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Realization of algorithmic identification of cause and effect in quantum correlations
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Causal inference revealing causal dependencies between variables from empirical data has found applications
in multiple subfields of scientific research. A quantum perspective of correlations holds the promise of over-
coming the limitation of Reichenbach’s principle and enabling causal inference with only observational data.
However, it is still not clear how quantum causal inference can provide operational advantages in general cases.
Here, we have devised a photonic setup and experimentally realized an algorithm capable of identifying any
two-qubit statistical correlations generated by the two basic causal structures under an observational scenario,
thus revealing a universal quantum advantage in causal inference over its classical counterpart. We further
demonstrate the explainability and stability of our causal discovery method, which is widely sought in data
processing algorithms. Employing a fully observational approach, our result paves the way for studying quantum
causality in general settings.
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I. INTRODUCTION

Causal identification has garnered considerable research
interest in the field of big data science. While the human brain
possesses a certain degree of causal thinking ability, many
current artificial intelligences relying on black-box models
excel at identifying correlations but encounter difficulties dis-
cerning causal relationships. Firstly, they prove challenging to
interpret and may exhibit unexpected behaviors. For instance,
in the context of COVID-19 diagnosis, image classifiers may
divert attention towards confounding factors rather than fo-
cusing on the actual causative elements [1]; secondly, these
models can become unstable and susceptible to confusion
when confronted with minor alterations in input data. An
example of this phenomenon can be observed in self-driving
cars that operate effectively within the European continent
but encounter difficulties in the distinct driving conditions of
the British islands [2]. The capacity to differentiate between
causes and effects thus presents the potential to enhance both
the explainability and stability of acquired knowledge [3].
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The challenge faced by machine learning–based meth-
ods [4] in comprehending causality stems from a well-known
limitation known as Reichenbach’s common cause principle
(RCCP) [5]. According to RCCP, a latent variable that jointly
influences two events can always produce the same corre-
lation as a direct causal link between the two events. The
consequence of RCCP for causal identification is the inability
to differentiate between a common cause (CC) and a direct
cause (DC) using observational data generated by classical
entities. Given that quantum correlations have drastically dif-
ferent behaviors [6–8] from their classical counterparts, it is
natural to consider the extent to which a quantum perspective
on correlations and causations can overcome the limitations
imposed by RCCP. The question has motivated a number
of works exploring the quantum advantages in identifying
causal relationships [9–19]. However, despite the extensive
research in this area, none of the existing works have achieved
unconditional discrimination between the fundamental causal
structures, namely, distinguishing a DC from a CC solely
based on observational quantum correlations.

In this study, we tackle the quantum counterpart of the two-
point causal identification problem. Our aim is to determine
whether the causal structure of a two-point qubit correlation is
induced by the same particle going through a unitary quantum
channel, which amounts to a DC, or two (possibly entangled)
particles being successively measured, which constitutes a
CC. We have realized an optical setup that allows the switch-
ing between the two different mechanisms with a photonic
controlled-SWAP gate. Using the setup, we experimentally
demonstrate that a few judiciously chosen measurements
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FIG. 1. Perspectives of two-point quantum causality. (a and b)
Directed acyclic graph of DC and CC. (c) Quantum comb rep-
resentation of causal structures. DC and CC can be switched by
selecting the quantum gates in the green dashed box to be identity or
SWAP. (d) Geometric description of two-qubit causal structures. The
two-point correlations are characterized by pairs of identical Pauli
measurements at the end of (c). The outcomes are represented by the
three-dimensional coordinate of a point P. The blue and red tetrahe-
drons are the full set of points derived from DC and CC, respectively.
The vertices of the DC and CC tetrahedrons are achieved using Pauli
unitaries and Bell states.

suffice to distinguish any two-point qubit DC from CC in a
geometric way. The initial formulation of the measurement
strategy can be found in the work by Zhang et al. [20];
here, we further develop the strategy into a systematic al-
gorithm that exhibits robustness against noise. Our findings
unequivocally demonstrate the universal, explainable, and sta-
ble quantum advantage in two-point causal inference and thus
could be highly interesting to quantum machine learning.

II. QUANTUM CAUSALITY WITH GEOMETRY

We start by introducing the quantum versions of the two
most fundamental causal structures, DC and CC. In classical
causal theory, a DC implies that an earlier variable directly
influences a subsequent variable, while a CC signifies a con-
founding factor co-influencing the two variables. In quantum
theory, the notion of variables is replaced by quantum states.
As shown in Figs. 1(a) and 1(b), a quantum channel connect-
ing input and output states can serve as a quantum analog of

DC, whereas a bipartite system consisting of two subsystems
gives rise to a quantum CC. Throughout the present work, we
focus on two-qubit entanglement and unitary channels.

To illustrate the detailed procedures involved in generat-
ing and measuring correlations, we employ a demonstration
known as the quantum comb [21,22]. As demonstrated in
Fig. 1(c), the black dashed box represents the central com-
ponent of the “comb” and encompasses the initial state
preparation and processing stages, symbolizing the unknown
origin of correlation in classical causal inferences. The two
shallow notches stand for the access to information during
the quantum process. The red transverse lines from left to
right correspond to the temporal propagation of the two-qubit
system ρ.

We need to note that the causal structures inherent in
quantum systems are not straightforwardly determined by the
sequential order of their emergence. In fact, a memory system
has the capability to create a temporal separation between two
subsystems that are linked by a CC. This feature allows us
to construct both the DC and CC structures of a two-qubit
system within a single setup. In Fig. 1(c), we plotted a simple
way to switch between DC and CC in the quantum comb.
Specifically, when the gate is chosen to preserve the subsys-
tems, the correlation between X and Y corresponds to a DC
induced by a unitary channel, with its Kraus operator denoted
as U . On the other hand, when the gate is selected to swap
between the two subsystems, the correlation between X and
Y arises from the entangled initial state ρ, representing a CC
relationship (for convenience, we mark the two starting ports
as M and N, and the two terminal ports as P and Q). If the
quantum gates are chosen randomly, the causal structure of
the quantum correlations extracted from X,Y is then random.
As such, to infer the causal structure, the observer must rely
on quantum measurements to extract further information, i.e.,
the two blue circles above the line representing quantum sys-
tems X and Y . The measurements can have multiple settings
and be destructive as long as they do not introduce signaling
toward the other measurement. Therefore, a procedure R [cf.
Fig. 1(c)] is necessary to recover the postmeasurement state
according to the Lüders rule [23]. This guarantees a preceding
measurement will not change the marginal distribution of the
next measurement and the causal inference scheme is strictly
observational.

With the above preliminaries, we can recover the af-
firmation in Ref. [12] that observational quantum causal
identification is sometimes possible even with fixed combina-
tions of measurements. The idea can be clearly illustrated in a
geometric way: denote i, j ∈ {1, 2, 3} to be the measurement
settings at X and Y , and the three indices mean the observables
should be the three Pauli matrices σ1, σ2, and σ3, respectively.
Further, we define the following conditional probability:

Ci j := p(x = y|i, j) − p(x �= y|i, j), (1)

where x, y are the outcomes of the measurements at X and Y .
The two-point correlations of the same-setting measurements
can then be to a three-dimensional vector in the coordinate
space:

P = (C11 C22 C33)T. (2)
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Algorithm 1 The algorithm for discrimination of the two-point qubit causal structures. TDC (TCC) is the DC
(CC)tetrahedron in the main text, whose four vertices are (+1, +1, +1)T, (+1, −1, −1)T, (−1,+1, −1)T, and (−1, −1, +1)T

[(−1,−1, −1)T, (−1,+1, +1)T, (+1, −1, +1)T, and (+1, +1, −1)T]. The quantities δ, ε, and ε′ are cutoff values and can be conveniently
chosen. The function D means the Euclidean distance of its two arguments.

Input: A two-point Pauli correlation P = (C11,C22,C33)T , P ∈ TDC ∪ TCC. The sum of all entries of P is b
Output: The latent causal structure of the correlation, DC or CC

if P �∈ TDC ∩ TCC then � Distinguishable by Pauli correlations
if P is in the DC tetrahedron then return DC
else return CC
end if

else if 1 − b < δ then � Distinguishable by symmetrically modified Pauli correlations
calculate V
measure the new correlation CV

33

if 1 − CV
33 < ε then return DC

else return CC
end if

else � Distinguishable by asymmetrically modified Pauli correlations
calculate V = V2V1, V ′ = V2σ1V1 � V1 and V2 are obtained in two consecutive rounds
measure the new correlation P = (CV ′

11 ,CV ′
22 ,CV ′

33 )T

if D[PV ′ , P(σ3)] < ε′ then return DC
else return CC
end if

end if

We use P(U ) and P(ρ) to differentiate the correlations gen-
erated from DC and CC. We plot the sets of all possible
P(U ) and P(ρ) in Fig. 1(d) as the blue and red polytopes,
which we refer to as DC and CC tetrahedra. The tetrahedral
shape follows from that any two-point qubit correlation can
be expressed as the convex combination of the four extremal
points at the corresponding tetrahedron’s vertices [17].

III. ALGORITHMIC CAUSAL IDENTIFICATION

As the two tetrahedra in Fig. 1(d) are nonidentical, some
vectors P observed in the disjoint areas will imply causation.
However, the DC and CC tetrahedra also overlap in an oc-
tahedron. For those P falling there, both DC and CC causal
explanations are possible, and the Pauli correlations alone
are insufficient to discern the underlying causality. Here, we
show how to remove this ambiguity by employing only a few
additional measurements.

The starting point of our causal identification algorithm is
that the cross sections of the DC and CC tetrahedra at C33 = 1
correspond to two perpendicular lines, and they are distin-
guishable in almost all regions. Motivated by this observation,
we seek to find a new set of observables σk → V σkV †, k ∈
{1, 2, 3} determined by the unitary operator V , so the cor-
relation vectors for the new observables become PV (U ) =
P(V †UV ) and PV (ρ) = P[(V ⊗ V )†ρ(V ⊗ V )]. The goal of
choosing V is to make the third entry of PV (U ) equal to 1.
To put it simply, the choice of V should cause the channel to
preserve the eigenstates of V σ3V †.

The existence of such an operator V is intuitive: in the
Bloch sphere representation, a qubit unitary channel behaves
as a rotation, and the states on the rotational axis are invariant.
Therefore, an appropriate choice of operator V should alter the
orientation of the coordinate system so that its zenith aligns
with the axis of rotation. Its explicit settings can be obtained

from the Pauli correlations P, which need to be measured in
the first place. The key observation is that, under the new
measurement settings, any two-qubit DC correlation PV (U )
will satisfy CV

33(U ) = 1 and CV
11(U ) = CV

22(U ), where the
sub- or superscripts mean the measured observables are
the Pauli operators modified by V ; in contrast, only a
zero-measure set of P(ρ) lying on an “exceptional” plane,∑3

k=1 Ckk = 1, makes CV
33(ρ) = 1. Therefore, for those P not

on the exceptional plane, the condition CV
33 = 1 alone can

serve as an indicator for the DC causal structure. The detailed
numerical determination of V , the proof of the aforementioned
observation, can be found in Appendix B, and the pseudocode
for the entire algorithm are provided in Algorithm1.

In practice, both the causal mechanism to be identified
and the measurements themselves will be subject to noise.
When applying the causal identification algorithm, we have
to relax the condition for DC as 1 − CV

33 < ε to allow some
tolerance, where ε > 0 is a cutoff value. The nonzero toler-
ance causes the indistinguishable CC set to have a nonzero
measure. To handle this issue, whenever the initial correlation
P is close to the exceptional plane (1 − ∑3

k=1 Ckk < δ, where
δ is a threshold value), we will modify the first measurement
with V and the second measurement with V ′ = σ1V , take the
resulting correlation as the new initial correlation, and run the
algorithm once again. Crucially, as the additional σ1 enforces
CV

33 = −1, the new initial correlation will be opposite to the
exceptional plane on the octahedron. The final correlation
induced by any DC, PV ′ (U ), will thus always end close to
P(σ3) = (−1,−1, 1)T, far from the CC tetrahedron, and re-
flect causality with strong resilience of noise.

IV. EXPERIMENTAL DEMONSTRATION

We implemented the quantum causal identification algo-
rithm in an optical platform. We encoded two qubits on the
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FIG. 2. Experimental setup. The checkpoints M, N, P, and Q match the notations in Fig. 1. The monochromatic panels were inside the
quantum comb and the blue panels were accessible to the causal discovery algorithm. Entangled photons were generated by spontaneous
parametric down-conversion. The initial state ρ, the unitary channel U , and the modifications of Pauli measurement (PM) basis V were realized
by groups of wave plates, while the PMs themselves exploited an additional polarization beam splitter (PBS). The SWAP gate controlled by
HWP1 and HWP2 can switch between DC and CC and the tilted QWP was for correcting the intragate polarization dispersion. HWP: half-wave
plate; QWP: quarter-wave plate; SMF: single-mode fiber; SPAD: single-photon avalanche detectors.

polarization state of a photon pair generated from sponta-
neous parametric down-conversion, with the horizontal (|H〉)
and vertical (|V 〉) polarization states being the computational
basis. The layout of our experimental setup is depicted in
Fig. 2. It closely resembled the quantum comb in Fig. 1(c);
we have labeled four control points—M, N, P, and Q—
in both of the figures to clarify the correspondence. Using
the photon source reported in Ref. [24], we obtained the
maximally entangled state (|HH〉 + |VV 〉)/

√
2 with fidelity

over 0.97. Subsequently, we utilized two groups of half-wave
plates (HWPs) and quarter-wave plates (QWPs) to prepare
the desired initial states, and an HWP between two QWPs
to implement the unitary channel operation [25], so both
of the operations would induce the same Pauli operations
P. A Sagnac-type ring interferometer at the center of the
setup was exploited to switch the causal structure. Specifi-
cally, the polarizing beam splitter (PBS) at the entrance of
the interferometer transmits (reflects) the photons with |H〉
(|V 〉) polarization. When the orientation of HWP1 and HWP2
were set at 0◦(45◦), the photon that entered the setup from
M will exit at P(Q) while keeping its polarization, so the
ring would act as an identity (SWAP) gate and cause the
photons at X and Y to be linked by DC (CC). Before and
after the ring, we inserted a polarization measurement mod-
ule containing a QWP, an HWP, and a PBS to implement a
single-qubit projection onto the eigenstates of the Pauli oper-
ators. With two-photon coincidence counting, we can extract
all the required conditional probabilities and determine the
two-point correlations. The wave plates after the PBS in the
first measurement reprepared the Pauli eigenstates. Due to
the high degree of two-photon entanglement, the marginal
state of one of the photons was maximally mixed, so the
procedure did not introduce signaling and the causal discovery
was strictly observational. Another group of wave plates in-
troduced the V - and V ′ operations to modify the measurement
directions.

We tested two families of temporally ordered quantum
systems, whose causality is not unveiled by their Pauli

correlations, to demonstrate the quantum causal discovery
algorithm. The first family satisfies C22 − C11 = 1,C33 = 0;
geometrically, the correlation is located on an edge of the
indistinguishable octahedron where the DC and CC tetrahedra
overlap. Although the two causal mechanisms can induce the
same Pauli correlations, their induced correlations using the
algorithmically determined operators are drastically different:
in Fig. 3(a), we plot the trajectories of the Pauli correla-
tion P and the correlations under the modified measurement
settings, PV (U ) (blue) and PV (ρ) (red). We find that when-
ever the causal structure of P is DC, PV (U ) will be close
to the CV

33(U ) = 1 plane. The observation is quantitatively
supported using the DC criterion 1 − CV

33 < ε as shown in
Fig. 3(b), where we set δ = 0.15 and the cutoff value ε =
0.075 successfully delineated all DC and CC far away from
the exceptional plane. We also studied the cases of using
mixed states as the source of CC to enrich the validity of this
method, which is presented later.

Further, we corroborate that the algorithm can robustly
handle the envisaged exception for Pauli correlations close
to

∑3
k=1 Ckk = 1. As shown in the inset of Fig. 3(b), the DC

criterion using PV as input fails to identify the CC; however,
the issue is fully resolved by running a second round of
the algorithm. The resulted new correlations [cf. Fig. 3(a)],
PV ′ (U ) (cyan) and PV ′ (ρ) (pink) definitely fall into the dis-
tinguishable regions. We further studied the case of another
family of Pauli correlations moving on the exceptional plane,
with the result depicted in Fig. 3(c). Clearly, the separation
of PV ′ (U ) and PV ′ (ρ) is robust and insensitive to the ex-
act form of the channel or state. To quantify the robustness
of the algorithm we resort to another distance criterion for
DC, D[PV ′ , P(σ3)] < ε′. Here, the calligraphic D indicates
the Euclidean distance of the two correlation vectors, and
we conveniently select ε′ = 1/

√
3. The results correspond-

ing to the points running into and on the exceptional plane
are given in Figs. 3(d) and 3(e). For all data points, the
causal mechanisms were correctly identified beyond 70 stan-
dard deviations from the cutoff value. The results clearly
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FIG. 3. Experimental results for pure initial states. (a) Visualization of PV when P moves on one edge of the causally indistinguishable
octahedron. The PV ′ are evaluated only when the P are close to the exceptional plane. (b) Predicted (line) and measured (data points) DC
criterion correspond to PV . The inset enlarges the indistinguishable part. (c) Visualization of PV ′ when P moves on the exceptional plane. (d
and e) Predicted and measured distance criterion for DC correspond to the points PV ′ in (a) and (c), respectively. The pink and brown lines
show the effect of different phases of Bell states in state preparation. Error bars are calculated via the Monte Carlo method, and except for the
1σ in the inset of (b), all the other error bars are 3σ .

demonstrated the stability of the quantum causal identification
algorithm.

Having shown the cases of the source of CC being pure,
we now set our sights on mixed sources in which the causal
structure can also be identified with the DC criterion discussed
above. We tested cases where P are picked inside the oc-
tahedron, from two vertical lines (yellow dots and lines in
Fig. 4). Following the procedure of quantum state purifica-
tion, we prepared the initial states as ρ = q I

4 + (1 − q)ρpure,
where 0 � q � 1. Since ρ mapping to P(ρ) has innumerable

preparation methods with different q and ρpure, for simplicity,
the ρpure we used are generated by |�+〉 accompanied by
local operations and the corresponding q, and the experiment
results are displayed in Fig. 4. The remarkable distance be-
tween CV

33(ρ) and 1 indicates a lucid distinguishing of DC and
CC, implying the algorithm remains in force under various
preparation methods.

The extension from pure to mixed initial states is geo-
metrically intuitive: our algorithm is a unitary operation with
respect to the initial states and PV (ρ) shares the same linear

FIG. 4. Experimental results for mixed initial states in geometric description. In this plot, modification on two measurements are the same
(usual cases) except for two points (exceptional cases) being circled out. Yellow dots and lines: P chosen on two vertical lines inside the
octahedron, with mixed initial states ρ in the overlapping area, namely, the octahedron, and their trajectories; blue dots and lines: experiment
results of PV (U ) and their theoretical trajectories; red dots, experiment results of PV (ρ ). The orange dots are the theoretical counterpart of the
red dots. The results are plotted with two side views and one top view.
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decomposition with ρ = ∑
pkρk—the vector PV (ρ) is the

vector sum of the vectors PV (ρk ), where ρk is either pure
or mixed. In the above exhibition, we have mentioned that
it is the quantity

∑3
k=1 Ckk that affects and bounds CV

33(ρ)
(Appendixes B and C) and in turn affects the distinguishing
outcome with the DC criterion 1 − CV

33 < ε. Then, consider
preparing the target ρ with pure states ρk in which P(ρk ) are
on a single plane C11 + C22 + C33 = b, which is feasible for
coefficients of the vectors pk adding to 1. We can conclude
that PV (ρ) behaves similarly whether ρ is pure or mixed, i.e.,
CV

33(ρ) is upper bounded by the same value. However, unlike
the regular theoretical line presented in Fig. 3(a), PV (ρ) in
Fig. 4 are spread quite randomly. This is because the relation
between PV (ρ) and ρ is not unique when ρ is mixed. Finally,
we remark that the procedure above is also valid for the
exceptional part of our algorithm, and we present one example
circled in Fig. 4.

V. DISCUSSION

We have conducted experimental investigations to iden-
tify the underlying causal structures of two-point quantum
correlations in the framework of quantum comb represen-
tation and geometric description using a photonic platform.
Our algorithm is built upon quantum correlation and unitary
operations within an observational scheme, eliminating the
need for interventions, which sets it apart from its classi-
cal counterpart and results in reduced resource requirements.
Besides the framework we have used, physicists have also
researched other formalisms such as pseudodensity matrix
formalism [11,26] and process matrix formalism [27–29], to
properly describe causal structures and seek less intervening
and go on less resource-consuming inference methods [30].
Digging out more causal inference criteria that take the ad-
vantages of the quantum world could be a natural trend.
Therefore, we hope that our comprehensive exploration of
two-point quantum correlations from a causal perspective will
contribute to the further advancement of quantum causal infer-
ence and pave the way for the construction of causal networks
involving various quantum resources.
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APPENDIX A: RELOCATION BETWEEN THE INITIAL
STATE ρ OR EVOLUTION U AND P

Inheriting the labeling in Ref. [20], we first look into cases
with latent structure CC. Consider an arbitrary pure initial

state |φ〉 that can be decomposed as

|φ〉 =
4∑

i=1

wie
iθi |bi〉, (A1)

where wi and θi are real numbers satisfying
∑4

i=1 w2
i = 1,

and |bi〉(i = 1, 2, 3, 4) denote four Bell states |�+〉, |�−〉,
|	+〉, |	−〉 in order. A straightforward calculation indicates
that the phase term eiθi does not contribute to P and there
is a one-to-one map from P(|φ〉) to a pure state with {wi},
yielding P(|φ〉) = ∑4

i=1 w2
i P(|bi〉) = (−ω2

1 − ω2
2 + ω2

3 +
ω2

4,−ω2
1 + ω2

2 − ω2
3 + ω2

4,−ω2
1 + ω2

2 + ω2
3 − ω2

4 )T, where
P(|bi〉) are the vertices of the CC tetrahedron (TCC).

If the latent structure is DC, P also has a unique decompo-
sition P(U ) = ∑3

j=0 p jP(σ j ) = (p0 + p1 − p2 − p3,−p0 +
p1 + p2 − p3, p0 − p1 + p2 − p3)T, where the sum of non-
negative real numbers {p j} is unity, σ j ( j = 0, 1, 2, 3) are
Pauli matrices, and P(σi ) are the vertices of the DC tetrahe-
dron (TDC). Given a P(U ), U takes the form

U = ei θ
2

(
eiγ1 cos(ϕ0) eiγ2 sin(ϕ0)

−e−iγ2 sin(ϕ0) e−iγ1 cos(ϕ0)

)
, (A2)

where θ
2 ∈ [0, π ), cos(ϕ0) = √

c1, sin(ϕ0) = √
d1, γ1 =

(−1)n1 arccos( c2
c1

)/2 + k1π (if c1 = 0, let γ1 = 0), γ2 =
(−1)n2 arccos( d2

d1
)/2 + k2π (if d1 = 0, let γ2 = 0), c1 = p0 +

p3, c2 = p0 − p3, and d1 = p1 + p2, d2 = p1 − p2, with
n1, n2, k1, k2 ∈ {0, 1}. Although there are in total 16 different
U corresponding to the P(U ) up to a global phase, these
candidates together with V derived from them only result
in no more than four different PV (U ), among which desired
PV (U ) with CV

33(U ) = 1 can always be found. In our experi-
ment and the simulation to be carried out, we let n1 = n2 =
k1 = k2 = 0.

In the following analysis, as we use a geometric method to
distinguish causal structures, we need to focus on a specific
plane C11 + C22 + C33 = b(−1 � b � 1) that P is on. For a
given P, b equals either ω2

1 + ω2
2 + ω2

3 − 3ω2
4 = 1 − 4ω2

4 for
P(|φ〉) or 3p0 − p1 − p2 − p3 = 4p0 − 1 for P(U ).

APPENDIX B: EFFECT AND THE CONSTRUCTION
OF DESIRED MODIFICATION V FOR USUAL CASES

Consider a P with its entries summing up to b and two
Pauli measurements modified by the same unitary operation
V reading

V =
(

eiψ cos(ϕ) eiχ sin(ϕ)

−e−iχ sin(ϕ) e−iψ cos(ϕ)

)
. (B1)

For DC, exploiting PV (U ) = P(V †UV ), by careful calcula-
tion one derives the entries of PV (U ) satisfying CV

11(U ) =
2(a2

1 + b2
2) − 1, CV

22(U ) = 2(a2
1 + b2

1) − 1,

012406-6
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and CV
33(U ) = 2(a2

1 + a2
2) − 1, where

a1 = cos (ϕ0) cos (γ1),

a2 = cos (ϕ0) cos(2ϕ) sin (γ1) − sin (ϕ0) sin(2ϕ) sin (γ2 − ψ − χ ),

b1 = sin (ϕ0) cos2(ϕ) cos (γ2 − 2ψ ) + sin (ϕ0) sin2(ϕ) cos (γ2 − 2χ ) − cos (ϕ0) sin(2ϕ) sin(χ − ψ ) sin (γ1),

b2 = − sin (ϕ0) sin2(ϕ) sin (γ2 − 2χ ) + sin (ϕ0) cos2(ϕ) sin (γ2 − 2ψ ) + cos (ϕ0) sin(2ϕ) cos(χ − ψ ) sin (γ1),

a2
1 + a2

2 + b2
1 + b2

2 = 1. (B2)

On one hand, noticing that the sum of these entries is 4a2
1 −

1 = 4p0 − 1 = b, which is independent of V , the effect of V
for DC is moving a P to a PV (U ) lying on a fix plane CV

11(U ) +
CV

22(U ) + CV
33(U ) = b, which is exactly the same plane that P

is on. On the other hand, PV (U ) is trapped in the TDC, thus
geometrically PV (U ) can be moved to the top of the TDC and
out of the overlapping area, terminating at ( b−1

2 , b−1
2 , 1)T. To

do so, we can choose the parameters of U as

ψ + χ = γ2 − k1π

2
, ϕ = k2π − ω

2
, (B3)

where sin(ω) = sin(ϕ0) sin(γ2 − ψ − χ )/r, cos(ω) =
cos(ϕ0) sin(γ1)/r, r = [cos2(ϕ0) sin2(γ1) + sin2(ϕ0) sin2

(γ2 − ψ − χ )]1/2, k1 = 1, 2, and k2 = 1, 2. In our experiment
and the simulation below, we always set k1 = k2 = 1 and
ψ = χ .

For CC, with a pure initial state |φ〉 defined in Eq. (A1),
the sum of entries of PV (ρ) is calculated to be also equal
to 1 − 4w2

4 = b, independent of V . Therefore, PV (ρ) lies
on plane CV

11(|φ〉) + CV
22(|φ〉) + CV

33(|φ〉) = b which coincides
with the plane P and PV (U ) lie on. Again, as PV (ρ) is not able
to leave the TCC, the boundaries of PV (ρ) are the intersection
lines of CV

11(|φ〉) + CV
22(|φ〉) + CV

33(|φ〉) = b and the surface of
the TCC [one of which is −CV

11(|φ〉) − CV
22(|φ〉) + CV

33(|φ〉) =
1]. Consequently, CV

33(|φ〉) is upper bounded by 1+b
2 and

1 − CV
33(|φ〉) � 1−b

2 .
The above analysis shows that the modification V never

drags P out of the plane C11 + C22 + C33 = b regardless of the
latent structure, which is the core of our algorithm handling
usual cases.

APPENDIX C: HANDLING EXCEPTIONS CASES
WITH UNEQUAL MODIFICATIONS

The solution is decomposed into three steps: run the
standard algorithm above to derive an operator V1 result-
ing in PV1 (U ) = ( b−1

2 , b−1
2 , 1)T; use operators V− = σ1 and

V+ = I to flip the sign of the last two entries of PV1 (U )
and move it ( b−1

2 , 1−b
2 ,−1)T; and run the standard algorithm

again deriving another operator V2 which moves the point
on plane CV ′

11 (U ) + CV ′
22 (U ) + CV ′

33 (U ) = −1 and terminates
at PV ′ (U ) = (−1,−1, 1)T = P(σ3). Next, we investigate the
behavior of PV ′ (ρ) (CC) by calculation and numerical simu-
lation, taking cases where b = 1 as examples [Figs. 3(c) and
3(e) in the main text]. P(|φ〉) is explicitly written in terms of

wi(i = 1, 2, 3, 4) as

P(|φ〉) =

⎛
⎜⎜⎝

w2
1 − w2

2 + w2
3 − w2

4

−w2
1 + w2

2 + w2
3 − w2

4

w2
1 + w2

2 + w2
3 − w2

4

⎞
⎟⎟⎠. (C1)

Combining b = 1 and the normalization condition of |φ〉,
w4 has to be zero. When b = 1, V1 and V± move
P(U ) to (0, 0,−1)T and V2 further moves it to PV ′ (U ) =
(−1,−1,−1)T, requiring the parameters of V2 to satisfy φ =
π
4 , and ψ = χ = ±π

8 or ± 3π
8 . The different choices of ψ and

χ correspond to different candidates of U . The calculation
result of applying V± and V2 reads

PV ′ (|φ〉) =

⎛
⎜⎜⎝

w2
3 − w2

1 − w2
2

w2
1 − w2

2

w2
1 − w2

2

⎞
⎟⎟⎠, (C2)

indicating that V± and V2 moves every point on plane C11 +
C22 + C33 = 1 to plane CV ′

22 = CV ′
33 . Since V1 never drags

P(|φ〉) outside plane C11 + C22 + C33 = 1, there is no need
to do further calculation for V1. In the numerical simulation
in Fig. 5, we show that different phases θi of |φ〉 may lead
to an enormous difference of P′

V (|φ〉) (brown and pink dots)
and CV ′

33 can be very close to 1, thus we cannot use CV ′
33 to

distinguish DC and CC.

11C

22C

33C

(a)

11C

22C

33C

(b)
1

1 1

0

0

0

1−

1−

1−

1

1 1

0

0

0

1−

1−

1−

FIG. 5. Effect of unequal modification for CC cases by simu-
lation. (a) Over 1000 P(|φ〉) (yellow dots) are randomly spread on
plane C11 + C22 + C33 = 1 in the overlapping area. (b) Brown and
pink [matching the color in Fig. 3(c)] dots are the simulation results
of PV ′ (|φ〉) when the phase terms in Eq. (A1) are {θ1, θ2, θ3, θ4} =
{0, − π

2 , π

2 , 0} and {0, π

2 , − π

2 , 0}, respectively. The light purple plane
is CV ′

22 = CV ′
33 .
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APPENDIX D: THE OTHER PROJECTIONS OF FIG. 3

See Fig. 6.

FIG. 6. The other projections of Fig. 3. The other side view (left) and the top view (right) of Fig. 3(a) (upper) and 3(c) (lower) in the main
text, respectively.
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