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Sample-efficient estimation of entanglement entropy through supervised learning
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We explore a supervised machine-learning approach to estimate the entanglement entropy of multiqubit
systems from few experimental samples. We put a particular focus on estimating both aleatoric and epistemic
uncertainty of the network’s estimate and benchmark against the best-known conventional estimation algorithms.
For states that are contained in the training distribution, we observe convergence in a regime of sample sizes in
which the baseline method fails to give correct estimates, while extrapolation only seems possible for regions
close to the training regime. As a further application of our method, highly relevant for quantum simulation
experiments, we estimate the quantum mutual information for nonunitary evolution by training our model on
different noise strengths.
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I. INTRODUCTION

The ultimate feat in probing the quantum nature of
quantum many-body systems consists of understanding their
entanglement properties [1]. Insights into phenomena such
as the thermalization of closed quantum systems and many-
body localization are fundamentally linked to entanglement
[2–4], meaning the coherent delocalization of information
among system constituents. The certification of entanglement
is referred to as entanglement witnessing [5,6] and has been
achieved in many systems of interest, including Bose-Einstein
condensates [7], photonic systems [8], atoms in optical lattices
[9], and many more. At the same time, the quantification of
entanglement is disparately more challenging, as one naïvely
requires the (sub-)system’s density matrix ρ in order to com-
pute the von Neumann entropy S = −tr(ρ ln ρ) or its Renyi
extensions, which is of interest due to its role as an indicator
of quantum phase transitions [10] or its evolution in dynam-
ical systems [2]. However, as full tomography of ρ becomes
prohibitively expensive for larger systems due to the curse of
dimensionality, it becomes increasingly challenging to obtain
reliable estimates of entanglement entropies at reasonable
experimental and computational costs [11,12]. One option
to minimize these costs consists of restricting the functional
form of the state to a certain type, decreasing the number
of variational parameters at the expense of introducing a
bias [13–27]. Notable asymptotically unbiased estimators that
have been introduced to address these scaling issues include
shadow tomography [28] and distance-based approaches [29].
While being more feasible than full scale tomography of the
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exponentially large density matrix ρ, the sample complexity
of these methods is still too high, even for subsystems includ-
ing only a small number of qubits, motivating the search for
novel estimation schemes.
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FIG. 1. Visual description of the proposed procedure. We classi-
cally simulate a system of interest described by ρ and store a quantity
of interest, e.g., the entanglement entropy S = − ln(trρ2), which
is difficult to estimate from samples. Simultaneously, we generate
synthetic measurement data S, which we use in a next step to learn
a function that maps S to S. The function we propose for this is
a deep neural network that, in a first step, embeds all samples in
a latent space, before mapping the set of latent space embeddings
into another latent space, in a permutation invariant fashion. From
there on, we use a feed-forward net to predict both the mean and
the standard deviation of the estimate. Once trained, the model can
be employed on unlabeled experimental data to give estimates for
quantities with otherwise infeasible sample complexity, such as en-
tanglement entropies.
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To overcome this challenge, we explore a supervised
machine-learning method that aims to estimate entropic quan-
tities of quantum states, given a small set of samples. The
approach is illustrated in Fig. 1. We are motivated by recent
scientific breakthroughs based on supervised learning such as
AlphaFold [30], which demonstrate the capability of modern
deep-learning algorithms to find seemingly intractable maps
with high complexity and no apparent structure. Supervised
applications in the realm of quantum physics have, for ex-
ample, been explored in Refs. [31–33]. A common goal is to
build a controlled estimator, meaning a reliable treatment of
uncertainties of the network output, which is why we put a
particular emphasis on their estimation. In contrast to related
work by Koutný et al. [34], our aim is to use as few samples
as possible, being inspired by interacting spin systems rather
than photonic experiments, thereby presenting a complemen-
tary approach to the problem. Additionally, various works
have studied the problem of entanglement classification em-
ploying machine-learning tools [35–38], while we focus on
entanglement quantification.

We show that the proposed machine-learning method is
able to outperform the more general method proposed in
Ref. [29] when estimating the second-order Rényi entangle-
ment entropy, provided that we compare them on the domain
the network was trained on (in-distribution). We also exam-
ine the network’s ability to generalize to new domains and
find that extrapolation is expectedly challenging. Finally, to
motivate the use of the proposed method also in experimental
scenarios, we study the performance in the presence of noise
of varying type and strength and demonstrate correct estima-
tion of the quantum mutual information.

II. PHYSICAL SYSTEM

While the proposed approach is applicable to any clas-
sically simulatable quantum system, we focus on the 1D
transverse-field Ising model as a benchmark system.

Its Hamiltonian is given by

H = −J
N∑

i=1

σ (i)
z σ (i+1)

z + h
N∑

i=1

σ (i)
x , (1)

where J � 0 and we employ periodic boundary conditions.
We generate entangled states by quenching the paramagnetic
ground state, |ψ+〉 = |+〉⊗N , to the critical point J = h = 1.
We consider both unitary time evolution, governed by the
Schrödinger equation

i
∂

∂t
|ψ〉 = H |ψ〉 |ψ (t = 0)〉 = |ψ+〉, (2)

and nonunitary time evolution, determined by the Lindblad
master equation

∂ρ
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2
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)
,

ρ(t = 0) = |ψ+〉〈ψ+|. (3)

The jump operators model single-qubit noise, where σz cor-
responds to dephasing and σ− = 1

2 (σx − iσy) corresponds to
decay. The noise strength is determined by the parameters
γz, γ− � 0. More details regarding the examined physical
states are given in the following sections.

III. THEORETICAL CONCEPTS

We divide the system under scrutiny into the two sub-
systems A and B, forming a bipartition with each subsystem
representing half of the spin chain. For a quantum state ρ, we
define the reduced density matrix

ρA = TrB(ρ). (4)

For pure states ρ, the Rényi entanglement entropy of order
n > 1 is defined as

S(n)(ρA) = 1

1 − n
ln

[
Tr

(
ρn

A

)]
, (5)

and we focus on the case n = 2 to allow for straightfor-
ward comparison with the conventional method proposed in
Ref. [29].

However, we note that the herein developed method does
not depend on this choice and can be applied to any quantity
of interest. In fact, we also estimate the quantum mutual
information

I (ρ) = S(1)(ρA) + S(1)(ρB) − S(1)(ρ), (6)

in the case of dissipative dynamics, generating mixed states,
for which subsystem Rényi entropies no longer constitute a
faithful measure of quantum correlations. Here S(1) is the von
Neumann entropy, which can be seen by taking the limit

S(1)(ρ) := lim
n↘1

S(n)(ρ) = −Tr[ρ ln(ρ)]. (7)

In the remainder of this work we abbreviate the second-order
Rényi entropy of the half chain as HCE (half chain entropy)
and the quantum mutual information as MI.

Our aim is to estimate the aforementioned quantities based
on a set of projective measurements. Such projective mea-
surements, taken in a single-basis configuration, only partly
describe the quantum state at hand. To estimate entanglement
entropies, one also requires phase information, which can be
obtained by measuring in different basis configurations. If one
is able to unambiguously infer the quantum state from the
expectation values of a set of measurement operators, the set is
said to be informationally complete. Positive operator valued
measures (POVMs) [39] formalize this setup. A POVM M is
defined to be a finite set of positive self-adjoint operators,

M = {M1, M2, . . .}, Mi � 0, M†
i = Mi, (8)

that sum to unity,
∑

i Mi = 1. Each Mi represents one possible
measurement outcome, which is observed with the probability

p(Mi ) = Tr(ρMi ). (9)

Motivated by the simplicity of its experimental realization
we here choose the Pauli-4-POVM, which is described by the
measurement operators

M1 = 1
3 |+〉〈+|, M2 = 1

3 |L〉〈L|, M3 = 1
3 |0〉〈0|,

M4 = 1 − M1 − M2 − M3, (10)
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where |+〉, |L〉, and |0〉 are the +1 eigenstates of the σx, σy,
and σz operators. Operationally, this POVM can be imple-
mented by measuring in all three Pauli bases and subsuming
the outcomes with eigenvalues −1 in each basis under M4.
The Pauli-4-POVM can be easily generalized for N qubits,
by taking N-fold tensor products of the aforementioned mea-
surement operators. A quantum state ρ of a spin chain
can then be associated with a probability distribution Pρ of
generalized measurement outcomes, labeled by multi-indices
a ∈ {1, 2, 3, 4}N , given by

Pρ (a) = Tr

(
ρ

[
N⊗

i=1

Mai

])
. (11)

IV. DATA GENERATION

Given a set of NM measurement outcomes sampled from
this probability distribution, the network will be trained to es-
timate quantities such as the HCE and the MI of the quantum
state ρ. In order to generate the training dataset, it is necessary
to classically simulate the system. Obviously, this limits the
system-size regimes in which the proposed method can oper-
ate. Nevertheless, it is a meaningful extension over previous
approaches as there is a gap between system sizes for which
unbiased estimators give reliable results and system sizes
which may be classically simulated. This statement holds
irrespective of the Hamiltonian of the system and can even be
extended to other quantum simulation platforms besides spin-
1/2’s. The dataset comprises samples from Ns states that differ
in their physical parameters, for example, the evolution time
t , and their associated label such as the HCE and MI. For each
state we sample NB batches of NM measurement outcomes
from the POVM probability distribution using a Markov chain
Monte Carlo algorithm. The total shape of the training dataset
is thus given by (NS, NB, NM , N, 4) where the last dimension
arises from an additional one-hot encoding of the four possible
single-spin measurement outcomes introduced in Eq. (10).

V. NETWORK ARCHITECTURE

The network structure can be divided into three building
blocks illustrated in Fig. 1. First, all POVM samples are
embedded in a latent space using a long short-term memory
(LSTM). The advantage of using a recurrent architecture is its
ability to process inputs of arbitrary length, which allows one
to utilize the same architecture for systems of different sizes,
although we do not explicitly exploit this feature in the present
work. The data is then be further transformed by a fully
connected, permutation equivariant graph attention network
(GAT). Permutation invariance is obtained by summation of
all nodes of the GAT. A permutation-invariant architecture
restricts the search space to the relevant domain, eliminating
redundant degrees of freedom from the parameter space and
facilitating an easier optimization [40].

In the last step the output of the GAT is evaluated by a
dense feed-forward neural network (DFNN) with two output
neurons (S̄, σS̄ ) which we interpret as the mean S̄ of the
quantity of interest and its statistical error σS̄ of the estimation.
A more detailed description of the network structure is given
in the Appendix.

VI. TRAINING AND UNCERTAINTY QUANTIFICATION

We train the network in a supervised fashion and generate
training data using exact dynamics, as described above. If one
is interested in systems of larger size, one could also generate
training data using approximate methods, such as tensor net-
works [41,42] or neural quantum states [43] by employing the
replica trick [44].

We define the loss as

L(S̄, σS̄; S; θ ) = (S − S̄)2

σ 2
S̄

+ ln
(
σ 2

S̄

)
, (12)

where S is the label, i.e., the true Rényi entropy and θ denotes
the vector of network parameters. The loss takes the form of
the negative log-likelihood of a Gaussian distribution, from
which the standard L2 loss is recovered by setting σS̄ to 1 [45].
The uncertainty captured by σS̄ is an estimate of the aleatoric
uncertainty [46] and stems from the limited information on the
probability distribution that can be inferred from the finite set
of samples contained in the input. The aleatoric uncertainty is
thus an inherent property of the dataset and cannot be reduced
by means of a larger training dataset or similar.

By contrast, the reducible part of the total uncertainty
which is determined by the choice of model, training scheme,
etc., is usually called epistemic uncertainty. We attempt to
estimate the epistemic error by individually training an en-
semble of M networks with the same structure, yet different
initial parameters, and averaging their outputs, after training is
finished. This approach is especially effective if the network is
validated on domains that it did not encounter during training,
called out-of-distribution (OOD). Referring to the outputs of
model m as (S̄m, σS̄m

), the total uncertainty of the ensemble is
given by [45]

σ 2
S̄ = 1

M

(
M∑

m=1

σ 2
S̄m

+ S̄2
m

)
−

(
1

M

M∑
m=1

S̄m

)2

. (13)

The total computational cost of the approach is divided
between training data generation and training of the network.
In the instance of Fig. 4, the generation of the dataset took
roughly 6 h on a single NVIDIA A100 GPU, whereas the
training of the network took a little more than 3 h; these are
representative values for all examples reported in this work.

VII. RESULTS

A. Unitary evolution

The first application we consider is to predict the HCE of
states obtained via unitary time evolution of the initial state
|ψ+〉 with parameters J = h = 1. We set the system size to
N = 10 and train the network on NS = 100 quantum states
that were taken at different points of the time interval ht ∈
[0, 5]. The batch size and sample size were chosen to be NB =
50 and NM = 1000. We validate the network during training
on an independent dataset with the same parameters. In Fig. 2
the network’s predictions and the evolution of the loss during
training are shown. It is apparent that the network is capable
of correctly estimating the HCE for a rather small dataset size.
The HCE is shown as a function of time for convenience,
but we want to emphasize that the network has information
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FIG. 2. Training the network for N = 10. Network performance
on the training (green crosses) and validation (blue circles) dataset,
compared to training labels (red line). After 4000 epochs of train-
ing, the parameters with minimal loss on the validation dataset are
selected. Inset: Loss on training (green line, lower) and validation
(blue line, upper) datasets.

on neither the particular quantum state nor the time at which
the samples have been extracted from the unitary evolution.
Predictions are solely based on POVM measurement results.

B. Extrapolation and baseline comparison

We have demonstrated that the network succeeds at an
interpolation task, when validated on in-distribution (ID) data.
We now aim to investigate the network’s ability to estimate
entanglement entropy on OOD data. To this end we have
trained an ensemble of eight networks using the same hy-
perparameters and training dataset as in the previous case,
but different initializations, and evaluated their performance
on quantum states on the larger time interval ht ∈ [0, 10] as
shown in Fig. 3. The predictions of the network seem sensible
even beyond the training region up to ht ≈ 7. In the regime
ht ∈ [7, 8.5], however, the error bars are severely underesti-
mated.

FIG. 3. Performance of the network (blue circles) trained only
on the left-hand side of the time interval (dashed gray line). Violet
crosses: Baseline method for NU = 2 and NM = 500. Yellow pluses:
Baseline method for NU = 300 and NM = 5000.

In order to obtain a better estimate of the performance
enhancement that our method gives, we here compare to the
method proposed in Ref. [29], which we use as a baseline. It
is based on NM projective measurements, taken with respect
to NU randomly chosen orthonormal bases, such that a to-
tal of NU NM measurements have to be performed. From the
measurement statistics, the subsystem purity tr(ρ2

A) and thus
the HCE of the system may be inferred as shown in Fig. 3
for two different choices of hyperparameters. In the first case
the predictions are based on a total of 1000 measurements per
state, using the same number of samples as the network. In the
second case, the total amount of measurements is 1.5 × 106.
One can see that the network requires orders of magnitude
fewer samples than the baseline to properly predict the HCE,
if it is evaluated on ID data. For OOD data it still outperforms
the baseline, if evaluated for 1000 measurements, but has
less predictive power compared to the baseline at 1.5 × 106

samples, which is, however, a prohibitively large number of
samples for current quantum simulation experiments.

C. Dissipative dynamics

If applied to noisy experimental data, robustness with
respect to the experimental control and noise parameters is re-
quired. To demonstrate the usefulness of the proposed method
in an actual experimental application, we now investigate the
ability of the network to estimate the mutual information be-
tween the subsystems A and B in a dissipative setting. We train
the network on data obtained by modeling the Lindblad equa-
tion (3) with the dephasing strength γz and the decay strength
γ−, considering a spin chain of length N = 8 in the transverse-
field Ising model with the initial state ρ = |ψ+〉〈ψ+|. Instead
of benchmarking on different evolution times, we instead limit
ourselves to a fixed time t = t∗ = 0.75 and vary the noise
strengths γz and γ−.

We train the network on an equidistant 5 × 5 grid of
noise strengths (γz, γ−) ∈ [0, 0.5]2 with NB = 50 batches of
NM = 1000 samples per noise configuration. During training
we validate the network on a dataset sampled from quantum
states with 20 randomly distributed noise configurations and
40 noise configurations which lie equidistantly spaced on a
randomly chosen cross section in the (γz, γ−) plane [Fig. 4(a),
blue]. After training we selected the parameters which min-
imized the loss on the validation dataset and evaluated the
performance of the network on a test set [Figs. 4(b) and 4(c)].

The network’s predictions are overall close to the labels.
We can therefore deduce that the network was indeed suc-
cessful in learning to estimate the MI for any noise strength.
This underlines the applicability of the proposed method to
experimental situations in which one often has a rough un-
derstanding of the underlying noise model, but no precise
knowledge of the noise strengths.

VIII. DISCUSSION

We have demonstrated the possibility of learning maps
from informationally complete POVM measurement data to
quantum entropies using deep neural networks, allowing us to
significantly reduce the sample complexity compared to the
baseline procedure [29]. While the estimator in Ref. [29] is
asymptotically unbiased, the approach that is followed here
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FIG. 4. (a) Training and validation data points in the (γz, γ−) plane. Green diamonds: Training set. Blue circles: Validation set, consisting
of 20 randomly distributed data points and 40 data points along a randomly chosen cross section (lower line). Red crosses: Test set, consisting
of 30 randomly distributed data points and 30 validation data points along a randomly chosen cross section (lower line). (b) Performance of
network (blue circles) on randomly scattered data points (red crosses). (c) Performance of the network (blue circles) on a cross section (red
line) of 30 data points.

is not. Instead, we rely on training a model on labeled data
and are therefore restricted to regimes that are classically
simulatable. However, this still expands on the system-size
regimes that one may probe using the method proposed in
Ref. [29] since the regimes that allow for classical simulations
comprise those for which one is able to generate sufficiently
many samples for Ref. [29] to give satisfactory results.

We tested the proposed method for both ID and OOD
data, observing good performance for interpolation tasks. In
extrapolation tasks, however, we find regimes in which all the
networks contained in the ensemble predict similar entropies,
resulting in uncertainties that are too small. However, since
uncertainty quantification is a highly active research field, one
can expect further advances in the estimation of epistemic
uncertainties, which will be directly applicable to the method
proposed here. In this context, an interesting future direction is
to further explore the extrapolation capabilities, particularly in
system size. Here, we wish to also point out that the proposed
method is not limited to the estimation of entropies and mutual
information, but to any quantity and system for which both
training data and labels can be generated synthetically.

The full implementation of the network architecture is
available through GitHub [47].
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APPENDIX: DETAILS OF NETWORK ARCHITECTURE

The input of the neural network contains NM POVM sam-
ples, with shape (N, 4) as they consist of N single-qubit
measurement results with four possible outcomes [one-hot
encoding, also see Eq. (11)]. As explained in the architec-
ture section of the main text, the network architecture is
divided into three parts. At the first instance each sample
is transformed by a layer of LSTM cells that iterates over
the single-qubit outcome, thereby mapping each sample into
a latent space of dimension F . The embedded sample set
therefore has dimension (NM, F ). The embedded sample set
is then treated by the GAT as a fully connected graph. During
the development stages of the project we observed that a
connected graph resulted in better accuracies compared to an
unconnected graph, albeit incurring a much higher computa-
tional cost. In each layer of the GAT, the nodes are updated
using self-attention [50]. We choose to use two layers and a
feature vector of dimension F ′, which corresponds to a trans-
formation (NM, F ) 
→ (NM, F ′) of the input. In order to obtain
a permutation-invariant quantity from the equivariant output
of the GAT we sum over all NM nodes and receive a single
invariant feature vector of dimension F ′ that encapsulates all
information of the sample set. Finally, this feature vector is fed
into a DFNN with two output neurons which correspond to the
prediction of the HCE and its aleatoric error. As an optimizer
for the parameters we have chosen ADAM [51]. The choice
of network hyperparameters is given in Table I.

TABLE I. Network hyperparameters.

Hyperparameter Value

RNN layers 3
RNN features (F ) 20, 20, 20
GAT layers 2
GAT features (F ′) 10, 10
DFNN layers 2
DFNN features 4, 2
Learning rate 0.0005
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