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Mode-pairing quantum key distribution (MP-QKD) can surpass the repeaterless rate-transmittance bound
(Pirandola-Laurenza-Ottaviani-Banchi bound) without requiring global phase locking, exhibiting remarkable
flexibility. However, MP-QKD necessitates equal communication distances in two channels, which is a chal-
lenging requirement in practical applications. To address this limitation, we extend the original MP-QKD to
asymmetric cases. Our decoy-state estimation confirms that asymmetric channel transmittances and asymmetric
intensities do not compromise the security of the protocol. We focus on the pulse-intensity relationship, a key
factor for optimizing the performance of asymmetric MP-QKD. Unlike previous asymmetric protocols, the
intensities of different bases in asymmetric MP-QKD cannot be decoupled. We introduce an optimal-pulse-
intensity method, adaptable to various scenarios, to enhance key rates by calculating ideal pulse intensities.
Simulation results in various representative scenarios indicate that our method effectively reduces the impact of
asymmetric channel distances on MP-QKD performance, enhancing its practical applicability.
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I. INTRODUCTION

Quantum key distribution (QKD) is a quantum cryptogra-
phy technology that enables two parties (commonly denoted
as Alice and Bob) to generate a shared secret key known only
to them, which can be used for the encryption and decryption
of messages. It relies on the principles of quantum mechanics
to guarantee the security of the key distribution process [1,2].
The introduction of the first QKD protocol, Bennett-Brassard
1984 (BB84) [3], sparked a surge in QKD research [4–7].
Indeed, several successful attacks have exploited security
vulnerabilities in real-world devices to target QKD systems,
shedding light on the limitations of the general QKD protocol
[8–12].

To enhance the security of QKD, device-independent
QKD (DI-QKD) [13,14] was proposed. This protocol re-
duces the assumptions needed for secure communication.
However, DI-QKD and some of its improved protocols
[15–18] place significant demands on devices. In con-
trast, measurement-device-independent QKD (MDI-QKD)
[19] reduces the demand for detector efficiency. Several note-
worthy experimental implementations were documented in
Refs. [20–24]. Nonetheless, the efficiency of key genera-
tion is significantly impacted by the transmittance of the
optical channel. The asymptotic key rate is limited by the
repeaterless rate-transmittance bound [Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound] [25]. The PLOB bound sets
a limit on how much information can be securely transmitted
over a quantum channel. Breaking through this bound means
that more information can be transmitted securely, enhancing
the performance of quantum communication systems (e.g.,
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the key rate). This issue is addressed by the twin-field QKD
(TF-QKD) proposal [26], which departs from previous coin-
cidence measurements and, instead, leverages single-photon
interference to surpass the PLOB bound. Additionally, many
variants of TF-QKD have been proposed, including phase-
matching QKD [27,28], sending-or-not-sending QKD [29],
and no-phase postselection TF-QKD [30]. Related experi-
ments, demonstrating the superior performance of TF-QKD
and its variants, were proposed in Refs. [31–35]. However,
implementing TF-QKD and its variants necessitates the use
of global phase locking, which significantly increases the need
for experimental equipment and thus reduces the practicality
of the protocol.

Recently, mode-pairing QKD (MP-QKD) [36] and its
experiment [37] were proposed, incorporating several en-
hancements over TF-QKD. On the one hand, MP-QKD
surpasses the PLOB bound by encoding key information using
relative phases, thereby obviating the need for global phase
locking. On the other hand, it offers the flexibility to switch
between different pairing schemes. As a result, MP-QKD
not only improves protocol performance but also enhances
the practicality and flexibility of quantum communication.
However, similar to most protocols, MP-QKD needs to be
implemented symmetrically. This entails ensuring that the
intermediate party is equidistant from both sides of the com-
munication. In real-life situations, achieving the condition of
equal distance is often challenging. Moreover, the variation
in distances between the parties results in differing channel
transmittances. If the original protocol had been employed,
this would have significantly reduced the key rate.

In this work, we extend the original MP-QKD to accom-
modate asymmetric scenarios and explore how to get better
performance in such cases. Through the decoy-state estima-
tion, we confirm that the security of the asymmetric MP-QKD
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FIG. 1. An example setup for asymmetric MP-QKD. The communicating parties, Alice and Bob, randomly and uniformly prepare weakly
coherent pulses with varying intensity (μa(b)

i ∈ {0, μa(b)}) and phase (φa(b)
i ∈ [0, 2π )), which they then send to the intermediate party, Charlie.

After Charlie performs an interference measurement through the beam splitter (BS) and announces the outcomes for detectors L and R, Alice
and Bob proceed to pair the successfully detected pulses and determine their coding bases according to specific rules. Z bases are used for key
generation, while other data are used for parameter estimation. The distances from Alice to Charlie and from Bob to Charlie are denoted as La

and Lb, respectively. Without loss of generality, it is assumed that La < Lb. For clear differentiation, the intensity value of each pulse is labeled
beneath its corresponding pulse. In addition, pulses successfully detected are denoted by solid lines, while undetected pulses are indicated by
dashed lines.

is not affected by the asymmetric channel transmittances and
asymmetric intensities. The practical way to improve the
performance of asymmetric protocols is to select the appropri-
ate pulse intensities. Unlike previous protocols that preselect
pulses for either key generation (typically referred to as the
Z basis) or decoy-state estimation (typically referred to as
the X basis), the original MP-QKD generates these two bases
only after they have been measured. In this context, previous
asymmetric protocols [38–41] can separate the pulse intensi-
ties across different bases. In asymmetric MP-QKD, however,
such decoupling of pulse intensities is unattainable, resulting
in a consistent relationship between pulse intensities for both
Z and X bases. Hence, we develop an optimal-pulse-intensity
method for asymmetric MP-QKD. This method enhances the
protocol performance by identifying pulse intensities that op-
timize the key rate. We study the relationships of optimal
intensities at various communication distances. Since the vari-
ation of the maximal pairing interval affects the performance
of MP-QKD, we investigate the trend of the optimal pulse in-
tensities in response to this variation. Furthermore, we plot the
optimal pulse intensities to verify their dependence on various
factors. A straightforward approach to address asymmetric
protocols involves adding extra fiber to the closer side, thereby
maintaining equal transmittance on both sides. However, this
adjustment will result in a notably reduced key rate due to
the overall lower transmittance. We compare and analyze
this method alongside the optimal-pulse-intensity approach
for various distance differences. Additionally, we simulate
the performance of asymmetric MP-QKD using the optimal-
pulse-intensity method for different pairing intervals. Finally,
we show this protocol’s tolerance for misalignment errors
across different differences between two distances. These sim-
ulations are conducted in the asymptotic case to demonstrate
the performance of asymmetric MP-QKD effectively.

The structure of this paper is summarized as follows. In
Sec. II, we describe the operational steps of the asymmetric
MP-QKD and present its schematic diagram. In Sec. III, we
demonstrate the security of asymmetric MP-QKD by employ-
ing decoy-state estimation. In Sec. IV, we discuss the method
to improve the performance of the protocol by selecting the

optimal pulse intensities and analyzing the optimal intensities
for different scenarios. In Sec. V, we simulate asymmetric
MP-QKD in various scenarios. In Sec. VI, we present our
conclusions and outlook.

II. ASYMMETRIC MODE-PAIRING QUANTUM KEY
DISTRIBUTION

The schematic of the asymmetric MP-QKD setup is shown
in Fig. 1. The details of this protocol are presented as follows.

(1) Preparation. At each time bin i ∈ {1, 2, . . . , N}, Alice

(Bob) prepares a weak coherent pulse |√μa
i eiφa

i 〉 (|
√

μb
i eiφb

i 〉),

where the intensity μa
i (μb

i ) and the phase φa
i (φb

i ) are ran-
domly and uniformly selected from {0, μa} ({0, μb}) and
[0, 2π ), respectively.

(2) Measurement. For each time bin i, Alice and Bob send
their pulses to an untrusted node named Charlie, which is
located between them. The communication distances from
Alice to Charlie and from Bob to Charlie are denoted as La and
Lb, respectively. Without loss of generality, it is assumed that
La < Lb. The corresponding channel transmittances are ηa and
ηb, respectively. Additionally, Charlie performs single-photon
interference measurements on the two received pulses and
publicly announces the measurement outcomes for detectors
L and R.

(3) Mode pairing. Alice and Bob repeat the first two steps
for N rounds. In rounds where successful detection occurs,
with only one of the two detectors clicking, Alice and Bob
group every two of these detected rounds into pairs. Note that
the number of pulses between the two paired rounds should
not exceed the maximal pairing interval λ.

(4) Basis sifting. For two paired rounds indexed as i and j,
Alice (Bob) labels them as a Z pair if their intensities satisfy
μa

i + μa
j = μa (μb

i + μb
j = μb), as an X pair if their inten-

sities satisfy μa
i = μa

j = μa (μb
i = μb

j = μb), or as “0” pair
if their intensities satisfy μa

i = μa
j = 0 (μb

i = μb
j = 0). Alice

and Bob announce their respective bases of each successful
pair. If the announced bases are either all X or all Z and
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have the same time bins, they are retained; otherwise, they
are discarded.

(5) Key mapping. For every Z pair located at positions i
and j, Alice (Bob) sets the raw key bit as κa = 0 (κb = 1) if
(μa

i , μ
a
j ) = (0, μa) [(μb

i , μ
b
j ) = (0, μb)] and as κa = 1 (κb =

0) if (μa
i , μ

a
j ) = (μa, 0) [(μb

i , μ
b
j ) = (μb, 0)]. For every X

pair located at positions i and j, Alice obtains the raw key
bit from the relative phase (φa

j − φa
i ) = θa + πκa, where the

key is κa = �[(φa
j − φa

i )/π ]mod2� and the alignment angle
is θa = (φa

j − φa
i )modπ . Bob extracts the raw key bit κb and

computes θb in a similar manner. If the detector click pattern
for the X pair is either (L, L) or (R, R), Bob retains the key
κb. However, if the click pattern is either (L, R) or (R, L), Bob
flips κb. Furthermore, Alice and Bob announce the alignment
angles θa and θb in the X pairs. If θa = θb, they keep the
paired rounds; otherwise, they discard the paired rounds.

(6) Parameter estimation. Alice and Bob use the Z pairs
to generate the raw key. They estimate the expected single-
photon pair ratio q̄(1,1) in all Z pairs, the phase error e(1,1)

of the single-photon pairs using decoy-state methods, and the
quantum bit error rate e(μa,μb),Z of the Z pairs.

(7) Postprocessing. After applying error correction and pri-
vacy amplification to the raw key bits, Alice and Bob obtain
the final secret key.

III. DECOY-STATE ESTIMATION

In this section, we show that the security of asymmet-
ric MP-QKD is not compromised by asymmetric channel
transmittances and asymmetric intensities. The security proof
for the original MP-QKD is provided in Ref. [36]. On this
basis, to analyze the security of asymmetric MP-QKD, it is
necessary to estimate both the bit error rate and the phase
error rate. The bit error rate can be directly obtained from
the experiment, while the phase error rate cannot be directly
measured. Therefore, we estimate the phase error rate of
asymmetric MP-QKD by extending the decoy-state estima-
tion from the original MP-QKD to the asymmetric case. Note
that the decoy-state estimation is analyzed with the infinite
key size.

We employ decoy-state analysis with three different pulse
intensities [42]. For each time bin i, Alice (Bob) randomly
selects the pulse intensities μa

i (μb
i ) from the set {0, νa, μa}

({0, νb, μb}) with corresponding probabilities s0, sνa (sνb), and
sμa (sμb), where the sum of these probabilities equals 1. To
simplify the discussion, the probabilities of the two parties
choosing an intensity are set to sνa = sνb and sμa = sμb .

Suppose Alice and Bob each send N pulses, with N being
sufficiently large. Based on these pulses, Alice and Bob pair
two locations indexed as i and j, including the locations with
unsuccessful clicks. The intensity vector of the (i, j) pair is
denoted as

�μ = (
μa

i + μa
j , μ

b
i + μb

j

)
, (1)

where μ
a(b)
i , μ

a(b)
j ∈ {0, νa(b), μa(b)} and, consequently,

μ
a(b)
i + μ

a(b)
j ∈ {0, νa(b), μa(b), 2νa(b), νa(b) + μa(b), 2μa(b)}.

The probability of Alice and Bob sending intensities �μ for the

(i, j) pair is denoted as

q �μ =
∑

(μa
i +μa

j ,μ
b
i +μb

j )=�μ
sμa

i
sμa

j
sμb

i
sμb

j
.

(2)

This probability is independent of the measurement results
announced by Charlie.

Alice and Bob can carry out photon-number measurements
on the ancillary systems. For each pair of locations (i, j),
the results of the photon-number measurements performed
by Alice and Bob are denoted as ka and kb, respectively. We
denote the photon numbers on the (i, j) pair as �k = (ka, kb).
Provided that Alice and Bob send intensities �μ for the (i, j)
pair, the probability of their photon-number measurements
yielding �k is denoted as

Pr(�k| �μ) = e−(μa
i +μa

j )−(μb
i +μb

j )

(
μa

i + μa
j

)ka(
μb

i + μb
j

)kb

ka!kb!
, (3)

which consists of the product of two Poisson distributions
since the intensity settings of the two parties are independent.

The probability of Alice and Bob measuring the photon
number on the (i, j) pair and obtaining the result �k is denoted
as q�k . Given the result �k, the probability for the intensity
setting on the (i, j) pair to be �μ is expressed as

Pr(�μ|�k) = q �μPr(�k| �μ)

q�k
= q �μPr(�k| �μ)∑

�μ′ q �μ′Pr(�k| �μ′)
, (4)

where the values of �μ′ are taken to be the same as those
of �μ. The distinct notation �μ′ is used to avoid ambiguity
in the summation. Pr(�μ|�k) and Pr(�k| �μ), just like q �μ, are
the prior probability distributions and are independent of
Charlie’s measurement outcomes.

After Charlie completes measurements and announces the
results for detectors L and R, Alice and Bob perform mode
pairing and basis sifting according to the pairing strategy. If
the intensity vector �μ on the (i, j) pair satisfies

μa
i μ

a
j = μb

i μ
b
j = 0, μa

i + μa
j + μb

i + μb
j �= 0, (5)

then it is a Z pair. We concentrate on decoy-state estimation
in the Z pair. Estimation in the X pair can be derived using a
similar approach.

The decoy-state estimation discussed next is performed on
Z pairs. Suppose Alice and Bob get MZ rounds of Z pairs
with successful detection, and among these, EZ rounds are
erroneous. Moreover, we denote the total number of pairs with
intensity setting �μ as M �μ,Z and the corresponding number
of erroneous pairs as E �μ,Z . The total and erroneous numbers
of pairs with photon numbers �k are denoted as MZ

�k and EZ
�k ,

respectively. Among these pairs, M �μ,Z
�k and E �μ,Z

�k denote the
pairs with intensity setting �μ. These values satisfy

MZ =
∑

�μ
M �μ,Z =

∑
�k

MZ
�k =

∑
�μ

∑
�k

M �μ,Z
�k ,

EZ =
∑

�μ
E �μ,Z =

∑
�k

EZ
�k =

∑
�μ

∑
�k

E �μ,Z
�k . (6)
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Throughout the protocol, Alice and Bob are aware of the val-
ues M �μ,Z and E �μ,Z , but they remain unaware of the values MZ

�k
and EZ

�k , which are fixed after Charlie announces the results.
In practice, Alice and Bob first perform photon-number

measurement, resulting in the outcome �k. Subsequently, both
parties randomly choose the intensity setting �μ based on �k.
Therefore, the intensity setting �μ is solely dependent on �k
and is independent of the result that Charlie announces. In
response, when considering all the generated Z pairs where
the photon-number measurement results in �k, the expected
ratio of different intensity settings should be the same as the
ratio of emitted states, i.e.,

M �μ,Z
�k

M �μ′,Z
�k

= Pr(�μ, �k)

Pr(�μ′, �k)
= q �μPr(�k| �μ)

q �μ′Pr(�k| �μ′)
. (7)

Within the set of MZ
�k pairs with the photon number of �k, the

number of pairs with the intensity setting �μ is denoted as the
random variable M�μ,Z

�k , which is determined by the ancillary
systems of Alice and Bob. Based on the preceding analysis,
the expected ratio of the intensity setting �μ is expressed as

E

⎛
⎝M�μ,Z

�k
MZ

�k

⎞
⎠ = Pr(�μ|�k) = q �μPr(�k| �μ)∑

�μ′ q �μ′Pr(�k| �μ′)
, (8)

where the variable M�μ,Z
�k is used to characterize the intensity

settings chosen by Alice and Bob. Correspondingly, among
the EZ

�k pairs with the photon number of �k, E �μ,Z
�k denotes the

number of pairs with the intensity setting �μ. The correspond-
ing ratio is

E

⎛
⎝E �μ,Z

�k
EZ

�k

⎞
⎠ = Pr(�μ|�k) = q �μPr(�k| �μ)∑

�μ′ q �μ′Pr(�k| �μ′)
. (9)

Based on Eqs. (8) and (9), we derive the following results:

E
[
M�μ,Z

�k
] = Pr(�μ|�k)MZ

�k , E
[
E �μ,Z

�k
] = Pr(�μ|�k)EZ

�k . (10)

The total and erroneous numbers of pairs with the intensity
settings �μ are denoted as M�μ,Z and E �μ,Z , respectively, where

M�μ,Z =
∑

�k
M�μ,Z

�k , E �μ,Z =
∑

�k
E �μ,Z

�k . (11)

Based on Eqs. (10) and (11), we can derive

E[M�μ,Z ] =
∑

�k
Pr(�μ|�k)MZ

�k ,

E[E �μ,Z ] =
∑

�k
Pr(�μ|�k)EZ

�k . (12)

For Z pairs, the total and erroneous ratios of pairs
with intensity setting �μ and photon numbers �k are

defined as

(m′)�μ,Z = M�μ,Z

N �μ , (e′)�μ,Z = E �μ,Z

N �μ , mZ
�k =

MZ
�k

N�k

,

eZ
�k =

EZ
�k

N�k

, (m′)�μ,Z
�k =

M�μ,Z
�k

N �μ , (e′)�μ,Z
�k =

E �μ,Z
�k

N �μ ,

(13)

where m(e) and m′(e′) are used to distinguish between dif-
ferent variables, N �μ := q �μN is the number of rounds with
intensity setting �μ, and N�k := ∑

�μ Pr(�k| �μ)N �μ is the number

of rounds with photon numbers �k.
Based on the analysis presented above, it can be concluded

that

E[(m′)�μ,Z ] = E

[
M�μ,Z

N �μ

]
= E[M�μ,Z ]

N �μ =
∑

�k Pr(�μ|�k)MZ
�k

q �μN

=
∑

�k

q �μPr(�k| �μ)∑
�μ′ q �μ′Pr(�k| �μ′)

MZ
�k

q �μN

=
∑

�k
Pr(�k| �μ)

MZ
�k∑

�μ′ Pr(�k| �μ′)(q �μ′N )

=
∑

�k
Pr(�k| �μ)mZ

�k ,

E[(e′)�μ,Z ] =
∑

�k
Pr(�k| �μ)eZ

�k . (14)

Similarly, we can obtain

E
[
(m′)�μ,Z

�k
] = E

⎡
⎣M�μ,Z

�k
N �μ

⎤
⎦ =

Pr(�μ|�k)MZ
�k

q �μN
= Pr(�k| �μ)mZ

�k ,

E
[
(e′)�μ,Z

k

] = Pr(�k| �μ)eZ
�k , (15)

where Pr(�k| �μ) is given by Eq. (3). Note that the variation in N
does not affect Eqs. (14) and (15).

E[(m′)�μ,Z ] and E[(e′)�μ,Z ] are obtained from the experi-
ments. Based on Eq. (14), one can estimate the lower bound
of mZ

(1,1) and the upper bound of eZ
(1,1), represented as mZ,L

(1,1)

and eZ,U
(1,1), respectively. Subsequently, one can apply Eq. (15)

to derive the lower bound of m �μ,Z
(1,1) and the upper bound of

e�μ,Z
(1,1), denoted as m �μ,Z,L

(1,1) and e�μ,Z,U
(1,1) , respectively.

The above is the decoy-state analysis in the Z basis. Similar
steps can be applied to obtain the bounds on the total and
erroneous ratios of single-photon pairs in the X basis (mX,L

(1,1)

and eX,U
(1,1)). In decoy-state estimation, the key-rate formula for

the asymptotic case in the asymmetric mode-pairing scheme
is expressed as

R = m(μa,μb),Z,L
(1,1)

[
1 − H

(
eX,U

(1,1)

mX,L
(1,1)

)]

− f m(μa,μb),Z H (e(μa,μb),Z )

= m(μa,μb),Z{q̄(1,1)[1 − H (e(1,1))] − f H (e(μa,μb),Z )}, (16)
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where m(μa,μb),Z,L
(1,1) denotes the lower bound on the ratio of

single-photon pairs with an intensity of �μ = (μa, μb) when
Alice and Bob emit data in the Z basis, f denotes the error-
correction efficiency, and H is the binary entropy function.
The ratio of pairs with intensity �μ = (μa, μb) in the Z ba-
sis, denoted as m(μa,μb),Z , and the quantum bit error rate,
represented as e(μa,μb),Z , can be directly determined from ex-
perimental results. The lower bound for the single-photon pair
ratio in all Z pairs q̄(1,1) can be denoted as

q̄(1,1) = m(μa,μb),Z,L
(1,1)

m(μa,μb),Z
. (17)

e(1,1) denotes the upper bound on the phase error rate of single-
photon pairs with the intensity of �μ = (μa, μb). It can be
estimated directly in the asymptotic case from the following
expression:

e(1,1) = eX,U
(1,1)

mX,L
(1,1)

. (18)

IV. OPTIMAL-PULSE-INTENSITY METHOD

In this section, we explore how to improve the performance
of asymmetric MP-QKD by adjusting the pulse intensities
(μa and μb). We develop a method that can calculate the
optimal pulse intensities to maximize the key rate. Moreover,
we employ this calculation method to analyze the impact of
channel transmittances (ηa and ηb) and maximal pulse interval
λ on the optimal intensities.

In the original MDI-QKD and TF-QKD protocols [19,26],
Alice and Bob preselect the Z basis and X basis randomly
according to probabilities. However, in the original MP-
QKD protocols, these two bases are determined after Charlie
announces the measurement outcomes. Unlike the former sce-
nario in which the pulse intensities in different bases could be
decoupled, the intensities of the Z and X bases in MP-QKD
are selected from the same set. In asymmetric MDI-QKD
and TF-QKD [38–40], the intensities in the different bases
have distinct impacts on specific parameters within the final
key-rate formula. Therefore, the correlation between the in-
tensities in the respective bases varies when considering the
maximal key rate. In contrast, in the case of asymmetric MP-
QKD, as the intensities of the Z and X bases are coupled, they
all influence various parameters in the key-rate equation in the
same way. In this regard, instead of distinguishing between
the Z and X cases, we can directly analyze the effect of their
asymmetric intensities on the final key rate.

A. Calculation method

The key-rate simulation formula for the asymptotic case in
asymmetric MP-QKD is expressed as

R = rp(p, λ)rs{q̄(1,1)[1 − H (e(1,1))] − f H (e(μa,μb),Z )}, (19)

where rp(p, λ) denotes the pairing rate in each round, p de-
notes the probability of successful detection in each round, λ

is the maximal pairing interval, rs denotes the probability that
two paired rounds are Z pairs, q̄(1,1) is the single-photon pair
ratio in all Z pairs, H is the binary entropy function, e(1,1) is
the phase error rate of the single-photon pairs, f denotes the

TABLE I. Parameters for performance analysis adopted from
Ref. [36]. ηd denotes the detection efficiency, α denotes the attenua-
tion coefficient of the fiber, pd denotes the dark count rate, f denotes
the error-correction efficiency, and ed denotes the misalignment error.

ηd α pd f ed

20% 0.2 1.2 × 10−8 1.15 4%

error-correction efficiency, and eZ
(μa,μb) is the quantum bit error

rate of the Z pairs. Detailed expressions for these parameters
are shown in Appendix A.

We investigate which values of two pulse intensities (μa

and μb) make the key rate optimal in scenarios involving
channel transmittances (ηa and ηb) and the maximal pairing
interval λ. These values can be determined through the fol-
lowing steps.

(1) Set both the ratio of channel transmittances ηa/ηb

and the communication distance from Alice to Charlie La

as constants (e.g., ηa/ηb = δ and La > 0). Without loss of
generality, we focus on the case where Charlie is closer to
Alice than to Bob (La � Lb), such that the range of the ratio is
δ � 1. In addition, set the maximal pairing interval λ to be a
constant, and its actual value range is λ � 1.

(2) Based on the parameters listed in Table I, solve the
following problem:

max R

such that 0 < μa � 1,

0 < μb � 1,

0 < R � 1,

La > 0,

ηa

ηb
= δ � 1,

λ � 1,

(20)

where μa and μb are variables representing the intensity of
the weak coherent pulses prepared by Alice and Bob, respec-
tively. Here, 0 < R � 1 is set to prevent invalid values in
calculations.

(3) Record the values of μa and μb, which maximize the
key rate, and denote them as μa

m and μb
m, respectively.

The essence of the above problem lies in finding the ex-
treme value of a multivariate function, which can be directly
calculated using the corresponding methods. Note that when
La = Lb, the protocol falls under the symmetric case, wherein
the optimal-pulse-intensity method remains applicable.

B. Channel transmittances

The relationship between the communication distance La(b)

and the channel transmittance ηa(b) is

La(b) =
10 lg ηd

ηa(b)

α
, (21)

where the parameters are displayed in Table I. Note that La(b)

and ηa(b) are in one-to-one correspondence. The difference
between the communication distances from Alice and Bob
to Charlie (Lb − La) depends only on the transmittance ratio
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TABLE II. Example comparison of optimal pulse intensities for
different channel-transmittance ratios at λ = 106. The maximal pair-
ing interval is set to λ = 106, approximating the case where λ →
+∞. The communication distance from Alice to Charlie is set to
La = 100 km. The difference between the communication distances
from Alice and Bob to Charlie is defined as � := Lb − La. To ensure
precision, we maintain intensity values to four decimal places.

� ηa/ηb μa
m μb

m μb
m/μa

m

0 1 0.4998 0.4998 1
50 10 0.2402 0.7594 3.1615
100 100 0.0901 0.9011 10.0011

ηa/ηb. Therefore, when La and ηa/ηb are set as constants, one
can directly calculate the value of Lb.

Variations in both channel transmittances and the maximal
pairing interval impact the optimal intensities. Therefore, to
examine the effect of channel transmittances independently,
fixing the maximal pairing interval λ is essential. It is natural
to focus on two limiting cases, i.e., λ → +∞ and λ = 1.

When λ → +∞, we derive the following relationships
between μa

m and μb
m by employing the calculation method

described above:

μa
m + μb

m ≈ 1,
μb

m

μa
m

≈
√

δ =
√

ηa

ηb
, (22)

where these approximations are due to the dark count rate pd

and the approximation error of the Taylor series. If these errors
are not considered, the approximations become the equali-
ties. The detailed derivation of these relationships is given in
Appendix B. Note that the above relationships for the optimal
intensities differ from that of the asymmetric case for other
protocols [38–41]. This is because the intensities of the Z and
X bases in asymmetric MP-QKD are coupled.

In the case of λ → +∞, the optimal pulse intensities de-
pend on the transmittance ratio ηa/ηb. Therefore, once the
difference between the communication distances (Lb − La) is
determined, one can approximately derive the optimal pulse
intensities (μa

m and μb
m) using the above relationship.

In Table II, we calculate the optimal pulse intensities for
various ratios of channel transmittances at λ = 106. λ = 106 is
selected to approximate λ → +∞. The errors are not ignored
in the calculation process. Note that ηa/ηb and (Lb − La) share
a one-to-one correspondence. For the simplicity of discussion,
the communication distance from Alice to Charlie is set to
La = 100 km, and the difference between two communication
distances is defined as � := Lb − La. Clearly, μa

m and μb
m

closely approximate Eq. (22) when λ = 106. Moreover, we
plot a three-dimensional image with a transmittance ratio of
ηa/ηb = 10 in Fig. 2. It is observed that only one set of μa

m
and μb

m allows the key rate to reach its peak value. This can
be straightforwardly derived by analyzing monotonicity and
concavity. Note that variations in λ and ηa/ηb do not impact
the uniqueness of the optimal intensities.

Next, we discuss the case of λ = 1. By using the calcu-
lation method, we conclude that when the value of ηa/ηb

is relatively small, the optimal pulse intensities are approxi-
mated as

μa
m ≈ 1, μb

m ≈ 1. (23)

FIG. 2. An example of key rate R versus two pulse intensities
(μa and μb). The communication distance from Alice to Charlie is
set to La = 100 km, the transmittance ratio is fixed to ηa/ηb = 10
(equivalent to Lb = 150 km), and the maximal pairing interval is
set to λ = 106. The pulse intensities that maximize the key rate are
μa

m = 0.2402 and μb
m = 0.7594, respectively, and their correspond-

ing ratios are μb
m/μa

m = 3.1615.

The approximations mentioned here differ from those in
Eq. (22). The approximations in Eq. (23) are influenced by
not just the dark count rate pd and the error term of the Taylor
series but also by the probability of a successful detector
click p. The detailed derivation of this conclusion is given in
Appendix B. Note that when the value of ηa/ηb is large, μa

m
and μa

m in Eq. (23) yield bias.
In Table III, we determine the optimal pulse intensities

for different channel-transmittance ratios at λ = 1. Errors are
taken into account throughout the calculation process. When
ηa/ηb is relatively small, both μa

m and μa
m satisfy Eq. (23) well.

However, when ηa/ηb is large, both μa
m and μa

m deviate from
1, with μa

m deviating more significantly.

C. Maximal pairing interval

The maximal pairing interval λ has an impact on the pair-
ing ratio rp(p, λ), which is calculated as

rp(p, λ) =
{

1

p[1 − (1 − p)λ]
+ 1

p

}−1

, (24)

where p is the probability of a successful detector click, given
approximately by (ηaμa + ηbμb)/2 in asymmetric MP-QKD.
The derivation of this formula is shown in Ref. [36].

TABLE III. Example comparison of optimal pulse intensities for
different channel-transmittance ratios at λ = 1. The communication
distance from Alice to Charlie is set to La = 100 km. The difference
between the communication distances from Alice and Bob to Charlie
is defined as � := Lb − La. To ensure precision, we maintain inten-
sity values to four decimal places.

� ηa/ηb μa
m μb

m

0 1 0.9962 0.9962
50 10 0.9802 0.9962
100 100 0.8682 0.9812
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TABLE IV. Example comparison of optimal pulse intensities
for different maximal pairing intervals in the asymmetric case. We
set La = 100 km and ηa/ηb = 10 (equivalent to Lb = 150 km). To
ensure precision, we maintain intensity values to four decimal places.

λ μa
m μb

m μb
m/μa

m

1 0.9802 0.9962 1.0163
101 0.9677 0.9952 1.0284
102 0.8707 0.9838 1.1299
103 0.5512 0.9239 1.6761
104 0.2687 0.7851 2.9218
105 0.2399 0.7592 3.1647
106 0.2402 0.7594 3.1615

If the maximal interval is set to λ → +∞, then

rp = p

2
≈ ηaμa + ηbμb

4
. (25)

On the other hand, if λ = 1, then

rp = p2

1 + p
≈ (ηaμa + ηbμb)2

4 + 2(ηaμa + ηbμb)
. (26)

When λ takes values between 1 and positive infinity, the
impact of channel transmittances on the optimal intensities
exhibits a trend.

We explore the influence of varying the maximal pairing
interval λ on the optimal intensities in both the symmetric and
asymmetric cases, i.e., when ηa/ηb = 1 and when ηa/ηb �= 1.
The dark count rate and the error term of the Taylor series are
not ignored in the calculation process.

In the asymmetric case, for the simplicity of discussion, we
assume La = 100 km and ηa/ηb = 10. We then calculate the
optimal intensities at different maximal intervals, as shown
in Table IV. As λ increases from 1 to 106, the sum of the
optimal intensities (μa

m + μb
m) approximates a progressive de-

crease from 2 to 1, and their ratio (μb
m/μa

m) approximates a
gradual increase from 1 to

√
10. This trend corresponds to the

transition from Eq. (23) to Eq. (22).
In the symmetric case (ηa/ηb = 1), we set La = 100 km

and calculate the optimal intensities at various maximal in-
tervals, as presented in Table V. As λ ranges from 1 to 106,
the optimal intensities μa

m and μb
m both approximate a decline

from 1 to 0.5, corresponding to the transition from Eq. (23)

TABLE V. Example comparison of optimal pulse intensities for
different maximal pairing intervals in the symmetric case. We set
La = 100 km and ηa/ηb = 1 (equivalent to Lb = 100 km). To ensure
precision, we maintain intensity values to four decimal places.

λ μa
m μb

m μb
m/μa

m

1 0.9962 0.9962 1
101 0.9838 0.9838 1
102 0.8915 0.8915 1
103 0.6424 0.6424 1
104 0.5008 0.5008 1
105 0.5005 0.5005 1
106 0.4998 0.4998 1

FIG. 3. Optimal pulse intensities (μa
m and μb

m) versus the differ-
ence between the two distances � at λ = 106 and λ = 1. λ = 106

is selected to approximate λ → +∞. For simplicity, the commu-
nication distance from Alice to Charlie is set to La = 100 km, and
the difference between two communication distances is defined as
� := Lb − La. Solid lines indicate λ = 106, while dashed lines repre-
sent λ = 1. In both line types, μa

m corresponds to a lower line position
than μb

m.

to Eq. (22). This trend is consistent with observations in the
asymmetric case.

The reason for this trend is that the final key rate R is
influenced by parameters such as the pairing ratio, the proba-
bility of successful detection, and the error rate. Variation in
λ results in changes to the weight of the pairing ratio rp(p, λ)
in R [e.g., Eqs. (25) and (26)], consequently impacting the
optimal intensities (μa

m and μb
m).

V. NUMERICAL SIMULATIONS

In this section, we plot the optimal pulse intensities for two
representative cases and simulate the asymptotic performance
of asymmetric MP-QKD in different scenarios. Note that the
dark count rate and the approximation error of the Taylor
series are considered throughout the simulations.

In Fig. 3, the optimal pulse intensities are plotted as a func-
tion of the difference between the two distances for λ = 106

and λ = 1. Here, λ = 106 is selected to approximate λ →
+∞. For the simplicity of discussion, the communication
distance from Alice to Charlie is set to La = 100 km. As �

incrementally increases, μa
m and μb

m at λ = 106 conform to
Eq. (22). Conversely, μa

m and μb
m at λ = 1 gradually deviate

from an initial approximation of 1, where the deviation of
μa

m is more pronounced. Furthermore, when � is signifi-
cantly large, the relationships between μa

m and μb
m at λ = 106

similarly deviate. These deviations emerge because, with the
increase in �, the impact of the dark count rate pd becomes
progressively pronounced. Note that when � is large enough,
λ has a negligible effect on μa

m and μb
m.

When dealing with the practical challenge of asymmet-
ric MP-QKD, apart from utilizing the optimal-pulse-intensity
method, one can also equalize the distance discrepancy by
adding extra fiber on the closer side so that the transmittances
of both sides become uniform. However, a drawback of this
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FIG. 4. Simulation plot of the final key rate R versus the total
communication distance (La + Lb) at λ = 106 for different methods.
The difference between the communication distances from Alice
and Bob to Charlie is defined as � := Lb − La. � = 0 signifies the
original symmetric MP-QKD, represented by the solid (top) line.
“OI” refers to the optimal intensity method, depicted by the solid
line. “AF” denotes the adding-fiber method, shown as the dashed line.
“PLOB bound” represents the repeaterless rate-transmittance bound,
illustrated by the dotted line. In the OI and AF scenarios„ a larger
value of � corresponds to a lower line position.

approach is that it reduces the total transmittance, ultimately
leading to a smaller key rate.

The simulation result for MP-QKD using different meth-
ods is shown in Fig. 4. The maximal interval is set to λ = 106.
It can be observed that by employing the optimal intensity
method, one can achieve higher key rates compared to the
adding-fiber method for the same difference �. As the differ-
ence � increases, the final key rate R decreases. Nevertheless,
even when � = 150 km, the key rate using optimal intensi-
ties can surpass the PLOB bound at a total communication
distance of around 350 km.

Moreover, in Fig. 5, the performance of MP-QKD at λ = 1
using different methods is simulated. Similarly, utilizing the
optimal intensity method results in higher key rates than the
adding-fiber method for the same �. For the same method, an
increase in � corresponds to a decrease in R.

Figure 6 illustrates the relationship between rate and dis-
tance at different maximal pairing intervals employing the
optimal intensity method, where � = 50 km. It can be ob-
served that the variation in λ does not influence the maximal
communication distance. The key rate R gradually increases
as maximal interval λ rises, and it approaches saturation when
λ = 106. When λ is increased to 1000, the key rate experi-
ences a substantial enhancement, surpassing the λ = 1 case
by three orders of magnitude, and it exceeds the repeaterless
rate-transmittance bound at a total communication distance of
approximately 300 km.

To demonstrate the tolerance of misalignment errors in
asymmetric MP-QKD using optimal pulse intensities, we
present simulation results depicting the key rate R versus
communication distance at varying misalignment error rates

FIG. 5. Simulation plot of the final key rate R versus the total
communication distance (La + Lb) at λ = 1 for different methods.
� = 0 signifies the original symmetric MP-QKD, represented by
the solid (top) line. “OI” refers to the optimal intensity method,
depicted by the solid line. “AF” denotes the adding-fiber method,
shown as the dashed line. “PLOB bound” represents the repeaterless
rate-transmittance bound, illustrated by the dotted line. In the OI
and AF scenarios, a larger value of � corresponds to a lower line
position.

ed in Fig. 7. For simplicity, the maximal pairing interval
is set to λ = 106. The results show that when employing
the optimal-pulse-intensity method, asymmetric MP-QKD
exhibits remarkable robustness against misalignment errors.
Even with the difference of � = 100, this scheme can still
surpass the PLOB bound when the misalignment error rate is
ed = 20%.

FIG. 6. Simulation of the final key rate R versus communication
distance (La + Lb) at different maximal pairing intervals λ. The dif-
ference between two communication distances is set to � = 50 km.
The optimal-pulse-intensity method is used for each case. A smaller
value of λ corresponds to a lower line position.
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FIG. 7. Final key rate R as a function of communication distance
(La + Lb) at different misalignment error rates ed . The difference
between the communication distances from Alice and Bob to Charlie
is defined as � := Lb − La. The maximal pairing interval is set to
λ = 106. The optimal-pulse-intensity method is used for each case.
Within the same line type, a larger value of � corresponds to a lower
line position.

VI. CONCLUSION

In this paper, we extended the application of MP-QKD to
the asymmetric case, which substantially enhances the proto-
col’s utility.

First, we outlined the steps involved in asymmetric MP-
QKD. We then analyzed the security of the protocol using
decoy-state estimation. It is important to note that asymmet-
ric intensities and asymmetric channel transmittances do not
impact the security of this protocol.

Second, the performance of the protocol in the asymmetric
case can be improved by selecting the appropriate pulse inten-
sities. However, the intensity relationships among modes in
the asymmetric MP-QKD differ from those in previous asym-
metric protocols because the intensities between different
modes in MP-QKD cannot be decoupled. For this, we in-
troduced an innovative optimal-pulse-intensity method, which
can enhance key rates by determining ideal pulse intensities.
We summarized the relationships and trends of optimal inten-
sities at different channel transmittances and maximal pairing
intervals. Therefore, we illustrated how the appropriate pulse
intensities can be chosen to optimize the key rate in various
asymmetric MP-QKD scenarios.

Furthermore, we plotted the optimal pulse intensities
for two representative cases. We conducted a comparative
assessment of the optimal-pulse-intensity method against
the approach of adding additional fibers. We simulated
the performance of asymmetric MP-QKD under different
conditions using the optimal intensity method. Addition-
ally, we displayed the tolerance of misalignment errors
in asymmetric MP-QKD. Our simulation results clearly
indicate that the optimal-pulse-intensity method not only
is practical but also can significantly mitigate the ef-
fects of asymmetric communication distances on protocol
performance.

Finally, in future research, we will focus on the statistical
analysis of the finite key scenario for asymmetric MP-QKD.
This analysis could build on insights from a recent study that
investigated the implications of finite key length in the original
MP-QKD, which was enhanced using a six-state method [43].
Moreover, it would be interesting to combine asymmetric
MP-QKD with many advanced quantum technologies, such
as advantage distillation [16], photonic graph states [44],
quantum squeezing [45,46], and optical clocks [47]. That
would further improve the performance and practicality of the
protocol.
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APPENDIX A: SIMULATION DETAILS

In this Appendix, we derive the simulation expression for
the asymmetric MP-QKD. The final key rate of the asym-
metric MP-QKD is given in Eq. (19). We elaborate on each
parameter in this formula.

In the asymptotic case, it is assumed that Alice (Bob) ran-
domly prepares pulses with intensity {0, μa} ({0, μb}), each
having a probability of approximately 1/2, while assigning
a negligible probability to the decoy intensity νa (νb). For the
simplicity of discussion, we denote the coherent pulse emitted

by Alice (Bob) in the ith round as |√za
i μ

aeiφa
i 〉 (|

√
zb

i μ
beiφb

i 〉),
where za(b)

i ∈ {0, 1} is a random variable signifying the in-
tensity and φ

a(b)
i ∈ [0, 2π ) is a random phase. We denote the

intensity setting for the ith round using the vector

zi := [
za

i , zb
i

] ∈ {00, 01, 10, 11}. (A1)

In the practical asymmetric MP-QKD, Alice and Bob
transmit pulses to Charlie through two asymmetric loss
channels. These two channel transmittances are ηa and ηb,
respectively. The relevant simulation data are listed in Table I.
The channel is independent and identically distributed (i.i.d.)
for each round. Alice and Bob proceed by pairing the success-
ful pulses and sifting their bases. To pair the (i, j)th pulses,
we define τi, j = [τ a

i, j, τ
b
i, j] := [za

i ⊕ za
j , zb

i ⊕ zb
j ], where ⊕ rep-

resents the bitwise addition modulo 2. When τi, j = [1, 1], the
(i, j) pair is set to be an effective Z pair.

In the ith round, the click events of the left and right de-
tectors can be denoted as two variables (Li, Ri ). The detector
click variable is defined as Ci := Li ⊕ Ri. When Ci = 1, it
signifies the occurrence of a successful click. The detection
probability Pr(Ci = 1|zi ) is

Pr(Ci = 1|zi ) ≈ 1 − (1 − 2pd )e−ηaμaza
i −ηbμbzb

i . (A2)
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The successful click probability of each round is

p := Pr(Ci = 1) =
∑

zi

Pr(Ci = 1|zi )Pr(zi )

= 1

4

∑
zi

Pr(Ci = 1|zi ). (A3)

One can then calculate the pairing rate rp(p, λ) via Eq. (24).
The coherent states emitted in the ith round can be viewed

as a linear superposition of photon-number states. Suppose
the photon number for the ith round is ni := [na

i , nb
i ]. Given

photon-number state |ni〉 emitted by Alice and Bob, the detec-
tion probability Pr(Ci = 1|ni ) is expressed as

Pr(Ci = 1|ni ) ≈ 1 − (1 − 2pd )(1 − ηa)na
i (1 − ηb)nb

i . (A4)

Without loss of generality, we regard the ith and jth rounds
as a paired group. Since the detection are i.i.d. for all rounds,
the probability for the intensity setting zi( j) caused by a suc-
cessful click is

Pr(zi( j)|Ci( j) = 1) = Pr
(
zi( j),Ci( j) = 1

)
Pr

(
Ci( j) = 1

)
= Pr

(
Ci( j) = 1|zi( j)

)
Pr

(
zi( j)

)
∑

z′
i( j)

Pr
(
Ci( j) = 1|z′

i( j)

)
Pr

(
z′

i( j)

)
= Pr

(
Ci( j) = 1|zi( j)

)
∑

z′
i( j)

Pr
(
Ci( j) = 1|z′

i( j)

) . (A5)

When τi, j = [1, 1], a paired group indexed as i and j is
viewed as an effective Z pair. Therefore, four possible combi-
nations of zi and z j are given by

[zi, z j] ∈ {[00, 11], [01, 10], [10, 01], [11, 00]}, (A6)

where two combinations causing bit errors are defined as
Err := {[00, 11], [11, 00]}. For the simplicity of discussion,
we adopt several concise representations:

Pr(C) = Pr(Pair Clicked) := Pr(Ci = Cj = 1) = p2,

Pr(E ) = Pr(Pair Effective) := Pr(zi ⊕ z j = 11),

Pr(Err) = Pr(Pair Erroneous) := Pr([zi, z j] ∈ Err),

Pr(S) = Pr(Single-Photon Pair) := Pr(ni ⊕ n j = 11).
(A7)

In this way, the Z-pair ratio rs can be calculated by

rs = Pr(E |C) = Pr(zi ⊕ z j = 11|Ci = 1,Cj = 1)

=
∑

zi⊕z j=11

Pr(zi|Ci = 1)Pr(z j |Cj = 1)

=
∑

zi⊕z j=11

Pr(Ci = 1|zi )Pr(zi )

Pr(Ci = 1)

Pr(Cj = 1|z j )Pr(z j )

Pr(Cj = 1)

= 1

16

1

p2

∑
zi⊕z j=11

Pr(Ci = 1|zi )Pr(Cj = 1|z j ). (A8)

The expected bit error rate of the Z pair e(μa,μb),Z is

e(μa,μb),Z

= Pr(Err|E ,C)

= Pr(Err, E |C)

Pr(E |C)
= Pr(Err|C)

Pr(E |C)

= 1

rs
Pr([zi, z j] ∈ Err|Ci = Cj = 1)

= 1

rs

∑
[zi,z j ]∈Err

Pr(zi|Ci = 1)Pr(z j |Cj = 1)

= 1

rs

∑
[zi,z j ]∈Err

Pr(Ci = 1|zi )Pr(zi )

Pr(Ci = 1)

Pr(Cj = 1|z j )Pr(z j )

Pr(Cj = 1)

= 1

16

1

rs p2

∑
[zi,z j ]∈Err

Pr(Ci = 1|zi)Pr(Cj = 1|z j ). (A9)

The reason why the third equation holds is that the effective
pairing case contains the erroneous pairing case.

The single-photon pair ratio for the effective Z pairs q̄(1,1)

is

q̄(1,1) = Pr(S|E ,C)

= Pr(S, E ,C)

Pr(E ,C)

= 1

rs p2

∑
zi,z j

Pr(S, E ,C|zi, z j )Pr(zi, z j )

= 1

16

1

rs p2

∑
zi⊕z j=11

Pr(S,C|zi, z j )

= 1

16

1

rs p2

∑
zi⊕z j=11

Pr(C|S, zi, z j )Pr(S|zi, z j )

= 1

16

Pμa (1)Pμb (1)

rs p2

[ ∑
zi⊕z j=11

Pr(Ci = 1|ni = zi )

× Pr(Cj = 1|n j = z j )

]
, (A10)

where Pμa(b) (k) is the Poisson distribution [e.g., Pμa (k) =
e−μa (μa )k

k! ].
When the decoy-state estimation achieves the desired re-

sult, one can directly estimate the gain and error rate of the X
basis using the following equation [48]:

Y(1,1) = (1 − pd )2

[
ηaηb

2
+ (2ηa + 2ηb − 3ηaηb)pd

+ 4(1 − ηa)(1 − ηb)p2
d

]
,

e(1,1) = e0Y(1,1) − (e0 − ed )
(
1 − p2

d

)
ηaηb

2

Y(1,1)
, (A11)
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where the error caused by vacuum pulses is e0 = 1/2 and the
misalignment error is set to ed = 4%.

APPENDIX B: DERIVATION DETAILS

In this Appendix, we derive the content of Eqs. (22) and
(23), which describe the relationships satisfied by the optimal
pulse intensities (μa and μb) when λ → +∞ and λ = 1.

The approximations in Eqs. (22) and (23), as described in
the main text, arise from the dark count rate pd and the approx-
imation error of the Taylor series. Note that the approximation
error of the Taylor series produces little effect on the optimal
pulse intensities. Additionally, when � is relatively small, the
interference resulting from pd is negligible. For simplicity, we
consider these errors to be zero in the following derivation.

When pd = 0, the detection probability in Eq. (A2) is

Pr(Ci = 1|zi ) ≈ 1 − e−ηaμaza
i −ηbμbzb

i ≈ ηaμaza
i + ηbμbzb

i ,

(B1)

where the second approximation is due to the error term of
the Taylor series. Since this error term is not considered in
the following discussion, Pr(Ci = 1|zi ) = ηaμaza

i + ηbμbzb
i .

On this basis, the successful click probability of each round
is

p = 1

4

∑
zi

Pr(Ci = 1|zi ) = ηaμa + ηbμb

2
. (B2)

Similarly, when the dark count rate and the error term in
the Taylor series are not taken into account, the detection
probability Pr(Ci = 1|ni ) is

Pr(Ci = 1|ni ) = 1 − (1 − ηa)na
i (1 − ηb)nb

i . (B3)

Then, the Z-pair ratio rs is

rs = 1

16

1

p2

∑
zi⊕z j=11

Pr(Ci = 1|zi )Pr(Cj = 1|z j ) = ηaηbμaμb

8p2
.

(B4)

The expected bit error rate of the Z pair e(μa,μb),Z is

e(μa,μb),Z = 1

16

1

rs p2

∑
[zi,z j ]∈Err

Pr(Ci = 1|zi )Pr(Cj = 1|z j ) = 0.

(B5)

The single-photon pair ratio for the effective Z pairs q̄(1,1)

is

q̄(1,1) = 1

16

Pμa (1)Pμb (1)

rs p2

[ ∑
zi⊕z j=11

Pr(Ci = 1|ni = zi )

× Pr(Cj = 1|n j = z j )

]

= ηaηbμaμbe−μa
e−μb

8rs p2
. (B6)

Moreover, the gain of the X basis Y(1,1) is

Y(1,1) = (1 − pd )2

[
ηaηb

2
+ (2ηa + 2ηb − 3ηaηb)pd

+ 4(1 − ηa)(1 − ηb)p2
d

]

= ηaηb

2
. (B7)

Hence, the corresponding error rate e(1,1) is

e(1,1) = e0Y(1,1) − (e0 − ed )
(
1 − p2

d

)
ηaηb

2

Y(1,1)
= ed , (B8)

where the misalignment error is ed = 4%.

1. Proof of Equation (22)

In Eq. (22), the maximal pairing interval is set to λ →
+∞. The corresponding pairing ratio rp(p, λ) is

rp(p, λ) = limλ→+∞
{

1
p[1−(1−p)λ] + 1

p

}−1
= p

2 . (B9)

Therefore, the key-rate formula for this case is

R = rp(p, λ)rs
{
q̄(1,1)[1 − H (e(1,1))] − f H

(
e(μa,μb)Z

)}
= 1 − H (4%)

8

ηaηbμaμbe−μa
e−μb

ηaμa + ηbμb

= [1 − H (4%)]ηa

8

μaμbe−μa
e−μb

δμa + μb
. (B10)

The third equation stems from the calculation method outlined
in Sec. IV A, where we define the channel-transmittance ratio
as ηa/ηb = δ � 1, which is a constant. Moreover, since La is
fixed as a constant and directly corresponds to ηa on a one-to-
one basis, ηa is likewise constant.

Next, we aim to determine μa
m and μb

m, which represent
the values of μa and μb when the function R reaches its
optimal value. First, it is necessary to make ∂R/∂μa = 0 and
∂R/∂μb = 0. The corresponding results are

δ
(
μa

m

)2 + μa
mμb

m − μb
m = 0,(

μb
m

)2 + δμa
mμb

m − δμa
m = 0. (B11)

Then, a straightforward calculation reveals that if δ = 1, μa
m =

μb
m = 0.5; otherwise, if δ > 1, μa

m =
√

δ−1
δ−1 and μb

m = δ−√
δ

δ−1
(where negative values are rounded off). Finally, the above
results can be summarized as

μa
m + μb

m = 1,
μb

m

μa
m

=
√

δ =
√

ηa

ηb
. (B12)

When taking into account the dark count rate and the ap-
proximation error of the Taylor series, the equalities in the
above equations become the approximations, as described in
Eq. (22).

2. Proof of Equation (23)

The maximal pairing interval is λ = 1 in Eq. (23). The
approximations in the formula are influenced not just by
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the above errors but also by the probability of successful
detection p. Note that the effect of p on the optimal inten-
sities is negligible. We assume that p � 1 in the following
derivation.

The corresponding pairing ratio rp(p, λ) is

rp(p, λ) = p2

1 + p
≈ p2, (B13)

where the approximation is due to p � 1.

Therefore, the key-rate formula for this case is

R = rp(p, λ)rs
{
q̄(1,1)[1 − H (e(1,1))] − f H

(
e(μa,μb),Z

)}
≈ 1 − H (4%)

8
ηaηbμaμbe−μa

e−μb
. (B14)

Similarly, we set ∂R/∂μa = 0 and ∂R/∂μb = 0 to deter-
mine μa

m and μb
m. The corresponding results are

μa
m ≈ 1, μb

m ≈ 1. (B15)

The approximations remain valid even when all influencing
factors are considered, provided that � is relatively small.
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