and 〈x, δ| αε |ψε〉 = 0 otherwise. This
state is also an eigenstate of the new QW with coin operation
Cx=0 at position 0 being changed to X (ω+, ω−). In the new
QW, the coin operation X (ω+, ω−) makes position 0 a re-
flecting boundary with additional reflecting phases (ω+, ω−),
which means a walker on either side of the boundary cannot
walk to the other side. This new QW is equivalent to two in-
dependent QW on half lines (QWHLs) [61]. For each QWHL,
the eigenstates |ψε〉 depend only on coin operations Cx on the
half line, with x ∈ Zε and the reflecting phase ωε . Therefore,
an arbitrary eigenstate of a QW can be separated into two
eigenstates of two QWHLs.

III. OBTAINING EIGENSTATES VIA PHASE MATCHING

Given a pair of eigenstates (|ψ+(ω+)〉 , |ψ−(ω−)〉) of two
QWHLs with reflecting phases (ω+, ω−), one can combine
them to obtain an eigenstate of the QW with coin operation C0

at position 0 if and only if the following two conditions hold:
(i) The eigenvalues corresponding to the pair of eigenstates
are identical as λ+(ω+) = λ−(ω−); (ii) there is a pair of αε so
that

C0

(
α− 〈0,+1〉 ψ−
α+ 〈0,−1〉 ψ+

)
=

(
ω+α+ 〈0,−1〉ψ+
ω−α− 〈0,+1〉ψ−

)
. (3)

When these two conditions are satisfied, the combined
eigenstate of the QW is |ψ〉 = α+ |ψ+〉 + α− |ψ−〉 and the
corresponding eigenvalue is λ = λ+(ω+) = λ−(ω−).

For a given coin operation C0, condition (ii) is equivalent
to that X (ω+, ω−)C0 has an eigenvalue as 1. Therefore, this
condition is a phase-matching condition determined by the
two reflecting phases ω+ and ω−. For example, let us con-
sider C0 = CI(θ0) in a widely used type of coin operation as
CI(θ ) = e−iσyθ , where σy is the Pauli operator. Substituting
this C0 into Eq. (3) yields

α− 〈0,+1〉 ψ−
α+ 〈0,−1〉 ψ+

= ω+ + s0

c0
= c0

ω− − s0
, (4)

for c0s0 
= 0, where c0 = cos θ0 and s0 = sin θ0. The sec-
ond equality of Eq. (4) is a phase-matching condition as
ω−(ω+) = 1+s0ω+

ω++s0
. When this condition is saturated, there

must be a pair of αε that can be directly calculated according
to Eq. (4). For c0 = 0 (s0 = 0), the coin operation is X (−1, 1)
(1c) and the phase-matching condition is ω+ = −ω− = ±1
(ω− = 1/ω+).

Example: Conventional topological QW. As shown in
Fig. 1(a), let us consider that the conventional topological QW
with coin operations takes the form Cx = CI(θx ) and the coin
parameters are the same for odd (even) positions within each
side, that is, θε(2x−1) = θε1 and θε2x = θε2 for x ∈ Z+ and ε =
±. In this case, for each QWHL with reflecting phase ωε , it is
not difficult to analytically obtain the eigenvalues and eigen-
states (see the Appendix for details). For each QWHL with
phase ωε , there exist two eigenstates that have the potential to
be localized at position 0 with corresponding eigenvalues as

λε
ε = ωε

iεsε1Im(ωε ) + ε

√
[εsε2 + Re(ωε )]2 + Im(ωε )2c2

ε1

εsε2 + ωε

,

(5)

where ε = ±1 comes from the quadratic formula. Each eigen-
value λε corresponds to an eigenstate as

|ψε〉 = β0,−ε |0,−ε〉 +
∑

n∈Z+

∑
δ′=±

βεn,δ′ |ε2n, δ′〉 , (6)

where

βεn,+ = Azn, n ∈ Z+,

βεn,− = cε2 − cε1λεz

εsε2 + εsε1λε

Azn, n ∈ Z+,

β0,−ε = cε1λε

ωε − εsε1λε

Az, (7)

z = cε2(ωε−εsε1λε )
cε1λε (ωε+εsε2 ) , and A is the normalization factor. When the

stationary constraint ‖z‖ < 1 is saturated, the eigenstate has a
nonzero probability at position 0.

Considering the coin operation C0 = CI(θ0), the stationary
eigenstates |ψ〉 are obtained through combining state |ψ±〉
in Eq. (6) as follows. First, for each ω+, there is only one
matching phase of ω− given by ω−(ω+) that is determined
by C0. Therefore, we have spectrums of two QWHLs λ+(ω+)
and λ−[ω−(ω+)] with respect to the phase ω+, as shown in
the left column of Fig. 1(c). Solving the equation λ+(ω+) =
λ−[ω−(ω+)] with the variable ω+ gives identical eigenval-
ues that satisfy the phase-matching condition. Among these
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FIG. 1. Results of topological QWs. (a) Settings of coin operations for a conventional topological QW. (b) Diagram of phases (ω+
+, −ω−

+ )
for (θ1, θ2) take the values (θa, θb). The blue square denotes the choice of (θ1, θ2 ). The red pentagon and star denote two choices of (θ−1, θ−2).
(c) Results of conventional topological QWs with θ0 = θ2. The upper (lower) row shows that these are (not) a topological boundary state at 0
when the left region has a different (the same) topological number with the right region. (d) Ordinary defect as θ0 = θ1 activates localization
with other coin operations, the same as the lower row of (c). (e) Settings of coin operations with a local switch CII(θ0 ) in conventional
topological QW. (f) Upper (lower): Switch off (on) boundary state with the local switch compared to the upper (lower) row of (c). In (c), (d),
and (f), the left figures show the eigenvalues λ+ (blue) and λ− (red) vs the phase ω+, and the right figures show the probabilities of the walker
at 0.

obtained eigenvalues, we only keep these with localized
eigenstates by checking the stationary condition ‖z‖ < 1.

After obtaining all localized eigenstates |ψ j〉 and the cor-
responding eigenvalues λ j with j = 1, . . . , m, one can predict
the probability distributions of the walker. For an initial state
|�0〉 distributed in a finite number of positions near x, the
probability of finding the walker at position x after many steps
t � x is given by

P(x, t ) =
∑
δ=±

∥∥∥∥∥∥
m∑

j=1

λt
j 〈ψ j〉�0 〈x, δ〉ψ j

∥∥∥∥∥∥
2

. (8)

The probabilities P0 at position 0 for two typical cases of
topological QWs are shown in the right column of Fig. 1(c).
Moreover, we introduce a coin defect to 0 of the topological
QW without a boundary state and obtain a localization at 0, as
shown in Fig. 1(d). These results straightforwardly show that
the probability in Eq. (8) precisely predicts the behaviors of
the walker at position 0. We will further discuss these results
later.

IV. CONNECTION TO TOPOLOGICAL THEORY

A. Topological numbers

As shown in Fig. 1(c), the probabilities at position 0 per-
fectly align with the qualitative predictions of the topological
theory, that is, a boundary state must appear at the boundary
between two regions with different topological numbers. In
the following, we delve deeper into the relationship between
our method and topological theory.

First, let us consider the QWHL on the right side of po-
sition 0 with reflecting phase ω+. According to Eq. (A14),
two extreme eigenvalues λ+ = ±1 can be obtained when and
only when the reflecting phase is ω+ ∈ {±1}. Further taking

into account the stationary condition ‖z‖ < 1, each extreme
eigenvalue λ+ ∈ {±1} can be obtained by one and only one
specific phase, which we denote as ω

λ+
+ ∈ {±1}. The pair

of phases (ω+
+,−ω−

+ ) for different coin parameters (θ1, θ2)
are illustrated in Fig. 1(b). It is interesting that this pair of
phases is invariant for (θ1, θ2) within a certain region, which
is equivalent to the pair of topological numbers [55] of the
QW with coin operations C2x = CI(θ2) and C2x+1 = CI(θ1) for
x ∈ Z.

Next, let us consider the case (C1) where the left and right
regions have a different topological number, as shown in the
first row of Fig. 1(c). According to the equivalence relation be-
tween phases (ω+

+,−ω−
+ ) and topological numbers, this case

means that there is at least one extremal eigenvalue λ ∈ {±1}
so that ωλ

+(θ1, θ2) = −ωλ
+(θ−1, θ−2). For the QWHL on the

left, we also have that each extreme eigenvalue λ− ∈ {±1} can
be obtained by one and only one phase, ω

λ−
− ∈ {±1}. In addi-

tion, this phase satisfies ω±
−(θ−1, θ−2) = ω±

+(−θ−1,−θ−2) =
−ω±

+(θ−1, θ−2). Therefore, in the case (C1), a common eigen-
value λ of the two sides can be obtained by the same phase,
ωλ

+(θ1, θ2) = ωλ
−(θ−1, θ−2) ∈ {±1}. Whether this equivalent

phase is 1 or −1, the phase-matching condition in Eq. (4)
for C0 = CI(θ0) can always be satisfied for arbitrary θ0. Thus,
there must be a localized state at position 0, which provides
an intuitive explanation of the topological boundary states
predicted by the topological theory.

Finally, let us consider the other case (C2) where both topo-
logical numbers are the same for the left and right regions. In
this case, we have ωλ

+(θ1, θ2) = −ωλ
+(θ−1, θ−2) for λ = ±1,

as shown in the second row of Fig. 1(c). Therefore, each
extremal eigenvalue λ = ±1 corresponds to different phases
on the two sides ωλ

+ = −ωλ
− ∈ {±1}, which cannot satisfy the

phase-matching condition given by Eq. (4) for C0 = CI(θ0).
Hence, it is not ensured to have a boundary state at position
0. It is worth mentioning that a localized state may still occur
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by an appropriate coin parameter θ0. As shown in Fig. 1(d),
we change the coin parameter from θ0 = θ2 into θ0 = θ1 and
obtain a localized state due to the coin defect.

B. Switch on and off the boundary state

In the discussion above, the generation of a conventional
topological boundary state is ensured by the coin opera-
tion C0 = CI(θ0) always allowing the matching of identical
extremal phases ω+ = ω− ∈ {±1}. When both topological
numbers of the two sides are the same, a straightforward idea
to obtain the boundary state is to choose a coin operation that
always allows the matching of opposite phases, ω+ = −ω− ∈
{±1}.

Here we consider another type of coin operation as C0 =
CII(θ0) with CII(θ ) = σzeiσyθ . Substituting this coin operation
into Eq. (3), we have the phase-matching condition as

α− 〈0,+1〉 ψ−
α+ 〈0,+1〉 ψ−

= ω+ − s0

c0
= c0

s0 − ω−
, (9)

for c0s0 
= 0. It is worth mentioning that this type of coin
operation CII(θ ) is equivalent to a phase defect σz of the coin
operation CI(−θ ).

It is easy to see that opposite phases ω+ = −ω− ∈ {±1}
always satisfy the phase-matching condition given by Eq. (9)
of CII(θ0) for arbitrary θ0. Therefore, using this type of coin
operation at 0 [see Fig. 1(e)], there must be a boundary state at
0 for the case (C2). As an example, we choose coin operations
that are the same as that in the second row of Fig. 1(c),
but change the coin operation C0 from CI(θ0) into CII(θ0).
The result is shown in the second row of Fig. 1(f), where a
boundary state is switched on compared to the result in the
lower row of Fig. 1(c). We will show that this boundary state is
significantly different from the localization due to the ordinary
defect, as shown in Fig. 1(d).

On the other hand, the phases ω+ = ω− ∈ {±1} do not
meet the phase-matching condition given by Eq. (9). There-
fore, the coin operation C0 = CII(θ0) is possible to switch off
the boundary state. An example is shown in the upper row of
Fig. 1(f), where the coin operations are the same as that in
the upper row of Fig. 1(c), but C0 is changed to CII(θ0) with
θ0 = −θ2. It is to be noted that to switch off the boundary
state, one should appropriately choose θ0 to avoid the local-
ization due to ordinary defects.

It is worth mentioning that for the case in which the
two regions have a different and an identical topological
number, e.g., ω+

+(θ1, θ2) = ω+
+(θ−1, θ−2) and ω−

+(θ1, θ2) =
−ω−

+(θ−1, θ−2), both types of coin operations, CI(θ0) and
CII(θ0), allow a boundary state at 0. To switch off this topo-
logical boundary state, the coin operation C0 is necessary to
have complex elements.

C. The switch is a topologically nontrivial defect

Although the switch is a defect, it is significantly different
from ordinary defects. As discussed above, when the coin
operation at 0 is a switch CII(θ0), a localized state must exist
when the two sides have a same topological number. However,
the localization induced by ordinary defects is irrelevant of
topological features. Therefore, the switch is a topologically
nontrivial defect.
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FIG. 2. Probabilities P0 for different values of θ0. The coin op-
eration at 0 is (a) CI(θ0 ) or (b) CII(θ0), and coin operations at other
positions are the same as those of the second row of Fig. 1(c).

From the perspective of phase matching, the switch
matches extremal phases ±1, which are in correspondence
with topological numbers. Moreover, this phase matching is
independent of θ0 and specific coin operations in other po-
sitions. Similarly, this is the same as the phase matching for
localization in conventional topological QWs. Conversely, for
ordinary defects that are topologically trivial, the matched
phases depend on θ0 and coin operations of other positions.
Thus, for these two different defects, we can see a significant
difference between P0 when changing θ0 (see Fig. 2).

A key feature of topological boundary states is their robust-
ness against disorders. It is worth noting that the localization
due to a topologically trivial defect is also robust to disorders.
In Fig. 3, we show the simulated behaviors of different local-
ization states under disorders that depend on both position and
step. In each simulation, the coin parameter at the position x
and step t is randomly chosen as θ̃ t

x that follows a Gaussian
distribution with a mean of θx and standard deviation σ . As
shown in Fig. 3, there is no significant difference in robustness
between topological boundary states and the localized state
due to topologically trivial defects. Therefore, it is not enough
to demonstrate that a localized state is a topological boundary
state by observing its robustness against disorder. Our result
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FIG. 3. Regions of probabilities P̃(0, t ) (upper row) and rela-
tive probabilities P̃(0, t )/P(0, t ) (lower row) within one standard
deviation obtained from 20 simulations. Here, (E1), (E2), and (E3)
correspond to the conventional topological boundary state in the first
row of Fig. 1(c), the topological boundary state turned on by our
switch in the second row of Fig. 1(f), and the localized state due
to an ordinary defect in Fig. 1(d), respectively. Different columns
correspond to strengths of disorder σ = 1◦, 2◦, 4◦, 8◦, 16◦.
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suggests that observing its robustness against the coin defect
might be a suitable choice.

V. CONCLUSION

In summary, we propose a method to obtain the eigen-
states of a QW on a line by separating the line into two
half lines and combining the eigenstates of two QWHLs.
In our method, each QWHL has a phase-carrying reflection
boundary, and the coin operation connecting the two half
lines determines a matching condition for the two reflection
phases. Interestingly, we reveal a correspondence between two
specific reflection phases of a QWHL and the two topolog-
ical numbers of the corresponding QW on a line. Based on
these, we rigorously and quantitatively explain the mecha-
nisms for the generation of topological boundary states and

localized states caused by single-position defects. Further-
more, we propose a specific topological defect that can switch
topological boundary states on and off. Our method pro-
vides a unified framework for localizations due to topology
and single-position defects and exhibits their differences. Our
work provides new insight into the topological properties of
QWs and sheds new light on manipulating a QW. An im-
portant question that arises is whether our method can be
applied to real materials. This would be an interesting issue
to investigate in the future.
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APPENDIX: EIGENSTATES OF QWHL

Here, we give a detailed solution to the localized eigenstate of the QWHL with a reflecting phase ωε and coin operations
Cε(2x−1) = Cε1 = CI (θε1) and Cε(2x) = Cε2 = CI (θε2), where x ∈ Z+ and ε = + (−) denotes a right (left) half line. For this
QWHL, let us denote the eigenstate as

|ψε〉 = β0,−ε |0,−ε〉 +
∑

x∈Z+

∑
δ′=±

βεx,δ′ |ε2n, δ′〉 , (A1)

where βx,δ ∈ C. Substituting this eigenstate |ψε〉 into the eigenfunction, we have the equations of amplitudes as

λεβ0,−ε = β0,−εωε (εsε1) + βε1,ε (εsε2)cε1 + βε1,−εcε2cε1, (A2)

λεβ1,ε = β0,−εωεcε1 − βε1,ε (εsε2)(εsε1) − βε1,−εcε2cε1, (A3)

λεβεx,−ε = βεx,εcε2(εsε1) − βεx,−ε (εsε2)(εsε1) + βε(x+1),ε (εsε2)cε1 + βε(x+1),−εcε2cε1, (A4)

λεβε(x+1),ε = βεx,εcε2cε1 − βεx,−ε (εsε2)cε1 − βε(x+1),ε (εsε2)(εsε1) − βε(x+1),−εcε2(εsε1), (A5)

where sεx = sin θεx, cεx = cos θεx, and λε is the corresponding eigenvalue.
Multiplying Eqs. (A4) and (A5) by cε1 and εsε1, respectively, gives two new equations as

λεβεx,−εcε1 = βεx,εcε2cε1(εsε1) − βεx,−ε (εsε2)cε1(εsε1) + βε(x+1),ε (εsε2)c2
ε1 + βε(x+1),−εcε2c2

ε1,

λεβε(x+1),ε (εsε1) = βεx,εcε2cε1(εsε1) − βεx,−ε (εsε2)cε1(εsε1) − βε(x+1),ε (εsε2)(εsε1)2 − βε(x+1),−εcε2(εsε1)2.

Subtracting the second equation above from the first one and applying c2
ε1 + (εsε1)2 = 1, the amplitude βεx,ε is eliminated as

βε(x+1),ε = λεβεx,−εcε1 − βε(x+1),−εcε2

(εsε2) + λε (εsε1)
. (A6)

Similarly, multiplying Eqs. (A4) and (A5) by εsε1 and cε1, respectively, yields

λεβεx,−ε (εsε1) = βεx,εcε2(εsε1)2 − βεx,−ε (εsε2)(εsε1)2 + βε(x+1),ε (εsε2)cε1(εsε1) + βε(x+1),−εcε2cε1(εsε1),

λεβε(x+1),εcε1 = βεx,εcε2c2
ε1 − βεx,−ε (εsε2)c2

ε1 − βε(x+1),ε (εsε2)cε1(εsε1) − βε(x+1),−εcε2cε1(εsε1).

Adding the two equations above eliminates βε(x+1),−ε as

βεx,−ε = βεx,εcε2 − λεβε(x+1),εcε1

λε (εsε1) + (εsε2)
. (A7)

Substituting Eq. (A7) into Eq. (A6), we have

βε(x+1),ε =
(
λεβεx,+cε2cε1 − λ2

εβε(x+1),εc2
ε1 − βε(x+1),εc2

ε2 + λεβε(x+2),εcε2cε1
)

[λε (εsε1) + (εsε2)]2

⇒[
1 + λ2

ε + 2λε (εsε1)(εsε2)
]
βε(x+1),ε = cλεcε2cε1(βεx,+ + βε(x+2),ε ), (A8)

which is a recursive equation of βεx,ε for x ∈ Z+.
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The general solution of the recursive equation (A8) is βεx,ε = Azx + A′ 1
zx . Considering the convergence constraint

limx→∞ |βεx,ε | = 0, the valid solution is of the form

βεx,ε = Aεzx
ε , |zε | < 1. (A9)

Substituting this solution into Eq. (A8), we have[
1 + λ2

ε + 2λε (εsε1)(εsε2)
]
Aεzx+1

ε = λεcε2cε1
(
Aεzx

ε + Aεzx+2
ε

)
⇒[

1 + λ2
ε + 2λε (εsε1)(εsε2)

]
zε = λεcε2cε1

(
1 + z2

ε

)
, (A10)

which is a equation of zε and λε .
Other amplitudes can be obtained from Eq. (A9). Substituting Eq. (A9) into Eq. (A7) gives the amplitude

βεx,− = cε2 − λεcε1zε

λε (εsε1) + (εsε2)
Aεzx

ε . (A11)

Multiplying Eqs. (A2) and (A3) by (εsε1) and cε1, respectively, gives

λεβ0,−ε (εsε1) = β0,−εωε (εsε1)2 + βε1,ε (εsε2)cε1(εsε1) + βε1,−εcε2cε1(εsε1),

λεβε1,εcε1 = β0,−εωεc2
ε1 − βε1,ε (εsε2)cε1(εsε1) − βε1,−εcε2cε1(εsε1).

Adding these two equations, the amplitude βε1,−ε is eliminated as

λεβ0,−ε (εsε1) + λεβε1,εc1 = β0,−εωε.

Substituting Eq. (A9) into the equation above gives the amplitude

β0,−ε = λεβε1,εcε1

ωε − λε (εsε1)
= λεcε1

ωε − λε (εs1)
Az. (A12)

To obtain λε and zε , we substitute the amplitudes in Eqs. (A9), (A11), and (A12) into Eq. (A3),

[λε + (εsε2)(εsε1)]Azε = λεcε1

ωε − λε (εsε1)
ωεcε1Azε − cε2 − λεcε1zε

λε (εsε1) + (εsε2)
cε2(εsε1)Azε

⇒λε + (εsε2)(εsε1) + c2
ε2(εsε1) − λεcε2cε1(εsε1)zε

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒λ2
ε (εsε1) + λε (εsε2) + λε (εsε2)(εsε1)2 + (εsε2)2(εsε1) + c2

ε2(εsε1) − λεcε2cε1(εsε1)zε

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒ (εsε1)
[
λ2

ε + 2λε (εsε2)(εsε1) + 1
] + λε (εsε2) − λε (εsε2)(εsε1)2 − λεcε2cε1(εsε1)zε

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒
λεcε2cε1(εsε1)

(
zε + 1

zε

) + λε (εsε2) − λε (εsε2)(εsε1)2 − λεcε2cε1(εsε1)zε

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒
λεcε2cε1(εsε1) 1

zε
+ λε (εsε2) − λε (εsε2)(εsε1)2

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒
λεcε2cε1(εsε1) 1

zε
+ λε (εsε2)c2

ε1

λε (εsε1) + (εsε2)
= λεωεc2

ε1

ωε − λε (εsε1)

⇒
cε2(εsε1) 1

zε
+ (εsε2)cε1

λε (εsε1) + (εsε2)
= ωεcε1

ωε − λε (εsε1)

⇒ 1

zε

= 1

cε2(εsε1)

λεcε1(εsε1)[ωε + (εsε2)]

ωε − λε (εsε1)
= λεcε1[ωε + (εsε2)]

cε2[ωε − λε (εsε1)]
,

where the fifth line is due to Eq. (A10). Hence, for each eigenvalue λε , the parameter zε is determined by

zε = cε2[ωε − λε (εsε1)]

λεcε1[ωε + (εsε2)]
. (A13)
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Substituting Eq. (A13) into the equation of λε and zε in Eq. (A10), we have

[
1 + λ2

ε + 2λε (εsε1)(εsε2)
]cε2[ωε − λε (εsε1)]

λεcε1[ωε + (εsε2)]
= λεcε2cε1

(
1 + c2

ε2[ωε − λε (εsε1)]2

λ2
εc2

ε1[ωε + (εsε2)]2

)

⇒[
1 + λ2

ε + 2λε (εsε1)(εsε2)
]
[ωε + (εsε2)][ωε − λε (εsε1)] = λ2

εc2
ε1[ωε + (εsε2)]2 + c2

ε2[ωε − λε (εsε1)]2

⇒ − [λε (εsε1) + (εsε2)]
{
[ωε + (εsε2)]λ2

ε − (εsε1)
(
ω2

ε − 1
)
λε − [

ω2
ε (εsε2) + ωε

]} = 0.

A solution of the above equation is λ = − sε2
sε1

, which leads to λε (εsε1) + (εsε2) = 0. However, this solution satisfies |λε | = 1
only when sε2 = ±sε1, with which we have |zε | = 1 ≮ 1. Therefore, the eigenvalue is a solution of the quadratic equation

[ωε + (εsε2)]λ2
ε − (εsε1)

(
ω2

ε − 1
)
λε − [

ω2
ε (εsε2) + ωε

] = 0,

which can be easily solved as

λε
ε =

(εsε1)
(
ω2

ε − 1
) + ε

√
(εsε1)2

(
ω2

ε − 1
)2 + 4[ωε + (εsε2)]

[
ω2

ε (εsε2) + ωε

]
2[ωε + (εsε2)]

, (A14)

where ε = ± comes from the quadratic formula.
After obtaining λε , the parameter zε can be determined according to Eq. (A13). After that, all amplitudes can be obtained via

Eqs. (A9), (A11), and (A12), where the normalization factor A can be easily obtained using the sum of a geometric series as

A = 1

/√√√√ |zε |2
1 − |zε |2

(
1 +

∣∣∣∣ cε2 − cε1λzε

εsε2 + εsε1λ

∣∣∣∣
2
)

+
∣∣∣∣ cε1λ

ω − εsε1λ

∣∣∣∣
2

|zε |2. (A15)

In addition, it can be shown that the eigenvalue in Eq. (A14) always satisfies |λε
ε |2 = 1. To this end, we further deduce λε as

λε =
(εsε1)

(
ω2

ε − 1
) ±

√
(εsε1)2

(
ω2

ε − 1
)2 + 4[ωε + (εsε2)]

[
ω2

ε (εsε2) + ωε

]
2[ωε + (εsε2)]

=
(εsε1)ωε (ωε − ω∗

ε ) ±
√

s2
ε1ω

2
ε (ωε − ω∗

ε )2 + 4ω2
ε [ωε + (εsε2)][(εsε2) + ω∗

ε ]

2ωε[1 + (εsε2)ω∗
ε ]

=
(εsε1)(2iIm[ωε]) ±

√
s2
ε1(2iIm[ωε])2 + 4

[
1 + s2

ε2 + (εsε2)ω∗
ε + (εsε2)ωε

]
2[1 + (εsε2)ω∗

ε ]

=
(εsε1)(iIm[ωε]) ±

√
−s2

ε1Im[ωε]2 + [
1 + s2

ε2 + (εsε2)ω∗
ε + (εsε2)ωε

]
[1 + (εsε2)ω∗

ε ]

=
(εsε1)(iIm[ωε]) ±

√
−s2

ε1Im[ωε]2 + 1 + s2
ε2 + 2(εsε2)Re[ωε]

[1 + (εsε2)ω∗
ε ]

=
(εsε1)(iIm[ωε]) ±

√
−s2

ε1Im[ωε]2 + Im[ωε]2 + Re[ωε]2 + s2
ε2 + 2(εsε2)Re[ωε]

[1 + (εsε2)ω∗
ε ]

=
(εsε1)(iIm[ωε]) ±

√
(1 − s2

ε1)Im[ωε]2 + {Re[ωε] + (εsε2)}2

[1 + (εsε2)ω∗
ε ]

.

It is easy to see that the term
√

(1 − s2
ε1)Im[ωε]2 + {Re[ωε] + (εsε2)}2 is real. Therefore, we have

|λε |2 = s2
ε1Im[ωε]2 + (

1 − s2
ε1

)
Im[ωε]2 + {Re[ωε] + (εsε2)}2[

1 + (εsε2)ω∗
ε

]
[1 + (εsε2)ωε]

= Im[ωε]2 + Re[ωε]2 + s2
ε2 + 2(εsε2)Re[ωε]

1 + s2
ε2 + 2(εsε2)Re[ωε]

= 1.
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