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Entanglement detection in arbitrary-dimensional bipartite quantum systems
through partial realigned moments
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Detection of entanglement through partial knowledge of the quantum state is a challenge to implement
efficiently. Here we propose a separability criterion for detecting bipartite entanglement in arbitrary-dimensional
quantum states using partial moments of the realigned density matrix. Our approach enables the detection of
both distillable and bound entangled states through a common framework. We illustrate the significance of
our method through examples of states belonging to both the above categories, which are not detectable using
comparable other schemes relying on partial state information. The formalism of employing partial realigned
moments proposed here is further shown to be effective for two-qubit systems too, with a slight modification of
our separability criterion.
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I. INTRODUCTION

Entanglement [1,2] is a remarkable feature of quantum
systems with no classical analog. It is the key physical re-
source to realize quantum information tasks such as quantum
teleportation [3], quantum cryptography [4], and quantum
dense coding [5]. This has provided a strong motivation for
the characterization and classification of entangled states. In
particular, criteria to decide whether or not a given quantum
state is entangled are of high theoretical and practical interest.
Even though numerous entanglement criteria have been pro-
posed in the past years, nevertheless there exists no universally
applicable method to tell us whether a given quantum state
is entangled or not. Historically, Bell-type inequalities were
the first operational criterion to distinguish between entangled
and separable states [6]. Due to the importance of entangle-
ment in quantum information processing, there has been a
steady quest for devising more and more efficient methods for
detecting entanglement in quantum states [7,8].

For bipartite systems, there exist two famous separability
criteria: the positive partial transpose (PPT) criterion [9,10]
and the matrix realignment criterion [11,12]. The former cri-
terion can detect the entanglement of all nonpositive partial
transpose (NPT) states but cannot detect any PPT entan-
gled state. The latter criterion is weaker than the former
one over NPT states; however, it can detect some PPT en-
tangled states. Apart from the above, there exist operational
tools to detect entanglement in practice. Entanglement wit-
ness based on measurement of observables provides a method
to characterize entanglement [13,14]. There exist different
schemes for the construction of witness operators in the

*shruti_phd2k19@dtu.ac.in
†satyabrata@dtu.ac.in
‡archan@bose.res.in

literature [15–18], though all such schemes rely on certain
prior information about the quantum state. Besides, entan-
glement can also be detected using measurement statistics
in a device independent manner through an approach called
self-testing [19–22] which again relies on certain additional
assumptions.

In practical situations, complete information about the
quantum state may not be always available, and entanglement
detection based on the partial knowledge of the density matrix
may be easier to implement in experiments [23]. Recently,
Elben et al. [24] proposed a method for detecting bipartite
entanglement based on estimating moments of the partially
transposed (PT) density matrix. Neven et al. [25] proposed
an ordered set of experimentally accessible conditions for
detecting entanglement in mixed states. Moments have the ad-
vantage that they can be estimated using shadow tomography
in a more efficient way than if one had to reconstruct the state
via full quantum state tomography. Such works [24–27] are
focused on the detection of NPT entangled states only. Detec-
tion of bound entangled states using moments needs a deeper
investigation. In the present paper, we provide a separability
criterion based on moments of the Hermitian matrix obtained
after applying the realignment operation for quantum states in
arbitrary-dimensional bipartite systems.

The motivation of our paper is to construct computable
entanglement conditions that can detect NPT entangled states
as well as bound entangled states (BESs) through partial
knowledge of the density matrix. Recently, detection of bound
entangled states using a moment based criterion has been
studied in [28,29]. Our criterion based on moments is stronger
in the sense that lower-order realigned moments are sufficient
to detect entanglement. Importantly, this approach is not only
conceptually sound but also tractable from an experimen-
tal perspective. The classical shadows formalism allows for
reliably estimating moments from randomized single-qubit
measurements [30,31]. If we make multiple copies of a state
represented by an m × m density matrix ρ, the moments
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Tr(ρ)2, . . . , Tr(ρ)m can be measured using cyclic shift op-
erators [32,33]. It has been shown that measuring partial
moments is technically possible using m copies of the state
and controlled swap operations [34–36]. A method based on
machine learning for measuring moments of any order has
also been proposed [37].

In this paper, we introduce an entanglement criterion for bi-
partite systems based on the moments of the Hermitian matrix
(ρR)†ρR obtained after applying realignment operation on a
quantum state ρ, which we call here realigned moments (or R
moments). First, we show that our criterion effectively detects
BESs in higher-dimensional two-particle systems. Further, we
show that it performs better than the other existing criteria
based on partial moments in some cases for the detection of
NPT entangled states in higher-dimensional systems. The R
moment criterion is formulated as a simple inequality that
must be fulfilled by separable states of bipartite systems, and
hence, its violation by a state reveals its entanglement. We
illustrate the significance of the R moment criterion for the
detection of NPT and bound entanglement by examining some
examples. Finally, we devise another separability criterion for
two-qubit systems and probe some examples of two-qubit
NPT entangled states that are undetected by other criteria
using partial moments and realignment.

The paper is organized as follows. In Sec. II, we briefly
review some entanglement detection criteria. In Sec. III, we
present the idea of using realigned moments (R moments)
for entanglement detection. In Sec. IV. We discuss the R
moment criterion for the detection of higher-dimensional bi-
partite entangled states and demonstrate with examples that
it can detect both NPT as well as bound entangled states
effectively. In Sec. V, we propose another criterion based
on R moment for 2 ⊗ 2 dimensional systems. We illustrate
the utility of the R moment criterion by providing some
examples and also by comparing it with other entangle-
ment detection criteria based on partial moments. In Sec. VI
we propose a scheme for the measurement of moments of
the realigned matrix. We conclude in Sec. VII with a brief
discussion.

II. PRELIMINARIES

Let H = Hm
A ⊗ Hn

B denote the composite Hilbert space of
dimension mn, where the subsystem A has dimension m and
the subsystem B has dimension n. A quantum state ρ ∈ D(H)
is said to be separable if it can be expressed as a convex
combination of product states of two subsystems:

ρ =
∑

i

piρ
A
i ⊗ ρB

i ,
∑

pi = 1, 0 � pi � 1. (1)

Otherwise, the state is called entangled. The detection of an
entangled state using the above definition is not feasible in
practice because one has to verify whether the state under
investigation can be written in the form (1) for every basis
existing in the composite Hilbert space. Thus, a lot of research
is devoted to developing different criteria that may detect the
entangled states. We discuss here a few of them which may be
considered to be efficient criteria.

A. PPT criterion

The first entanglement detection criterion was established
by Peres [9] and later it was proved to be necessary and suffi-
cient for 2 ⊗ 2 and 2 ⊗ 3 systems [38]. This criterion is popu-
larly known as the PPT criterion. It states that for any bipartite
separable state ρ, partial transposition with respect to sub-
system B denoted by ρτB with elements ρ

τB
i j,kl = ρil,k j is also

a density operator; i.e., it has non-negative eigenvalues. The
states that satisfy the PPT criteria are known as PPT states. In
higher-dimensional systems, it has been observed that there
are PPT states which are entangled. Therefore, the PPT cri-
terion is only a necessary condition but not sufficient for
separability for higher-dimensional systems. PPT entangled
states are also called bound entangled states since they cannot
be distilled into any maximally entangled pure singlets [39].

Partial transposition is positive but not completely positive
and hence it may not be realized physically in an experi-
ment [32]. The eigenvalues of the partially transposed matrix
may not be easily accessible. To overcome this situation,
Elben et al. [24] have shown that the valuable information
about the eigenvalues of the partially transposed matrix can
be obtained from a few PT moments. It has been shown
that even though the partial transposition is unphysical, the
PT moments can be measured experimentally using shadow
tomography [24,25]. Horodecki and Ekert [32] proposed a
method to modify the partial transposition operation so that
it becomes experimentally viable without involving any state
estimation. This method is called structural physical approxi-
mation (SPA). SPA offers a systematic way of approximating
those nonphysical maps that are positive but not completely
positive, with quantum channels.

B. Realignment criterion

Like partial transposition, one may use another permuta-
tion of the density-matrix elements. One such permutation of
the density-matrix elements is used by Chen et al. [40] and
Rudolph [41] to study the entanglement detection problem.
The map used to obtain the permutation is known as the
realignment map. This map may be used to obtain another sep-
arability criterion for bipartite systems, which is known as the
realignment criterion. It states that for any bipartite separable
state ρ, the realigned matrix ρR with elements ρi j,kl = ρik, jl

has trace norm not greater than 1, i.e., ||ρR||1 � 1, where the
trace norm of an operator X is defined as ||X ||1 := Tr(

√
X †X )

[12,42]. This criterion provides us only a necessary condition
for lower- as well as higher-dimensional systems. Neverthe-
less, this criterion is considered to be a strong criterion since
it can detect NPT entangled states as well as bound entan-
gled states. Furthermore, an analytical lower bound of the
concurrence of arbitrary-dimensional bipartite states based on
the realignment criterion was also derived [40]. It makes it
possible to estimate the amount of entanglement in bound
entangled states too. Separability criteria based on the realign-
ment of density matrices and reduced density matrices have
been proposed in [43]. In [44], the rank of the realigned matrix
is used to obtain necessary and sufficient product criteria for
quantum states. Recently, it has been shown that realignment
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criteria may be realized physically using structural physical
approximation [45].

C. Entanglement detection criteria using moments

Elben et al. [24] proposed a method for detecting bipartite
entanglement in a many-body mixed state based on estimating
moments of the partially transposed density matrix. Since
partial transposition operation is a positive but not completely
positive map, it is not physical and thus it may not be imple-
mented in the experiment. But despite the above difficulty in
realizing the partial transposition operation in the experiment,
the measurement of their moments is possible [24]. A condi-
tion to detect entanglement called the p3-PPT criterion was
proposed using the first three PT moments. If τ denotes the
partial transposition operation, then the kth partial moment is
defined as

pk (ρτ ) = Tr[(ρτ )k]. (2)

The PT moment has the advantage that it can be estimated
using shadow tomography in a more efficient way than if one
had to reconstruct the state ρ via full quantum state tomog-
raphy [24]. The p3-PPT condition states that any PPT state ρ

satisfies the following inequality:

L1 ≡ [p2(ρτ )]2 − p3(ρτ )p1(ρτ ) � 0. (3)

The violation of the above inequality (3) by any d1 ⊗ d2

dimensional bipartite state ρ indicates that the state is an NPT
entangled state.

Neven et al. [25] proposed a set of inequalities, known
as D(in)

k inequalities, to detect bipartite NPT entangled states.
Each D(in)

k involves the first k moments of the partially trans-
posed operator ρτ . The violation of any single D(in)

k inequality
implies ρ is an NPT entangled state. One can obtain the first
nontrivial condition in the form of the D(in)

3 inequality, which
reads

L2 ≡ 3
2 [p1(ρτ )][p2(ρτ )] − 1

2 [p1(ρτ )]3 − p3(ρτ ) � 0. (4)

The inequality (4) is satisfied by all PPT states and its viola-
tion certifies the existence of an NPT entangled state, which
may be expressed as

L2 > 0. (5)

Neven et al. [25] showed that knowing only the first three
moments p1(ρτ ), p2(ρτ ), and p3(ρτ ), the above inequality de-
tects more entangled states than the p3-PPT criterion when the
purity of ρτ is greater than or equal to 1/2, i.e., when 1/2 �
p2(ρτ ) � 1. In the other region, i.e., when 0 � p2(ρτ ) < 1/2,
the p3-PPT criterion detects more entangled states than the
D(in)

3 criterion.
Yu et al. [13] introduced an optimal entanglement detec-

tion criteria based on partial moments called the p3-OPPT
criterion. This optimal separability criterion can be stated as
follows. If ρ is separable, then the following inequality holds:

L3 = μx3 + (1 − μx)3 − p3(ρτ ) � 0 (6)

where x = μ+√
μ[p2(ρτ )(μ+1)−1]

μ(μ+1) and μ = � 1
p2(ρτ )�.

Zhang et al. [28] proposed another entanglement detection
criterion in terms of the quantities called realignment mo-
ments. To derive their entanglement detection criterion, they

have defined the realignment moments for a d ⊗ d dimen-
sional bipartite state ρ as

rk (ρR) = Tr[(ρR(ρR)†)k/2], k = 1, 2, . . . , d2 (7)

where d2 is of the order of the matrix ρR. The separability
criterion based on realignment moments r2 and r3 is stated as
follows. If a quantum state ρ is separable, then

L4 ≡ [r2(ρR)]2 − r3(ρR) � 0. (8)

Violation of the inequality (8), i.e., L4 > 0, implies that the
state ρ is entangled.

A stronger separability criterion based on Hankel ma-
trices and involving higher-order rk has been derived in
[28]. For r = (r0, r1, r2, . . . , rn), Hankel matrices can be con-
structed as [Hk (r)]i j = ri+ j and [Bl (r)]i j = ri+ j+1 for i, j =
0, 1, 2, . . . , k. The criterion may be stated as follows. If ρ is
separable, then for k = 1, 2, . . . , � n

2� and l = 1, 2, . . . , � n−1
2 �,

we have

Ĥk (r) = [ri+ j (ρ
R)] � 0, (9)

B̂l (r) = [ri+ j+1(ρR)] � 0 (10)

with r1(ρR) = 1.

III. REALIGNED MOMENTS OR R MOMENTS

Before presenting our separability criterion based on re-
aligned moments, let us first define the idea of realigned
moments or R moments in m ⊗ n dimensional systems. To
make the task simpler, consider first a 2 ⊗ 3 system described
by the density operator σ12 which is given by

σ12 =
(

Z11 Z12

Z21 Z22

)
(11)

where Z11 = (
t11 t12 t13
t∗
12 t22 t23

t∗
13 t∗

23 t33

), Z12 = (
t14 t15 t16
t24 t25 t26
t34 t35 t36

), and

Z21 = Z†
12, Z22 = (

t44 t45 t46
t∗
45 t55 t56

t∗
46 t∗

56 t66

).

The normalization condition of σ12 is given by∑6
i=1 tii = 1. The realigned matrix of σ12 is denoted by

σ R
12 and it is given by

σ R
12 =

⎛⎜⎜⎝
(vecZ11)T

(vecZ12)T

(vecZ21)T

(vecZ22)T

⎞⎟⎟⎠

=

⎛⎜⎜⎝
t11 t12 t13 t∗

12 t22 t23 t∗
13 t∗

23 t33

t14 t15 t16 t24 t25 t26 t34 t35 t36

t∗
14 t∗

24 t∗
34 t∗

15 t∗
25 t∗

35 t∗
16 t∗

26 t∗
36

t44 t45 t46 t∗
45 t55 t56 t∗

46 t∗
56 t66

⎞⎟⎟⎠
(12)

where for any n × n matrix Xi j with entries xi j , vecXi j is de-
fined as

vecXi j = [x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn]T .

(13)
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Note that (σ R
12)†σ R

12 is a matrix of order 9 × 9. Also, the
number of nonzero singular values of σ R

12 is equal to the rank
of σ R

12 and hence it will be at most 4. We can now gener-
alize this fact for m ⊗ n systems. Let ρ be a density matrix
representing a m ⊗ n dimensional state and it can be written
as a block matrix with m number of blocks in each row and
column with each block being a n × n matrix. The realigned
matrix ρR obtained after applying the realignment operation
has dimension m2 × n2. The first step to obtain the R moment
criterion is to find the characteristic equation of the n2 × n2

Hermitian operator (ρR)†ρR. It is given by

det(ρR†
ρR − λI ) = 0

⇒
n2∏

i=1

(λi(ρ
R†

ρR) − λ) = 0

⇒ λn2 + D1λ
n2−1 + D2λ

n2−2 + . . . . + Dn2 = 0 (14)

where λi((ρR)†
ρR) given in the second step denotes the

roots of the characteristic polynomial (14). Using well-known
results related to Newton polynomials and the Faddeev-
LeVerrier algorithm for the characteristic polynomial and
traces of powers of a matrix [46–48], the coefficients {Di}n2

i=1
given in the third step can be described in terms of moments
of (ρR)†

ρR, i.e.,

Di = (−1)i 1

i!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1 T2 T3 . . . ... Tm

1 T1 T2 T3 . . ... Tm−1

0 2 T1 T2 T3 . ... Tm−2

0 0 3 T1 T2 T3 ... Tm−3

. . . . . . ... .

. . . . . . ... .

. . . . . .
. . . .

0 0 0 0 0 0 ... T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)

for i = 1 to n2, where Dn2 = det((ρR)†
ρR). Tk = Tr

[{(ρR)†
ρR}k] denotes the kth realigned moment of (ρR)†

ρR.
Let us arrange the singular values of ρR in descending

order, i.e., σ1(ρR) � . . . � σr (ρR) � 0, where r denotes the
total number of singular values of ρR. Thus for i = 1 to r, we
have

λi(ρ
R†

ρR) = σ 2
i (ρR).

Therefore, the relation between the coefficients Di and the
singular values σi(ρR) is given by

r∑
i=1

σ 2
i (ρR) = −D1, (16)

∑
i< j

σ 2
i (ρR)σ 2

j (ρR) = D2, (17)

∑
i< j<k

σ 2
i (ρR)σ 2

j (ρR)σ 2
k (ρR) = −D3 (18)

.... ....

.... ....

.... ....

r∏
i=1

σ 2
i (ρR) = Dr . (19)

Using (15), the coefficients D1, D2, and D3 in terms of first
moment T1, second moment T2, and third moment T3 of ρR†

ρR

can be expressed as

D1 = −T1, (20)

D2 = 1
2

(
T 2

1 − T2
)
, (21)

D3 = − 1
6

(
T 3

1 − 3T1T2 + 2T3
)
. (22)

In general, the coefficient Dn2 may be expressed as
Dn2 = det(ρR†

ρR).

IV. SEPARABILITY CRITERION BASED
ON R MOMENTS IN m ⊗ n SYSTEMS

Although the separability criterion based on partial mo-
ments involves up to third-order moments [24,25], it fails
to detect several NPT entangled states in higher-dimensional
systems and is also not applicable for the detection of bound
entangled states. This gives us a strong motivation to in-
vestigate the concept of realigned moments in entanglement
detection in higher-dimensional systems.

A. Criterion

We are now ready to present our separability criterion
based on realigned moments for m ⊗ n dimensional systems.
It is formulated in the form of an inequality that involves the
kth-order moments where k is the rank of the matrix ρR.

Theorem 1. Let ρ be any bipartite state in m ⊗ n dimen-
sions. Consider the k nonzero singular values of the realigned
matrix ρR that may be denoted as σ1, σ2, . . . , σk with 1 � k �
min{m2, n2}. If ρ is separable then the following inequality
holds:

R1 ≡ (k − 1)D1/k
k + T1 − 1 � 0 (23)

where Dk = ∏k
i=1 σ 2

i (ρR) and T1 = Tr[(ρR)†ρR].
Proof. Let ρ be any separable state in an m ⊗ n system and

assume that the number of nonzero eigenvalues of (ρR)†ρR

is k. That is, there exists a number k (1 � k � min{m2, n2})
depending upon the number of nonzero singular values of ρR

for which Dk = ∏k
i=1 σ 2

i (ρR) 
= 0. The degenerated charac-
teristic equation of (ρR)†ρR is given by

λk +
k∑

i=1

Diλ
k−i = 0 (24)

where Di is defined in (15) for i = 1 to k and Di = 0 for i > k.
Using (16) and (20), the first realigned moment T1 can be

expressed in terms of the singular values of ρR as

T1 =
k∑

i=1

σ 2
i (ρR)

=
(

k∑
i=1

σi(ρ
R)

)2

− 2
∑
i< j

σi(ρ
R)σ j (ρ

R) (25)
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and (25) can be reexpressed as

∑
i< j

σi(ρ
R)σ j (ρ

R) = 1

2

⎛⎝( k∑
i=1

σi(ρ
R)

)2

− T1

⎞⎠. (26)

It is elementary to note that the arithmetic mean of a list of
non-negative real numbers is greater than or equal to their
geometric mean. Since σ ′

i s for i = 1 to k are non-negative real
numbers, we have

∑
i< j

σi(ρ
R)σ j (ρ

R) � k(k − 1)

2

(
k∏

i=1

σi(ρ
R)

)2/k

. (27)

Using (26) and (27), we get

1

2

(||ρR||21 − T1
)
� k(k − 1)

2
D1/k

k (28)

where ||ρR||1 = ∑k
i=1 σi(ρR) and Dk = ∏k

i=1 σ 2
i (ρR). Thus,

we obtain

||ρR||1 � k(k − 1)D1/k
k + T1. (29)

Since ρ is any arbitrary separable state, using the realignment
criterion in the above inequality (29), we have k(k − 1)D1/k

k +
T1 � 1, which proves (23).

Corollary 1. Let ρ be any bipartite state in an m ⊗ n dimen-
sional system. Let σ1, σ2, . . . , σk with 1 � k � min{m2, n2}
be k nonzero singular values of the realigned matrix ρR. If
any state ρ violates (23), then it is an entangled state.

It is to be noted that the R moment based separability crite-
rion we have developed here is more fruitful for those density
matrices ρ in an m ⊗ n system for which det((ρR)†ρR) = 0.
Therefore, the R moment criterion works well when ρR is not
full rank. To test the separability criteria based on R moments,
consideration of the non-full-rank state is advantageous in the
sense that it does not require all the R moments, and hence, our
criterion holds well even when we do not have full information
of the state. In an m ⊗ n system, the condition det((ρR)†ρR) =
0 is valid when (i) the number of nonzero eigenvalues of the
matrix (ρR)†ρR is less than n2 where m � n, or when (ii) the
number of nonzero eigenvalues of the matrix (ρR)†ρR is less
than m2 where m � n. In particular, for any 2 ⊗ 2 system, the
separability criterion given in Theorem 1 reduces to

12D1/4
4 + T1 � 1. (30)

The violation of the inequality (30) by any two-qubit state
indicates the fact that the state is entangled.

It may be noted that there is no universal entanglement
detection criterion that could outperform all other criteria.
Any chosen criterion could work better for a given class of
states, and vice versa. We now discuss examples of PPT and
NPT entangled states in 3 ⊗ 3 and 4 ⊗ 4 systems which are
detected by our R moment criterion, but not by certain other
criteria contained in the literature.

B. Examples

In this section, we have considered a few examples of
bipartite two-qutrit, two-ququart, and two-parameter families
of a 2 ⊗ n quantum system to verify the criteria given in
Theorem 1.

1. A family of 4 ⊗ 4 NPT and bound entangled states

Let us consider a family of 4 ⊗ 4 entangled states [49]:

ρp,q = p
4∑

i=1

|ψi〉〈ψi| + q
6∑

i=5

|ψi〉〈ψi| (31)

where p and q are non-negative real numbers satisfying
4p + 2q = 1. {|ψi〉}6

i=1 are defined as follows:

|ψ1〉 = 1√
2

(|01〉 + |23〉),

|ψ2〉 = 1√
2

(|10〉 + |32〉),

|ψ3〉 = 1√
2

(|11〉 + |22〉),

|ψ4〉 = 1√
2

(|00〉 − |33〉),

|ψ5〉 = 1

2
(|03〉 + |12〉) + |21〉√

2
,

|ψ6〉 = 1

2
(−|03〉 + |12〉) + |30〉√

2
.

Note a few important properties of the state ρp,q.

(P1) For this state, det(ρR
p,q

†
ρR

p,q ) = 0, which implies that
the matrix obtained after applying the realignment operation
on ρp,q is not full rank.

(P2) The state ρp,q becomes invariant under partial trans-
position when p = q√

2
which implies that ρp0,q0 is a PPT state

for q0 =
√

2−1
2 and p0 = 1−2q

4 .
(P3) It may be noted that ‖ρR

p0,q0
‖1 = 1.085 79, which is

greater than 1. Thus, by the matrix realignment criterion, one
can say that ρp0,q0 is a PPT entangled state.

Moreover, we find that ρR
p0,q0

has eight nonzero singular
values. Therefore, we have k = 8. The degenerated character-
istic equation is λ8 + ∑8

i=1 Diλ
8−i = 0 where D′

is are defined
in (15) and D8 = ∏8

i=1 σ 2
i (ρR

p0,q0
). Thus, we find that in this

example, the left-hand side of the inequality (23) is given by
R1 ≡ 56D1/8

8 + T1 − 1 = 0.020 82 > 0. So inequality (23) is
violated and Corollary 2 implies that the state ρp0,q0 is PPT
entangled. We further observe that the criterion [28] given in
(8) does not detect the BES described by the density operator
ρp0,q0 belonging to the ρp,q family.

On the other hand, when (p, q) 
= (p0, q0), ρp,q represents
an NPT entangled state for which the detection range by em-
ploying our R moment criterion is given by (0.006 596 01 <

q < 0.153 105) and (0.264 77 < q � 1/2), which is
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FIG. 1. The red curve represents the R moment criterion for
the state ρa given by Eq. (32). R1(a) > 0 certifies the detection of
entanglement in ρa. Here, the x axis represents the state parameter a.

comparatively larger than the range (0.425 035 < q � 1/2)
detected by employing the D(in)

3 criterion (4).

2. 3 ⊗ 3 NPT entangled state

Next, consider the class of NPT entangled states in a 3 ⊗ 3
dimensional system, which is defined as [50]

ρa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−a
2 0 0 0 0 0 0 0 −11

50

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1
2 − a −11

50 0 0 0

0 0 0 0 −11
50 a 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
−11
50 0 0 0 0 0 0 0 a

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(32)

where 1
50 (25 − √

141) � a � 1
100 (25 + √

141). Since ρR
a

forms a matrix of rank 5, we have k = 5. Thus, to detect
whether ρa is entangled or not, we need only five moments
of (ρR

a )†ρR
a . Further we note that T1 = 867

1250 − 3a
2 + 5a2

2 . By
calculating all five moments, we find that the inequality in (23)
is violated in the whole range of a. Thus, applying Corollary
1, we can say that ρa is entangled for 1

50 (25 − √
141) � a �

1
100 (25 + √

141). Figure 1 shows the violation of the inequal-
ity (23), i.e., R1 ≡ 20D5

1/5 + T1 − 1 > 0 for all 0.262 513 �
a � 0.368 743. Figure 2 shows the comparison of R moment
criteria with the p3-PPT, D(in)

3 , and p3-OPPT criteria defined
in (3), (4), and (6), respectively. Since L1 < 0, L2 < 0, and
L3 < 0, we find that the state ρa is not detected by any of
the above partial moment based criteria for any value of the
parameter a in the given range. This is illustrated in Fig. 2.

FIG. 2. For the state ρa (32), the blue (middle) curve represents
the p3-PPT criterion (3), the dotted orange (lowermost) curve rep-
resents the D(in)

3 criterion (4), and the dashed green (uppermost)
curve represents the p3-OPPT criterion (6). The graph is plotted with
respect to the state parameter a. L1, L2, L3 < 0 show that p3-PPT,
D(in)

3 , and p3-OPPT criteria fail to detect this state in the whole range
of a.

3. Two-parameter class of states in 2 ⊗ n quantum systems

Consider the two-parameter class of states defined in 2 ⊗ n
quantum systems [51]:

ρ (n)
α,γ = α

1∑
i=0

n−1∑
j=2

|i j〉〈i j| + β(|φ+〉〈φ+| + |φ−〉〈φ−|

+ |ψ+〉〈ψ+|) + γ (|ψ−〉〈ψ−|) (33)

where |i j〉; i = 0, 1; j = 0, 1, . . . , n − 1 forms an orthonor-
mal basis for 2 ⊗ n quantum systems:

|φ±〉 = 1√
2

(|00〉 ± |11〉), |ψ±〉 = 1√
2

(|01〉 ± |10〉).

(34)

By the trace condition, the parameter β can be written in terms
of α and γ as

β = 1 − 2(n − 2)α − γ

3
(35)

where 0 � α � 1
2(n−1) and 0 � γ � 1.

Now we compare the detection power of the R moment
criterion with the moment based criterion given in Sec. II C.
Let us consider the realignment moment based criterion given
by Zhang et al. [28] mentioned in (8)–(10). Since in 2 ⊗ n sys-
tems, rank(ρ (n)

α,γ ) � 4, the criterion given in (8) is equivalent
to the separability criterion based on Hankel matrices given in
(9) and (10).

In 2 ⊗ 3 systems, ρ (3)
α,γ is entangled when 0 � α � 1

4 and
1−2α

2 � γ � 1 − 2α. The inequality in (8) is violated, i.e.,
L4(α, γ ) > 0 for (α, γ ) lying in the blue (dark gray) shaded
region in Fig. 3(a). Hence the entanglement is detected in this
region by Zhang et al.’s criteria [28]. Now, applying the R
moment criterion on ρ (3)

α,γ , the inequality in (23) is violated for
the states lying in the blue (dark gray) as well as yellow (light
gray) shaded regions. It can be thus seen that the R moment
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FIG. 3. The region plot given above in (a) and (b), respectively,
shows the detection region of the state ρ (n)

α,γ , for n = 3 and 4 by R
moment criteria and Zhang et al.’s [28] realignment moment based
criteria given in (8). The blue (dark gray) region represents the
entangled states detected by both the above-mentioned criteria. The
yellow (light gray) region shows the states detected by R moment
criteria but undetected by Zhang et al.’s criteria. Here, the x axis
represents the state parameter α and the y axis represents the state
parameter γ .

criterion performs better for such systems. Similarly, it is also
possible to show [see Fig. 3(b)] that for n = 4 again a larger
set of states is detected by the R moment criterion compared
to the realignment criterion.

V. SEPARABILITY CRITERION BASED ON REALIGNED
MOMENTS (R MOMENTS) IN 2 ⊗ 2 SYSTEMS

For 2 ⊗ 2 dimensional systems the necessary and suffi-
cient condition for entanglement is provided by the Peres-
Horodecki PPT criterion [9,38]. It may be noted though that
partial transposition is positive but not completely positive,
and hence, it is difficult to be realized directly in an ex-
periment [32]. On the other hand, quantitative measures of
entanglement such as the entanglement of formation (EoF)
have been proposed [52,53], which have important applica-
tions in using entanglement as a resource for implementing
tasks such as teleportation and dense coding [54]. Bounds
on the EoF have further been proposed [55,56], which are in
principle measurable, though precise measurement schemes
for EoF are yet to be developed. Note further that certain
other ingenious measurement schemes for detecting two-qubit
entanglement have been proposed, such as those based on em-
ploying weak measurements [23]. However, only pure states
can be detected by local operations based on the weak mea-
surement scheme.

Based on our analysis contained in the previous section,
it can be shown that D4 (30) is nonzero for all two-qubit
entangled states (see Appendix A). Thus, we have to use full
information of the entangled state to show the violation of
the inequality (30). This motivates us to develop a criterion
that detects entanglement using a smaller number of moments
in 2 ⊗ 2 systems. In this section, we introduce a different
separability criterion based on R moments for 2 ⊗ 2 systems.
The criterion is formulated in the form of an inequality that in-
volves up to third-order moments for detecting entanglement
in a two-qubit system. In general, any separability criterion
for 2 ⊗ 2 system requires up to fourth-order moments, except
for a few separability criteria [13,24,25,27] that require up to
third-order moments.

A. Prerequisites

To develop the separability criterion for two-qubit sys-
tems, we need some prerequisites where we establish relations
between moments of a matrix with its singular values or
eigenvalues. It may not be an easy task to directly compute the
eigenvalues of a matrix; thus, bounds for eigenvalues are of
importance. Further, the bound on the eigenvalues expressed
in terms of moments may be useful for experimental esti-
mation. Let us note the following results that give the lower
bound and the upper bound on the largest eigenvalue of a
complex matrix in terms of the first three moments of the
matrix.

Result 1. Let A be a complex n × n matrix with real
eigenvalues λi such that λ1 � λ2. . . � λn. If Tk denotes the
kth-order moment of A, then one has [57]

λ1 � f (T1, T2, T3) := T1

n
+ b + √

b2 + 4a3

2a
(36)

where

a = T2

n
−
(

T1

n

)2
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and

b = 1

n3

(
n2T3 − 3nT2T1 + 2T 3

1

)
.

Result 2. Let A ∈ Mn(C) be a positive semidefinite matrix
with eigenvalues λ1 � λ2. . . � λn and Tk = Tr[Ak]. Then the
upper bound of the largest eigenvalue of A is the largest root
of the following cubic equation [58]:

T1x3 − 2T2x2 + T3x + T 2
2 − T1T3 = 0, (37)

i.e.,

λ1 � g(T1, T2, T3) (38)

where the upper bound g(T1, T2, T3) denotes the largest root of
(37). The explicit form of g(T1, T2, T3) is given by

g(T1, T2, T3) := 1

6T1

(
4T2 + 2 × 21/3r

(p+ √
q)1/3

+ 22/3(p + √
q)1/3

)
(39)

where

p = −27T 2
1 T 2

2 + 16T 3
2 + 27T 3

1 T3 − 18T1T2T3,

r = 4T 2
2 − 3T1T3,

q = p2 − 4r3.

Let ρ be a density matrix representing a 2 ⊗ 2 dimen-
sional state and let ρR denote the realigned matrix obtained
after applying the realignment operation. Let σmax(ρR) be
the largest singular value of ρR and let λmax((ρR)†ρR) be
the largest eigenvalue of (ρR)†ρR. Let λLB

max((ρR)†ρR) and
λUB

max((ρR)†ρR) denote, respectively, the lower and the upper
bound of λmax((ρR)†ρR). To develop our method, we use the
lower and upper bound discussed in Results 1 and 2. Using
(36) and (38) and since λi((ρR)†ρR) = σ 2

i (ρR), we have

λLB
max[(ρR)†ρR] � σ 2

max(ρR) � λUB
max[(ρR)†ρR] (40)

where λLB
max[(ρR)†ρR] = f (T1, T2, T3) and λUB

max[(ρR)†ρR] =
g(T1, T2, T3) are functions of T1, T2, and T3 for the matrix
(ρR)†ρR.

Now let us consider the following lemmas in which we de-
rive certain relations between moments of the matrix (ρR)†ρR

and the singular values of ρR. We use these lemmas later to
prove our main theorem.

Lemma 1. If σ ′
i s denote the singular values of the re-

aligned matrix ρR arranged in the descending order as
σ1(ρR) � σ2(ρR) � σ3(ρR) � σ4(ρR), then the following in-
equality holds:

4∏
j=2

[σ1(ρR) + σ j (ρ
R)] � λLB

max||ρR||1 +
√

|D3| (41)

where λLB
max ≡ λLB

max[(ρR)†ρR] denotes the lower bound of the
largest eigenvalue of (ρR)†ρR (see Appendix B for the proof).

Lemma 2. If ρ describes a 2 ⊗ 2 dimensional quantum state
and ρR denotes the realigned matrix of ρ, then we have

||ρR||21 � 2
√

D2 + T1 (42)

(see Appendix C for the proof).

Lemma 3. If σ ′
i s denote the singular values of the realigned

matrix ρR arranged in the descending order as σ1(ρR) �
σ2(ρR) � σ3(ρR) � σ4(ρR) and if D2 and T1 have their usual
meaning, then we have the following equality:∑

1<i< j

σ 2
i (ρR)σ 2

j (ρR) = D2 − σ 2
1 (ρR)

[
T1 − σ 2

1 (ρR)
]

(43)

where σ 2
1 (ρR) = σ 2

max(ρR) (see Appendix D for the proof).

B. Criterion

Now we are ready to discuss our separability criterion
based on realigned moments for 2 ⊗ 2 systems.

Theorem 2. Let ρ be a positive trace class linear operator
acting on the Hilbert space H2

A ⊗ H2
B. The realigned matrix ρR

has singular values arranged in order as σ1(ρR) � σ2(ρR) �
σ3(ρR) � σ4(ρR). If ρs denotes a separable state, then the
following inequality holds:

R2 ≡
√

3X 2/3 + 2Y − 2T1 − 1 � 0 (44)

where X and Y are the functions of the first three realigned
moments, given by

X = λLB
max

√
2
√

D2 + T1 +
√

|D3|
and

Y = T1 − λUB
max +

√
D2 − λUB

maxT1 + (
λLB

max

)2
.

Proof. Let us start with the first realigned moment T1. Using
(25), it can be expressed as

T1 =
(

4∑
i=1

σi
(
ρR

s

))2

− 2
∑
i< j

σi
(
ρR

s

)
σ j
(
ρR

s

)
. (45)

The second term of (45) can be expressed as

2
∑
i< j

σi
(
ρR

s

)
σ j
(
ρR

s

) =
∑
i< j

(
σi
(
ρR

s

) + σ j
(
ρR

s

))2

−
∑
i< j

σ 2
i

(
ρR

s

) + σ 2
j

(
ρR

s

)
(46)

=
∑
i< j

(
σi
(
ρR

s

) + σ j
(
ρR

s

))2 − 3T1 (47)

=
4∑

j=2

[
σ1
(
ρR

s

) + σ j
(
ρR

s

)]2

+
∑

1<i< j

[
σi
(
ρR

s

) + σ j
(
ρR

s

)]2 − 3T1.

(48)

Since the arithmetic mean of a list of non-negative real num-
bers is greater than or equal to their geometric mean and σ ′

i s
for i = 1 to 4 are non-negative real numbers, we have

4∑
j=2

[
σ1
(
ρR

s

) + σ j
(
ρR

s

)]2 � 3

( 4∏
j=2

[
σ1
(
ρR

s

) + σ j
(
ρR

s

)])2/3

.

(49)

012404-8



ENTANGLEMENT DETECTION IN … PHYSICAL REVIEW A 109, 012404 (2024)

Using Lemma 1, the right-hand side of the inequality (49) may
be simplified to

3

⎛⎝ 4∏
j=2

[
σ1
(
ρR

s

) + σ j
(
ρR

s

)]⎞⎠2/3

�3
(
λLB

max

∣∣∣∣ρR
s

∣∣∣∣
1 +

√
|D3|

)2/3
.

(50)

Using (50) and Lemma 2 in (49), we obtain

4∑
j=2

[
σ1
(
ρR

s

) + σ j
(
ρR

s

)]2

� 3
(
λLB

max

√
2
√

D2 + T1 +
√

|D3|
)2/3

(51)

= 3X 2/3. (52)

The second term of (48) can be expanded using Lemma 3 as∑
1<i< j

[
σi
(
ρR

s

) + σ j
(
ρR

s

)]2

2 =
4∑

i=2

σ 2
i

(
ρR

s

) + 2
∑

1<i< j

σi
(
ρR

s

)
σ j
(
ρR

s

)
(53)

� 2
[
T1 − σ 2

max

(
ρR

s

)] + 2
√ ∑

1<i< j

σ 2
i

(
ρR

s

)
σ 2

j

(
ρR

s

)
(54)

= 2
(
T1 − λUB

max

) + 2
√

D2 − σ 2
max

(
ρR

s

)[
T1 − σ 2

max

(
ρR

s

)]
(55)

� 2
(
T1 − λUB

max

) + 2
√

D2 − λUB
maxT1 + (

λLB
max

)2
(56)

= 2Y. (57)

Using (52) and (57) in (48), we get∣∣∣∣ρR
s

∣∣∣∣
1 �

√
3X 2/3 + 2Y − 2T1. (58)

Now we will use ||ρR
s ||1 � 1 in (58) to obtain the desired

result, i.e., if ρs is separable, then√
3X 2/3 + 2Y − 2T1 � 1 (59)

is hence proved.
Corollary 2. If any two-qubit state ρ violates the inequality

(44), i.e., if R2 > 0, then the state is entangled.

C. Examples

Example 1. The two-qubit isotropic state is given by [59]

ρ f = 1 − f

3
I2 ⊗ I2 + 4 f − 1

3
|ψ+〉〈ψ+|, 0 � f � 1 (60)

with |ψ+〉 = 1√
2
(|00〉 + |11〉) and I2 denotes the 2 × 2 iden-

tity matrix. One can easily verify that the isotropic state ρ f is
entangled for 1

2 < f � 1 using the PPT and matrix realign-
ment criteria, while the D(in)

3 criterion given in (4) ensures
that the state ρ f is entangled in the range 0.625 < f � 1. In
order to apply the R moment criterion on ρ f , our task is to
probe whether the inequality in (44) holds for ρ f . After simple

calculations, we get

T1 = Tr
[(

ρR
f

)†
ρR

f

] = 1
3 (1 − 2 f + 4 f 2).

Thus, for the isotropic state, the inequality (44) reads

R2 ≡
√

3X 2/3
f + 2Yf − 2T1 − 1 � 0. (61)

The above inequality is violated for 0.608 594 < f � 1 and
this implies that the state ρ f is entangled in this range which
is better than that provided by the D(in)

3 criterion.
Example 2. Consider the two-parameter family of 2 ⊗ 2

states represented by the density matrix [41]

ρs,t =

⎛⎜⎜⎜⎝
5
8 0 0 t

2

0 0 0 0

0 0 1
2

(
s − 1

4

)
0

t
2 0 0 1−s

2

⎞⎟⎟⎟⎠, t 
= 0,
1

4
< s � 1.

(62)

This state has nonpositive partial transpose for all values of the
state parameters t and s for which the state is defined. There-
fore, by the PPT criterion, it is entangled for any nonzero
value of the parameter t and 1

4 < s � 1.
Let us now apply the R moment criterion for the detection

of the entangled state belonging to the family of the states
described by the density operator ρs,t . The first moment of
the Hermitian operator (ρR

s,t )
†ρR

s,t can be calculated as T1 =
Tr[(ρR

s,t )
†ρR

s,t ] = 1
32 (21 − 20s + 16(s2 + |t |2)). Similarly cal-

culating T2 and T3 and putting these values in (44), we find
that the state ρs,t satisfies the inequality R2 > 0 for different
ranges of the state parameter s and t as shown in Fig. 4.
Further, to show the significance of R moment criteria, we
compare our criterion with partial transpose moment based
criteria such as p3-PPT and the D(in)

3 criterion given in (3) and
(4). It can be shown that the D(in)

3 criterion performs better
than the p3-PPT criterion for detecting entangled states in the
ρs,t family:

L2 > 0, for |t | >

√
20s2 − 25s + 5

16s − 26
. (63)

It is important to note that the R moment criterion detects
those entangled states in the ρs,t family which are detected
by neither partial transpose moments based criteria, such as
D(in)

3 and p3-PPT criteria, nor the realignment criterion. This
is illustrated in Fig. 4 when t ∈ [0.2, 0.25]. Similarly, we can
get identical region S = {t | − 0.25 � t � −0.2} of entangled
states detected by the R moment criterion but not by partial
moment based criteria.

VI. REALIZATION OF MOMENTS
OF THE REALIGNED MATRIX

In this section, we formulate a procedure to show how
the moments of the realigned matrix may be realized in an
experiment. Recently, it has been shown that the measurement
of the moments of partially transposed density matrices is
practically possible [34–37]. In this paper, we consider the
moments of the realigned matrix for its possible realization
in an experiment. To achieve our aim, we adopt the idea pre-
sented in [36,37], where it has been shown that the kth partial
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FIG. 4. This figure shows the detection region of entangled states
belonging to the ρs,t family of states. Here the x axis and y axis denote
the state parameters t and s, respectively. The states lying in the blue
(medium gray) region are detected by the R moment criterion, but
not by either the criterion using partial transpose moments or the
realignment criterion. The states lying in the red (dark gray) region
are detected by the R moment as well as the realignment criterion.
The yellow (light gray) region depicts the states detected by p3-PPT
as well as the D(in)

3 criterion.

moment can be measured using SWAP operators [60] on k
copies of the state. The technique involved is to express the
matrix power as the expectation of the permutation operator.
We adopt this approach applied to the realigned matrix in
order to show how the measurement of realigned moments
could be accomplished.

For a d ⊗ d dimensional state ρ, the k copies are given by
⊗k

c=1ρc. Let mk denote the kth moment of the realigned matrix
ρR, i.e.,

mk = Tr[(ρR)k]. (64)

The kth moment of ρR can be expressed in terms of the
expectation value of the permutation operator as

mk = Tr
[( ⊗k

c=1 ρR
c

)
Pk
]

(65)

where P is the normalized permutation operator defined as
P = 1

d

∑d−1
i, j=0 |i j〉〈 ji| [61]. It is also known as the SWAP

operator.
Since the separability criteria presented in Theorems 1 and

2 are based on the moments of the realigned matrix, we need
to estimate the moments of the matrix (ρR)†ρR. In particu-
lar, we show here the procedure of determining the first and
second moments of (ρR)†ρR, which are denoted by T1 and
T2, respectively. Consider the following inequality that gives a
relation between trace norm and Frobenius norm denoted by
||.||1 and ||.||F respectively, of the realigned matrix ρR [62],
given by

||ρR||1 �
√

k||ρR||F (66)

where k is the rank of ρR. The first moment of the realigned
matrix is given by

m1 = Tr[ρR]. (67)

Applying the result Tr[ρR] � ||ρR||1 and using the above in-
equality (66), we get

m1 = Tr[ρR] �
√

k||ρR||F =
√√√√k

k∑
i=1

σ 2
i (ρR) =

√
kT1.

(68)

Hence, we have

T1 � m2
1

k
. (69)

As the derived separability criterion depends on the singular
values of the realigned matrix, we further need to estimate the
singular values of ρR. Here we use the result [63]

σ j (ρ
R) � m1

d2
+
√

d2 − j

j

(
T1 − m2

1

d2

)
(70)

where 1 � j � k. The above inequality (70) holds when

T1 � m2
1

j
. (71)

Now, combining (69) and (71), the first moment of (ρR)†ρR is
bounded from above and below by

m2
1

k
� T1 � m2

1

j
, 1 � j � k. (72)

It may be observed that the optimal value of T1 may be ob-
tained by substituting j = k in (72), which turns out to be

T opt
1 = m2

1

k
. (73)

Next, we obtain the estimate of T2 for which we apply the
following result. For any two positive semidefinite matrices A
and B in Mn(C), the following matrix inequality holds [64]:

(Tr[AB]q) � (Tr[A])q(Tr[B])q (74)

where q is a positive integer. Now inserting A = B =
(ρR)†(ρR) and q = 1 in the above inequality, (74) reduces to

T2 = Tr[((ρR)†(ρR))2] � (Tr[(ρR)†(ρR)])2 = (T1)2. (75)

On the other hand, the lower bound turns out to be [63]

T2 � T 2
1

d2
. (76)

Combining (75) and (76), the bounds on T2 can be expressed
in terms of m1, given by

m4
1

d2k2
� T2 � (m1)4

j2
, 1 � j � k. (77)

The optimal range of T2 may be obtained by putting j = k,
which is given by

m4
1

d2k2
� T opt

2 � (m1)4

k2
. (78)
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Therefore, T opt
1 and T opt

2 may be experimentally determined
by measuring the first moment m1 of ρR. It may be noted that
the jth moment of (ρR

AB)†ρR
AB can be bounded using its first

moment [61], i.e.,

[
σ 2

min(ρR
AB

)] j−1
T1 � Tj �

[
σ 2

max

(
ρR

AB

)] j−1
T1. (79)

For 2 ⊗ 2 dimensional systems,one may use the estimation
for the jth moment given in (79) in the R moment criterion
given in Theorem 2. Since, the quantities D2, D3, λLB

max, and
λUB

max are functions of T1, T2, and T3, the expression for X and
Y in Theorem 2 can be expressed in terms of the first moment
T1. Here, we can use (70) to estimate σ 2

min(ρR
AB) and σ 2

max(ρR
AB),

i.e., for σ1(ρR
AB) � σ2(ρR

AB) � σ3(ρR
AB) � σ4(ρR

AB), and for j =
2, 3, we have

Tj �
[
σ 2

1

(
ρR

AB

)] j−1
T1 (80)

� T1

⎛⎝m1

d2
+ d

√
T1 − m2

1

d2

⎞⎠2( j−1)

(81)

where m2
1

d2 � T1 � m2
1. This idea can be generalized to d ⊗ d

dimensional systems as well. Since Dk given in Theorem 1 is
a function of the moments up to kth order, i.e., T1, T2, . . . , Tk ,
we can estimate each Tj in terms of T1 using (79).

It may be noted that the R moment criterion depends on
the value k, which is the number of nonzero singular values
of ρR. The value of k may be estimated as follows from the

dimension d of the system. From (72), we have m2
1

k � T1 �
m2

1
j where 1 � j � k � d2. Now if k is unknown, it can be

estimated by first assigning it the maximum value, i.e., d2

for the d ⊗ d dimensional system. Subsequently, we can put
k = d2 − 1, d2 − 2 and so on such that (72) holds and check
whether the inequality (23) is violated. If the inequality fails
to be violated for a particular value of k, one may assign
the previous value in the sequence as the experimentally
obtained value of k. Note that even if the dimension d of
the system is unknown, it can be estimated experimentally
using a dimension witness [65], that can be implemented as
a device independent estimation technique, in which relevant
information about an unknown system is obtained solely from
the measurement data [66].

Now since ρR is not physically realizable, we need to
first express it in terms of a physically realizable operator
using an approximated map R̃ called the structural physical
approximation [32]. The action of the SPA map on realigned
matrix ρR may be defined as [45]

ρ̃R = p

d2
Id⊗d + (1 − p)

Tr[ρR]
ρR where 0 � p � 1. (82)

The approximated map ρ̃R is positive as well as completely
positive when [45]

p � d2l

m1 + d2l
(83)

where l = max[0,−λLB
min[ρR]] and λLB

min[ρR] can be expressed
as

λLB
min[ρR] = m1

d2
−
√

(d2 − 1)

(
m2

d2
−
(m1

d2

)2
)

. (84)

It may be observed from (82) that the realigned matrix de-
scribed by the density operator ρR is proportional to its SPA
operator ρ̃R, i.e.,

ρR ∝ ρ̃R − p

d2
Id⊗d . (85)

Hence, the kth moment of ρR may be estimated as

mk � Tr

[(
⊗k

c=1

(
ρ̃R

c − p

d2
Id⊗d

))
Pk

]
(86)

= Tr

[(
⊗k

c=1 ρ̃R
c

)
Pm − p

d2
Pk

]
(87)

= Tr

[(
⊗k

c=1 ρ̃R
c

)
Pk

]
− p

d2
Tr[Pk] (88)

where p ∈ [ d2l
m1+d2l , 1]. Since ρ̃R

c is a Hermitian, positive

semidefinite operator with unit trace, sk := Tr[(⊗k
c=1ρ̃

R
c )Pk]

can be measured using controlled swap operations [32,60].
In particular, we show in Appendix E how the first moment

m1 may be determined. The first moment m1 of ρR may be
estimated in terms of s1 using the relations (E9) and (E10)
given in Appendix E. Since these relations are expressed
in terms of s1 = Tr[(̃ρR)P], the first moment of realigned
matrix ρR can be estimated experimentally. It can be shown
that the second moment of the realigned matrix can also be
estimated similarly. Hence, the kth realignment moment may
measured using (88). Thus, this scheme can be generalized to
higher-dimensional systems as well. Hence, the measurement
of the moments mk of the realigned matrix may be practically
possible.

VII. CONCLUSION

In this paper, we have introduced a separability criterion for
detecting the entanglement of arbitrary-dimensional bipartite
states based on partial information of the density matrix by
employing realigned moments. Our proposed approach en-
ables the detection of both PPT and NPT entangled states
within the same framework using low-ordered moments of
the realigned matrix. The formalism presented here is thus ad-
vantageous compared to the recently formulated entanglement
detection schemes using partial transpose moments [13,24,25]
which fail to detect bound entangled states.

We have demonstrated the significance of our separability
criterion with the help of several examples of higher-
dimensional states. We have compared the effectiveness of our
criterion with other partial transpose moment based criteria.
Our R moment criterion for m ⊗ n systems is further signifi-
cant since it can detect certain NPT entangled states that are
undetected by the criteria based on partial transpose moments.
Moreover, our separability criterion can detect certain bound
entangled states that are not detected by another recently
proposed criterion [28] using realigned moments.
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Additionally, for two-qubit systems, we have shown that
our approach can be slightly modified to yield another separa-
bility criterion that can detect entanglement in 2 ⊗ 2 systems
without requiring complete information about the quantum
state. Interestingly, we have found that our realigned moment
based criterion detects some two-qubit entangled states that
are detected by neither partial moment based criteria [24,25]
nor matrix realignment criteria [11,12]. In [67], the authors
have proposed a method based on permutation moments for
the detection of the multipartite entangled state. They have
shown that their criterion reduces to partial transposition and
realignment criteria in particular cases. In their criterion, odd-
order moments are inaccessible and their proposed criterion
needs 2n copies of the entangled states to calculate the nth-
order moment. On the other hand, odd and even moments are
accessible in our criterion and it needs only n copies of the
state to calculate the nth-order moment.

Finally, we have presented a scheme for the measurement
of the moments of the realignment matrix in order for our
entanglement detection criterion to be realized in practice. We
conclude by noting that our proposed entanglement detection
approach should be experimentally implementable through
the combination of techniques associated with structural
physical approximation for realignment [32,45], and SWAP
operations for measuring density-matrix moments [36,37].
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APPENDIX A: NONEXISTENCE OF THE
NON-FULL-RANK REALIGNED MATRIX OF TWO-QUBIT

ENTANGLED STATES

In this section, we will show that the coefficient D4 will
not take value zero for any entangled two-qubit state. Let us
consider an arbitrary two-qubit state that can be transformed
by local filtering operation into either the Bell-diagonal state
ρ (BD) = ∑4

i=1 pi|φi〉〈φi|, where |φi〉 denote the Bell states, or
the states described by the density operator ρ (1) which is of
the form [68]

ρ (1) = 1

2

⎛⎜⎜⎝
1 + c 0 0 d

0 0 0 0
0 0 b − c 0
d 0 0 1 − b

⎞⎟⎟⎠ (A1)

where the state parameters b, c, and d satisfy any one of the
following.

(C1) −1 � b < 1, c = −1, d = 0.
(C2) b = 1, −1 < c � −1, d = 0.
(C3) −1 � b < 1, −1 < c � b, d � |√(1 − b)(1 + c)|.
Case I. Let us consider the case when after the application

of filtering operation on any two-qubit state the state is trans-
formed as ρ (1). The state ρ (1) represents an entangled state if
the following condition holds.

(E1) b, d ∈ R, c � b, d 
= 0.

The realigned matrix of ρ (1) is denoted by (ρ (1) )R and it is
given by

(ρ (1) )R = 1

2

⎛⎜⎜⎝
1 + c 0 0 0

0 d 0 0
0 0 d 0

b − c 0 0 1 − b

⎞⎟⎟⎠. (A2)

The determinant of (ρ (1) )R is given by

det[(ρ (1) )R] = (1 − b)(1 + c)d2

16
. (A3)

Using the conditions C1–C3 and E1 in the determinant
det((ρ (1) )R), it follows that the determinant must not be equal
to zero. Thus, the Hermitian matrix ((ρ (1) )R)†(ρ (1) )R is a full-
rank matrix. Therefore D4 
= 0 for any two-qubit entangled
state ρ (1).

Case II. If the state is transformed as a Bell-diagonal
state ρ (BD), then also it can be shown that the entanglement
condition and det((ρ (BD))R) = 0 do not hold simultaneously.
This implies that in this case too D4 
= 0 for any two-qubit
entangled state ρ (BD). Thus, combining the above two cases,
we can say that D4 
= 0 for any two-qubit entangled state.

APPENDIX B: PROOF OF LEMMA 1

The left-hand side of inequality (41) can be expressed as

4∏
j=2

[σ1(ρR) + σ j (ρ
R)]

= σ 2
max(ρR)||ρR||1 +

∑
i< j<k

σi(ρ
R)σ j(ρR)σk (ρR) (B1)

� λLB
max||ρR||1 +

√ ∑
i< j<k

σ 2
i (ρR)σ 2

j (ρR)σ 2
k (ρR) (B2)

= λLB
max||ρR||1 +

√
|D3| (B3)

where the inequality (B2) follows from the fact that
(
∑n

i=1 xi )2 � ∑n
i=1 x2

i holds for positive integers xi, i =
1, 2, . . . , n.

APPENDIX C: PROOF OF LEMMA 2

Equation (45) can be rewritten as

||ρR||21 = 2
∑
i< j

σi(ρ
R)σ j (ρ

R) + T1. (C1)

Applying the inequality (
∑n

i, j=1 xi j )2 � ∑n
i, j=1 x2

i j in (C1) for
xi j = σi(ρR)σ j (ρR), we have∑

i< j

σi(ρ
R)σ j (ρ

R) �
√∑

i< j

σ 2
i (ρR)σ 2

j (ρR). (C2)

Using the inequality (C2), Eq. (C1) reduces to

||ρR||21 � 2
√∑

i< j

σ 2
i (ρR)σ 2

j (ρR) + T1 (C3)

= 2
√

D2 + T1. (C4)
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APPENDIX D: PROOF OF LEMMA 3

The left-hand side of (43) can be expressed as∑
1<i< j

σ 2
i (ρR)σ 2

j (ρR)

= σ 2
2 (ρR)σ 2

3 (ρR) + σ 2
2 (ρR)σ 2

4 (ρR)

+ σ 2
3 (ρR)σ 2

4 (ρR) (D1)

= D2 − σ 2
1 (ρR)

(
4∑

i=2

σ 2
i (ρR)

)
(D2)

= D2 − σ 2
1 (ρR)

[
T1 − σ 2

1 (ρR)
]
. (D3)

APPENDIX E: ESTIMATION OF THE FIRST MOMENT
OF THE REALIGNED MATRIX

Equation (88) may be reexpressed for k = 1 as

m1 � Tr[(̃ρR)P] − p

d2
Tr[P] (E1)

= Tr[(̃ρR)P] − p

d2
(E2)

� Tr[(̃ρR)P] − l

m1 + d2l
. (E3)

We have used (83) in the last step. Therefore, the inequality
(E3) may be rewritten as

m1 + l

m1 + d2l
� Tr[(̃ρR)P] := s1. (E4)

Simplifying (E4), we get

m2
1 + m1(d2l − s1) + l (1 − d2s1) � 0. (E5)

Solving the above quadratic equation for m1, we have

−(d2l − s1) −
√

(d2l − s1)2 − 4l (1 − d2s1)

2
� m1

� −(d2l − s1) +
√

(d2l − s1)2 − 4l (1 − d2s1)

2
. (E6)

For m1 to be real, we have

(d2l − s1)2 − 4l (1 − d2s1) � 0 (E7)

⇒ d4l2 + 2l (d2s1 − 2) + s2
1 � 0. (E8)

Inequality (E8) holds when either l � 2−d2s1+2
√

1−d2s1

d4 or

l � 2−d2s1−2
√

1−d2s1

d4 .

Case 1. When 2 − d2s1 + 2
√

1 − d2s1 � d4l � d4

fl (s1) � m1 � fu(s1). (E9)

Case 2. When 0 � d4l � 2 − d2s1 − 2
√

1 − d2s1

gl (s1) � m1 � gu(s1) (E10)

where fl , fu, gl , and gu are functions of d and s1 given as
follows:

fl (s1) = 1

2
(−d2 + s1) (E11)

− 1

2d2

√
d8 + 2d6s1 + 4d2s1 + d4s2

1 − 8(1 + √
x),

fu(s1) = −1

d2
(x + √

x)

+ 1

2d2
(
√

d8 + 2d6s1 + 4d2s1 + d4s2
1 − 8(1 + √

x)),

gl (s1) = 1

d2
(−x + √

x −
√

1 + x − 2
√

x),

gu(s1) = s1

2
+ 1

d2

√
1 + x − 2

√
x (E12)

where x := 1 − d2s1.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555
(1935).

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[4] P. Horodecki and R. Augusiak, Quantum Inf. Proc. 199, 19
(2006).

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University, Cambridge,
England, 2000).

[6] J. S. Bell, Physics Physique Fizika 1, 195 (1964).
[7] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[8] O. Guhne and G. Toth, Phys. Rep. 474, 1 (2009).
[9] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[10] P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. Lett.
82, 1056 (1999).

[11] O. Rudolph, Quant. Inf. Proc. 4, 219 (2005).

[12] K. Chen and L. A. Wu, Quantum Inf. Comput. 3, 193 (2003).
[13] X.-D. Yu, S. Imai, and O. Guhne, Phys. Rev. Lett. 127, 060504

(2021).
[14] B. M. Terhal, Phys. Lett. A 271, 319 (2000).
[15] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys.

Rev. A 62, 052310 (2000).
[16] N. Ganguly, S. Adhikari, and A. S. Majumdar, Quantum Inf.

Process. 12, 425 (2013).
[17] S. Aggarwal and S. Adhikari, Quantum Inf. Process. 20, 83

(2021).
[18] S. Aggarwal and S. Adhikari, Ann. Phys. 444, 169043 (2022).
[19] D. Mayers and A. Yao, Quantum Inf. Comput. 4, 273 (2004).
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