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Impact of non-Markovian quantum Brownian motion on quantum batteries
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Recently, there has been an upsurge of interest in quantum thermodynamic devices, notably quantum batteries.
Quantum batteries serve as energy storage devices governed by the rules of quantum thermodynamics. Here,
we propose a model of a quantum battery wherein the system of interest can be envisaged as a battery, and
the ambient environment acts as a charger (dissipation) mechanism, modeled along the ubiquitous quantum
Brownian motion. We employ quantifiers such as ergotropy and its (in)coherent manifestations, as well as
instantaneous and average powers, to characterize the performance of the quantum battery. We investigate the
influence of the bath’s temperature and the system’s coupling with the environment via momentum and position
coordinates on the discharging and recharging dynamics. Moreover, we probe the memory effects of the system’s
dynamics and obtain a relationship between the system’s non-Markovian evolution and the battery’s recharging
process.
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I. INTRODUCTION

The quantum theory of open systems addresses the
system’s dynamics, considering the ambient environment’s
impact [1–3]. It plays a crucial role in the dynamics of quan-
tum mechanical systems as perfect isolation is not possible,
and a complete microscopic description of the environmental
degrees of freedom is not achievable or can be partially attain-
able [1]. A common approach to the open system dynamics is
via the master equation of the reduced density matrix of the
system of interest. Time evolution in the context of the open
quantum system considers the exchange of information be-
tween the system and the bath. When the system and environ-
ment timescales are well separated, this flow of information is
unidirectional, that is, from the system to the environment,
and is captured by the well-known Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation [4,5]. However,
the absence of this neat separation of system and environ-
ment timescales leads to a bidirectional flow of information
between the system and its environment, causing the ap-
pearance of memory effects, referred to as the signature of
non-Markovianity [6–8]. Recently, non-Markovian phenom-
ena have attracted much attention in the quantum information
community [9–12].

Quantum Brownian motion (QBM) is a well-known
paradigm of open quantum systems, providing a unified
framework wherein one can see the interconnections of some
basic quantum statistical processes such as decoherence, dissi-
pation, noise, and fluctuation. This has a rich history [13–22].
The Gaussian non-Markovian open system dynamics of QBM
was studied in [23]. This was followed up in [24] and [25]
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for two-level systems. A model of QBM bilinearly coupled
to a thermal bath [26], via both position and momentum
couplings, which can take into account two-particle pair pro-
duction [27], gives rise to nonlocal dissipation and rapidly
relaxes towards equilibrium. The quantum to classical tran-
sition, quantum optics, Bose polaron problem, dissipative
diamagnetism, stochastic thermodynamics and fluctuation
theorem, single-molecule biophysics, and quantum cosmol-
ogy are just a few of the many disciplines that make use of
QBM [21,28–31]. Here, our objective is to characterize the
generalized model of QBM from a quantum thermodynamical
perspective.

Quantum thermodynamics is the study of thermodynam-
ical processes from a quantum mechanical point of view
[32–39]. The extraction of maximal work from a system
is an old problem in thermodynamics, which, in the case
of quantum systems, can be quantified using the ergotropy
of the system [40,41]. Ergotropy has been established as
an important quantity in the emerging field of quantum
thermodynamics [42,43] and has recently been measured ex-
perimentally [44,45]. Due to the constant decrement in user
device sizes, several thermodynamic devices, such as quan-
tum heat engines [46,47] and quantum batteries [48–51], are
required to be smaller as their unit cells approach the order
of molecular and atomic scales. Thus, the study of quantum
batteries is fundamentally driven by the intent of perceiving
devices of atomic and molecular size that could be advanta-
geous over their macroscopic analogs [48,49].

A quantum battery, introduced by Alicki and Fannes [51],
is a system where useful energy can be stored and trans-
ferred into a thermal machine [34,48,50,52]. The possible
applications of these systems range from providing energy for
operations on low-temperature quantum systems [53] to solid-
state quantum batteries [33,54]. Various theoretical bases have
been implemented to review quantum batteries, including spin
chains [55], superconducting qubits and quantum dots [54],
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disordered chains [56,57] and qubits in an optical cavity [58]
in many-body systems.

The realistic implementation of quantum batteries would
need to consider dissipation and decoherence effects in the
system due to unavoidable interactions with the ambient envi-
ronment. Thus, studying quantum batteries in open systems
has attracted much attention [59–62]. Both qubits and har-
monic oscillators can be fitted for the role of a quantum battery
[58,63]. To this end, we aim to study the QBM model of
bilinear coupling to a thermal bath as a model of a quantum
battery, where the system of interest is the battery and its
environment provides the charger mechanism. We choose an
initial nonzero ergotropy state because the environment in a
thermal equilibrium state will not initially charge the quan-
tum battery. The battery gets recharged from the environment
exclusively due to non-Markovianity and this recharging from
the environment is absent in Markovian dynamics [62]. Fur-
ther, we also aim to observe the effect of momentum coupling
and bath temperature on the dynamics of the quantum battery.

The paper is detailed as follows. In Sec. II, we introduce
the model of the QBM with generalized momentum cou-
pling of the system with bath, and in Sec. III, we discuss
the characteristics of quantum thermodynamics, particularly
ergotropy and their (in)coherent parts, instantaneous and aver-
age power. This is followed by the discussion of the dynamics
of the battery and the study of (in)coherent contributions to
the ergotropy in Sec. IV. Section V discusses the presence
of memory effects in the system and its connection with the
battery’s dynamics, followed by conclusions in Sec. VI.

II. A MODEL OF NON-MARKOVIAN QUANTUM
BROWNIAN MOTION

The QBM model to be discussed in this work was intro-
duced in [26]. In this model, a quantum harmonic oscillator
is coupled bilinearly to a bosonic thermal bath. The coupling
of the system with the thermal bath is through a linear com-
bination of its position and momentum operators. The total
Hamiltonian Ĥ of the system is

Ĥ = ĤS + ĤE + ĤI

= p̂2

2m
+ 1

2
mω2

s q̂2 +
∑

n

(
p̂2

n

2mn
+ 1

2
ω2

nq̂2
n

)

+ (q̂ − μp̂)
∑

n

cnq̂n, (1)

where ωs and m are the free frequency of the harmonic oscil-
lator and its mass, whereas ωn is the frequency of the nth bath
mode, respectively. Here, ĤS can be thought of as a quantum
battery and the environment ĤE as a charger that interacts
with the quantum battery via ĤI [64]. A similar scenario for
a different model was taken up recently in [62]. Here, q̂ and
p̂ (q̂n and p̂n) are the system’s (nth bath mode’s) position and
momentum operators. Furthermore, the parameter μ provides
the relative strength of the coupling with the system momen-
tum with respect to the coupling with the system position
and can be changed to the conventional position-position cou-
pling model by canonical transformation, x̂ = (q̂ − μp̂). In
the case where the linear coupling of the system to the bath

via its momentum operator is absent, that is, μ = 0, the above
model reduces to the one whose master equation was obtained
by Hu et al. in [19]. Moreover, the master equation for the
system coupled via position-position coupling to an Ohmic
environment and in the high-temperature limit was obtained
by Caldeira-Leggett [16,65].

We use the direct numerical method to examine the dynam-
ics of the reduced state of the harmonic oscillator system of
interest. That is, the reduced state ρS (t ) at any time t (h̄ = 1)
is given by

ρS (t ) = TrE[e−iĤtρ(0)eiĤt ], (2)

where ρ(0) = ρS (0) ⊗ ρE (0) is the initial joint state of the
system and environment. The initial state of the environ-
ment is taken to be the thermal state ρE (0) = e−βĤ/Z , where
Z = Tr[e−βĤ ] is the partition function and β = 1/kBT is the
inverse of the temperature.

We envisage the harmonic oscillator system as a quantum
battery discharging and subsequently recharging due to in-
teraction with the environment. To characterize the quantum
thermodynamic properties, particularly the extraction of work
from the system, we make use of quantifiers such as ergotropy
and power, which are briefly discussed below.

III. CHARACTERISTICS OF QUANTUM
THERMODYNAMICS

Having discussed the QBM, we next undertake the task of
characterizing its various quantum thermodynamic properties.
This will subsequently be used to recast the QBM problem as
a quantum battery. To this end, we briefly discuss the concepts
of ergotropy and power.

Ergotropy

The maximum amount of work that can be extracted
through a cyclic unitary transformation of the initial state from
a quantum system is quantified by ergotropy [40]. Considering
a state governed by a time-dependent Hamiltonian HS + V (t ),
the transfer of work to external sources is attributed to the
time-dependent potential V (t ). Assume the source is con-
nected at time t = 0 and disconnected at time t = t0, making
the process cyclic, such that V (0) = V (t0) = 0. To this end,
among all the final states ρt0 reached from the initial state,
one looks for the state with the lowest final energy. The ther-
mal equilibrium state is a standard answer to this problem.
However, in general, in the case of finite systems, only the
action of V (t ) may not be sufficient for the initial state to
reach a thermal state in time t0. Therefore, in these systems,
the maximum amount of work that is extracted (ergotropy) is
smaller than the work that is extracted when the final state
becomes a thermal equilibrium state. Below, we have outlined
the method to calculate the ergotropy of a system. We assume
that a quantum state ρ0 and its internal Hamiltonian HS have
the following spectral decomposition:

ρ0 =
∑

i

ri |ri〉 〈ri| (3)
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and

HS =
∑

i

εi |εi〉 〈εi| , (4)

where ordering of the eigenvalues for ρ and H is in the
decreasing r1 � r2 � · · · order and increasing ε1 � ε2 � · · ·
order, respectively. Due to the unitary dynamics of the state,
any decrease in the system’s internal energy, with respect to
its self-Hamiltonian HS , is extracted as work. Thus, one aims
to minimize the internal energy of the final state to find the
ergotropy,

W(ρ0) = Tr(ρ0Hs) − min{Tr(Uρ0U
†HS )}, (5)

where the minimization is performed over all possible
unitaries.

The final state ρ f = Uρ0U † should commute with HS and
have the same eigenvalues as the initial state. The state that
achieves this minimum has the form ρ f = ∑

j r j |ε j〉 〈ε j |. ρ f

is the passive state, i.e., no work can be extracted from it. In
this state, one can intuitively observe that the initial state’s
highest occupation fraction r1 occupies the lowest level.
The unitary operator U = ∑

j |ε j〉 〈r j | performs this trans-
formation. Now the ergotropy of the system W(ρ0) can be
rewritten as

W(ρ0) =
∑

j,i

r jεi(| 〈r j | εi〉|2 − δi j ). (6)

Ergotropy has been studied in the case of the open quantum
systems in [41,60,62,66]. It depends upon the initial state of
the system and the system’s Hamiltonian. To this end, in the
case of the dynamics of the open quantum system defined
by Eq. (2), we feed the state ρS (t ) as the initial state for the
calculation of ergotropy in Eq. (5) to get the maximum work
that can be extracted from the state ρS (t ) at any time t .

Further, one can also account for the coherent and inco-
herent contributions to the ergotropy [42,62,67]. The role of
quantum coherence in nonequilibrium scenarios, such as en-
tropy production [68,69] and work fluctuations [70], has been
discussed along with its role in thermal operations [71–73].
The incoherent ergotropy Wi(ρ) is the maximum work ex-
tracted from a state without changing its coherence. The
expression for the incoherent ergotropyWi(ρ) is given by

Wi(ρ) = Tr[(ρ − σ )HS], (7)

where σ is the coherence invariant state of ρ with property
Tr[σHS] = min

U∈U(i)
Tr[UρU†HS], where U(i) are the unitary

operators that do not change the coherence of the state ρ. An
alternate way to calculate the incoherent ergotropy, which we
have used here, is by deleting the coherence terms of the state
ρ and then using this dephased state to calculate the ergotropy.
Therefore, incoherent ergotropyWi(ρ) is given by

Wi(ρ) =W(ρD) = Tr
[(

ρD − ρD
f

)
HS

]
, (8)

where ρD
f is the passive state corresponding to the dephased

state ρD = ∑
i 〈i| ρ |i〉 |i〉〈i|. Further, the expression for the

coherent ergotropyWc(ρ) is

Wc(ρ) =W(ρ) −Wi(ρ). (9)

The coherent ergotropyWc(ρ) is the work that is exclusively
stored in the coherence of the state.

Instantaneous and average powers

The instantaneous charging power is defined by the deriva-
tive of the ergotropy as

P(t ) = lim
�t→0

W(t + �t ) −W(t )

�t
= dW

dt
. (10)

The instantaneous power denotes the charging and
discharging behavior of the system envisaged as a
quantum battery. Positive instantaneous power indicates
the charging of the battery, whereas negative instantaneous
power indicates the discharging of the battery. It is also
possible to define the average power-to-energy transfer given
by

Pav = W(t ) −W(t0)

t − t0
, (11)

where t − t0 refers to the charging time of the battery. A
nonzero average power indicates that the quantum battery has
charged.

IV. DYNAMICS OF THE QUANTUM BATTERY

Now, we recast the QBM problem as a model of a quan-
tum battery. Here, the system of interest HS [Eq. (1)] is the
battery, and its environment HE [Eq. (1)] provides the charger
mechanism. The environment, being in a thermal equilibrium
state, will not initially charge the quantum battery. To this
end, we choose an initial state of the quantum battery, which
has nonzero ergotropy that dissipates to the environment.
However, due to the non-Markovian nature of the environ-
ment (discussed in Sec. V), the battery gets recharged. This
discharging-recharging behavior is a uniquely non-Markovian
feature and will not be observed in a Markovian scenario [62].

We focus on the variations of the ergotropy, instanta-
neous, and average power of the quantum battery. The role of
momentum coupling and temperature, which affects the dy-
namics of the quantum battery, is also studied. We take a brief
pause here to emphasize the effect of the initial state ρS (0)
[in Eq. (2)] of the quantum battery. It is mentioned above that
we are using an initial state with nonzero ergotropy. Here, we
present an analysis of the dynamics of ergotropy for different
initial states of the battery. In Fig. 1, we take up different initial
states of the quantum battery and plot the variation of the
ergotropy. We use the following initial states for the analysis:
|ψ1〉 = (

√
3 |0〉 + |1〉)/2, |ψ2〉 = (|0〉 + |1〉)/

√
2, where |0〉

and |1〉 are the vacuum and the first excited state, respectively,
for the quantum harmonic oscillator system. Furthermore, we
also use the thermal equilibrium state e−βHS and the coher-
ent state |α〉 (discussed below) for the analysis. It is evident
here that the dynamics of the ergotropy depend on the quan-
tum battery’s initial state. The pattern of the variation of
the ergotropy is the same for the different initial states. The
ergotropy is always greater for an initial state with greater
ergotropy. Further, when we take the thermal equilibrium state
as the initial state of the quantum battery, we observe that the
ergotropy remains zero. We choose a coherent state to analyze
the thermodynamic quantities discussed in this paper due to
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FIG. 1. Variation of ergotropy W(ρ(t )) with time t (in natural
units, where h̄ = kB = 1) for different initial states ρS (0) where we
obtain ρS (t ) from Eq. (2). We have taken the following values of the
parameters: T = 1, ωs = 1, and m = 1.5.

the wide use of this state in the case of a quantum harmonic
oscillator system. To this end, we take the initial state ρS (0) in
Eq. (2) to be ρS (0) = |α〉〈α|, where |α〉 = eαâ†−α∗â |0〉, with
|0〉 being the vacuum state and α = 3 + 4i. We calculate the
ergotropyW[ρ(t )] of the quantum battery for different values
of the momentum coupling coefficient μ [Eq. (1)], which is
depicted in Fig. 2(a). We observe that as time increases,
the ergotropy of the system decreases; that is, the amount
of maximum work that can be extracted from the system
decreases and the battery discharges. Interestingly, we notice
a quick drop in the ergotropy as we increase the momentum
coupling coefficient μ (μ = 0 depicts the standard position-
position coupling), indicating a rapid discharge of the battery
as we raise the value of the coefficient μ. Further, we plot the
variation of the instantaneous and average powers in Fig. 2(b)
for different values of the coefficient μ. Here, we observe
that the discharging and recharging rate is maximum in the
case of the maximum value of μ. The average power is also
maximum in the case of the maximum value of μ in each
charging cycle. This brings to light that the coupling of the
quantum battery with the bath through its momentum along
with the position coupling causes faster (dis)charging of the
quantum battery. In the absence of the momentum coupling,
the model discussed here represents the exact one solved by
Hu et al. [19]. In this scenario, we observe that the quantum
battery discharges slowly, but it is slow while charging, too,
and therefore, the average power that is delivered [shown
using dots in Fig. 2(b)] is smaller when the coefficient μ is
zero. Further, the average power for zero momentum coupling
appears at a much later time in comparison to the case when
momentum coupling is nonzero, indicating that in the absence
of momentum coupling, there is a delay in the charging of the
quantum battery.

We note here that one can take a different form of interac-
tion between the quantum battery and the bath; for example, in
the place of q̂ − μp̂ in Eq. (1), one can use (1 − μ̃)q̂ + μ̃p̂. A
comprehensive investigation of the roles of the position and
momentum coupling between the quantum battery and the
bath can be a motivation for this. In Fig. 2(a), we plot the

FIG. 2. Variation of (a) ergotropyW[ρ(t )] and (b) instantaneous
P(t ) and averagePav powers, with time t (in natural units, where h̄ =
kB = 1) for different values of momentum coupling coefficient μ,
where we obtain ρS (t ) from Eq. (2). The dots of the respective colors
depict the average power during the charging cycle at a particular
temperature. We have taken the following values of the parameters:
T = 1, ωs = 1, and m = 1.5.

variation of the ergotropyW[ρ(t )] by using the latter form of
interaction between the quantum battery and the bath. Here,
at μ̃ = 0, there is only position-position coupling between the
battery and the bath, and at μ = 1, there is only momentum-
position coupling between the battery and the bath. We find
that the curves of the ergotropy match precisely when coeffi-
cients μ and μ̃ are zero. Further, the values of the ergotropy
are highest for μ̃ = 0.5. Interestingly, it can seen that the
ergotropy is different for μ and μ̃ equal to one. This can be
attributed to the fact that in one case, the interaction involves
q̂ − p̂ (both position and momentum) of the battery and the
bath, and in the other case, it involves only p̂ (momentum)
of the battery and the bath. The curve of the ergotropy for
the value of the coefficient μ̃ = 1 matches with the curve
of the ergotropy for μ = 0.75. Thus, it points out that an
overall increase in the coupling in the form of q̂ + p̂ involved
between the system and the bath corresponds to higher values
of ergotropy. Also, the relative strength between the q̂ and p̂
coupling impacts the dynamics of the battery.

We now study the effect of temperature on the dynamics
of the quantum battery. To this end, we fix the value of
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FIG. 3. Variation of (a) ergotropyW[ρ(t )] and (b) instantaneous
and average powers, with time t (in natural units, where h̄ = kB = 1)
for different values of temperature T . The dots of the respective col-
ors depict the average power during the charging cycle at a particular
temperature. We have taken the following values of the parameters:
μ = 0.5, ωs = 1, and m = 1.5.

momentum coupling μ = 0.5 and use the same initial state
ρS (0) = |α〉 〈α| (as discussed above) in Eq. (2) to obtain the
dynamics of the system. This has been depicted in Fig. 3.
We observe that the ergotropy persists for a longer duration
for lower temperatures and exhibits oscillatory behavior. The
variations in the ergotropy coincide when the temperatures are
0.1 and 0.01. The ergotropy drops to zero when we increase
the temperature to 5.0. Therefore, lower temperatures support
the rechargeable capacity of the quantum battery from the
environment, whereas higher temperatures negatively impact
the performance of the quantum battery. This effect can also
be observed from the variations of instantaneous and average
powers plotted in Fig. 3(b). At lower temperatures, the instan-
taneous and average power achieve greater values than those
in the higher-temperature limit. Also, the instantaneous power
amounting to the charging rate of the system is positive for a
longer duration at low temperatures. Furthermore, motivated
by the better performance of the quantum battery at lower tem-
peratures, we now analyze the impact of momentum coupling
of the battery with the environment in the low-temperature
regime. To this end, we depict the variation of the ergotropy,
average, and instantaneous powers in Fig. 4 with time for a

FIG. 4. Variation of (a) ergotropyW[ρ(t )] and (b) instantaneous
and average powers, with time t (in natural units, where h̄ = kB = 1)
for different values of momentum coupling constant μ at low temper-
ature T = 0.1. The dots of the respective colors depict the average
power during the charging cycle at a particular temperature. We have
taken the following values of the parameters: ωs = 1 and m = 1.5.

lower temperature. Here, we observe that the ergotropy for the
momentum coupling coefficient, μ = 0, is always greater than
that when the battery is coupled via both position and momen-
tum with the bath. This shows that we can extract a greater
amount of work from the quantum battery when there is no
momentum coupling. However, the variations in the instanta-
neous power for both zero and nonzero momentum coupling
suggest that the rates of discharging and recharging of the
quantum battery are higher for nonzero momentum coupling.
Further, at various times, we observe that the average power
during the charging cycle of the quantum battery is higher in
the case of the nonzero momentum coupling. This analysis
brings out an important facet of the system under study, that
is, if we can tune the coupling of the quantum battery via its
momentum with the bath, we can control the quick discharg-
ing and recharging of the quantum battery. Quick recharging
followed by a slow discharge is a favorable scenario for a
battery, and in this case, if we keep the momentum coupling
while recharging and remove it while discharging, we can
achieve a better-performing quantum battery.

We now move on to study the various components of
ergotropy (namely, coherent and incoherent ergotropies) and
their connection with the coherence of the quantum state.
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FIG. 5. Variation of coherent ergotropyWc[ρ(t )], incoherent ergotropyWi[ρ(t )], l1 norm of coherence, Cl1 [ρ(t )], and ergotropyW[ρ(t )]
with time t (in natural units, where h̄ = kB = 1) for different temperatures and momentum coupling coefficients μ. (a) T = 0.1 and μ = 0;
(b) T = 0.1 and μ = 1; (c) T = 1.0 and μ = 0; (d) T = 1.0 and μ = 1. The parameters are ωs = 1 and m = 1.5

The (in)coherent ergotropy of the system
and coherence of the state

Quantum coherence is at the heart of quantum mechanics
and quantum computation and has applications in practical
scenarios [74]. Traditionally, quantum coherence depicted the
presence of the off-diagonal terms in the density matrix of
the state. A wide variety of measures of coherence are there,
which make use of the off-diagonal terms of the density ma-
trix. One such measure is the l1 norm of coherence Cl1 (ρ) [75]
defined by

Cl1 (ρ) =
∑
i, j
i 	= j

∣∣ρi, j

∣∣. (12)

Here, we calculate the l1 norm of coherence along with
the coherent and incoherent ergotropy of the system, de-
fined in Eqs. (9) and (8), respectively. To this effect, we
take a different initial state ρS (0) = |ψ〉〈ψ | where |ψ〉 =
1
2 |0〉 +

√
3

2 |1〉 (|0〉 and |1〉 are the ground and excited states
of the system, respectively) and use Eq. (2) to obtain the
dynamics of the system. This facilitates the study of coherent
and incoherent ergotropies. We plot the coherent ergotropy
Wc[ρ(t )] and the l1 norm of coherence, Cl1 [ρ(t )], together
with incoherent ergotropy Wi[ρ(t )] and ergotropy W[ρ(t )]
in Fig. 5 for different temperatures and momentum coupling
coefficients μ.

At lower temperatures and zero momentum coupling co-
efficient, we observe that the coherent ergotropy, ergotropy,
incoherent ergotropy, and the l1 norm of coherence all keep

oscillating in similar intervals. The maxima and minima of
the coherent ergotropy match with the minima and maxima
of ergotropy as well as incoherent ergotropy and l1 norm of
coherence. However, as the momentum coupling increases,
the values of the incoherent ergotropy become zero in var-
ious instances. At these times, the values of ergotropy and
coherent ergotropy become equal. Further, at these points, the
(in)coherent ergotropy, ergotropy, and l1 norm of coherence
all attain their local minima.

Further, at higher temperatures, in Figs. 5(c) and 5(d), the
values of the (in)coherent ergotropy, ergotropy, and l1 norm
of coherence decay with time. It is interesting to note here
that when the momentum coupling is zero between the system
and the bath, then at longer times, the coherent ergotropy
goes to zero, and in this case, the incoherent ergotropy be-
comes equal to the ergotropy of the system. The decay of
the coherent ergotropy, as well as the l1 norm of coherence,
is approximately monotonic in this scenario. Meanwhile,
at the same temperature, when the momentum coupling is
higher, the incoherent ergotropy goes to zero at various
points in time, followed by small revivals. At these points,
the coherent ergotropy increases to equal the ergotropy of
the system.

V. PRESENCE OF MEMORY EFFECTS IN THE SYSTEM

Here, we investigate the non-Markovian effects in the
system defined by Eq. (2). To this end, we use the trace-
distance-based measure between two quantum states defined
in [7]. Consider two quantum states ρ1 and ρ2; the trace
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FIG. 6. Variation of the trace distance D[ρ1(t ), ρ2(t )] with time t (in natural units, where h̄ = kB = 1) for states ρ1(t ) and ρ2(t ) obtained
from Eq. (2) using initial states ρ1(0) = |α1〉〈α1| and ρ2(0) = |α2〉〈α2|, where |αi〉 = eαi â

†−α∗
i â |0〉 with α1 = 3 + 4i and α2 = 1, respectively.

The values of temperature T are (a) 0.1, (b) 0.5, (c) 1.0, and (d) 5.0. We have chosen ωs = 1 and m = 1.5.

distance between them is

D(ρ1, ρ2) = 1
2 Tr|ρ1 − ρ2|, (13)

where |A| =
√

A†A is the modulus of A. At any time t , the time
evolution of the states is governed by Eq. (2). We consider the
time evolution of the states by a family of the completely pos-
itive and trace-preserving (CPTP) maps �, such that ρi(t ) =
�ρi(0). The trace distance gives the distinguishability of the
two quantum states. A dynamical decrease of D[ρ1(t ), ρ2(t )]
can be interpreted as a loss of information from the open
system into the environment characteristic of Markovian dy-
namics, and vice versa. A revival of D[ρ1(t ), ρ2(t )] indicates a
flow of information from the environment back to the system,
signifying memory effects and non-Markovian behavior.

Here, we have taken two initial states ρ1 = |α1〉〈α1|
and ρ2 = |α2〉〈α2|, where |αi〉 = eαi â†−α∗

i â |0〉 with α1 = 3 +
4i and α2 = 1, respectively, and plotted the trace distance
D[ρ1(t ), ρ2(t )] in Fig. 6. We observe that for low tem-
peratures, the trace distance D[ρ1(t ), ρ2(t )] shows highly
oscillatory behavior, indicating Breuer-Laine-Piilo (BLP)
non-Markovianity [7], which decays as we increase the tem-
perature. For higher temperatures, the behavior of the plots
approaches monotonic behavior. In each of the subplots
of Fig. 6, we notice that the value of the trace distance,
D[ρ1(t ), ρ2(t )], is lesser for higher momentum coupling co-
efficient μ. The system shows the highest non-Markovian
behavior at zero momentum coupling and low temperatures,
thereby highlighting the effect of coupling of the environment
to the system’s position and momentum.

Further, on comparing the variations of trace distance and
ergotropy of the system, we observe that when ergotropy
is higher at low temperatures and zero momentum coupling
[in Figs. 3(a) and 4(a)], the system exhibits higher non-
Markovianity. However, the revivals in the trace distance
D[ρ1(t ), ρ2(t )] in Fig. 6 at low temperatures and nonzero
momentum coupling are steep, corresponding to the higher
instantaneous and average powers of the system, as seen in
Figs. 3(b) and 4(b).

VI. CONCLUSIONS

In this paper, we have studied a quantum battery mod-
eled on the QBM coupled to a dissipative Gaussian thermal
bath via position and momentum couplings. To investigate
the behavior of the system of interest as a quantum battery
connected to the reservoir comprised of a set of harmonic
oscillators, we have studied various thermodynamical quan-
tifiers, such as ergotropy, which is the maximum extractable
work through a cyclic unitary transformation, as well as the
instantaneous and average powers. Moreover, coherent and
incoherent ergotropy have also been studied to account for the
contribution to the ergotropy from the system state’s coherent
and incoherent parts.

We have investigated the effect of temperature and
position-momentum coupling on the discharging-recharging
behavior of the quantum battery. To this end, we observed
that the ergotropy rapidly decreases with the increment in
momentum coupling coefficient and temperature. It was ob-
served that the relative strength between the q̂ and p̂ coupling
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impacts the dynamics of the battery. Further, the instan-
taneous power gained higher values for higher momentum
coupling coefficients, indicating an improved charging rate,
while lower temperatures enhanced the charging process. In
the low-temperature regime, the charging can be catalyzed
with the help of the momentum coupling coefficient, implying
speedy charging, but it was found to impose a quick discharg-
ing too. At lower temperatures, we observed the oscillatory
nature of ergotropy, both coherent and incoherent ergotropy,
and l1 norm of coherence, eventually decaying towards zero
with time with an increase in temperature. As the momen-
tum coupling was raised for a particular temperature, the
incoherent ergotropy became zero at various instances. At
these times, the values of ergotropy and coherent ergotropy
became equal.

Also investigated was the presence of memory effects in
the system as a benchmark for thermodynamical characteris-
tics. In the lower-temperature regime, the oscillatory behavior
of trace distance provided a signature of non-Markovianity in
the system and faded away monotonically with the increment
of temperature as well as the momentum coupling coefficient.
A qualitative agreement between non-Markovianity and ther-
modynamic characteristics was observed.

ACKNOWLEDGMENTS

S.B. acknowledges support from the Interdisciplinary
Cyber-Physical Systems (ICPS) program of the Depart-
ment of Science and Technology (DST), India, Grant No.
DST/ICPS/QuST/Theme-1/2019/13.

[1] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[2] U. Weiss, Quantum Dissipative Systems, 4th ed. (World
Scientific, Singapore, 2012).

[3] S. Banerjee, Open Quantum Systems: Dynamics of Nonclassical
Evolution, 1st ed. (Springer, Singapore, 2018).

[4] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.
Phys. 17, 821 (1976).

[5] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[6] Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77,

094001 (2014).
[7] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,

210401 (2009).
[8] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
[9] S. Utagi, R. Srikanth, and S. Banerjee, Sci. Rep. 10, 15049

(2020).
[10] N. P. Kumar, S. Banerjee, R. Srikanth, V. Jagadish, and F.

Petruccione, Open Syst. Inf. Dynamics 25, 1850014 (2018).
[11] S. N. Filippov, A. N. Glinov, and L. Leppäjärvi, Lobachevskii

J. Math. 41, 617 (2020).
[12] H. Hakoshima, Y. Matsuzaki, and S. Endo, Phys. Rev. A 103,

012611 (2021).
[13] N. N. Bogolyubov, Ukr. S. S. R. Acad. Sci. Press (1945).
[14] V. B. Magalinskii, Sov. Phys. JETP 9, 1381 (1959).
[15] R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. 24, 118

(1963).
[16] A. Caldeira and A. Leggett, Physica A 121, 587 (1983).
[17] V. Hakim and V. Ambegaokar, Phys. Rev. A 32, 423 (1985).
[18] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115

(1988).
[19] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).
[20] T. Yu, Phys. Rev. A 69, 062107 (2004).
[21] B. L. Hu and A. Matacz, Phys. Rev. D 49, 6612 (1994).
[22] S. Banerjee and R. Ghosh, Phys. Rev. E 67, 056120 (2003).
[23] L. Diósi and L. Ferialdi, Phys. Rev. Lett. 113, 200403 (2014).
[24] L. Ferialdi, Phys. Rev. Lett. 116, 120402 (2016).
[25] L. Ferialdi, Phys. Rev. A 95, 020101(R) (2017).
[26] L. Ferialdi and A. Smirne, Phys. Rev. A 96, 012109 (2017).
[27] Y.-W. Huang and W.-M. Zhang, Phys. Rev. Res. 4, 033151

(2022).

[28] A. Lampo, M. March, and M. Lewenstein, Quantum Brownian
Motion Revisited: Extensions and Applications, Springer Briefs
in Physics (Springer, New York, 2019).

[29] P. Hänggi and G.-L. Ingold, Chaos: Interdiscipl. J. Nonlinear
Sci. 15, 026105 (2005).

[30] A. Ghosh, M. Bandyopadhyay, S. Dattagupta, and S. Gupta,
Quantum Brownian motion: A review, arXiv:2306.02665.

[31] D. Arteaga, Adv. High Energy Phys. 2009, 278759 (2009).
[32] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-

namics: Emergence of Thermodynamic Behavior Within Com-
posite Quantum Systems, Lecture Notes in Physics (Springer,
Berlin, 2004).

[33] F. Binder, L. Correa, C. Gogolin, J. Anders, and G. Adesso,
Thermodynamics in the Quantum Regime: Fundamental As-
pects and New Directions, Fundamental Theories of Physics
(Springer, New York, 2019).

[34] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545
(2016).

[35] S. Deffner and S. Campbell, in Quantum Thermodynamics: An
Introduction to the Thermodynamics of Quantum Information,
edited by G. Bretanya (Morgan & Claypool, CA, USA, 2019).

[36] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[37] P. Talkner and P. Hänggi, Rev. Mod. Phys. 92, 041002

(2020).
[38] K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics

(Springer, Berlin, 2010).
[39] R. Alicki and R. Kosloff, Introduction to quantum thermo-

dynamics: History and prospects, in Thermodynamics in the
Quantum Regime: Fundamental Aspects and New Directions,
edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G.
Adesso (Springer International, Cham, 2018), pp. 1–33.

[40] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen,
Europhys. Lett. 67, 565 (2004).

[41] B. Çakmak, Phys. Rev. E 102, 042111 (2020).
[42] G. Francica, F. C. Binder, G. Guarnieri, M. T. Mitchison,

J. Goold, and F. Plastina, Phys. Rev. Lett. 125, 180603
(2020).

[43] R. Kosloff, Entropy 15, 2100 (2013).
[44] N. Van Horne, D. Yum, T. Dutta, P. Hänggi, J. Gong, D. Poletti,

and M. Mukherjee, npj Quantum Inf. 6, 37 (2020).

012224-8

https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1038/s41598-020-72211-3
https://doi.org/10.1142/S1230161218500142
https://doi.org/10.1134/S1995080220040095
https://doi.org/10.1103/PhysRevA.103.012611
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1103/PhysRevA.32.423
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevA.69.062107
https://doi.org/10.1103/PhysRevD.49.6612
https://doi.org/10.1103/PhysRevE.67.056120
https://doi.org/10.1103/PhysRevLett.113.200403
https://doi.org/10.1103/PhysRevLett.116.120402
https://doi.org/10.1103/PhysRevA.95.020101
https://doi.org/10.1103/PhysRevA.96.012109
https://doi.org/10.1103/PhysRevResearch.4.033151
https://doi.org/10.1063/1.1853631
https://arxiv.org/abs/2306.02665
https://doi.org/10.1155/2009/278759
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/RevModPhys.92.041002
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1103/PhysRevE.102.042111
https://doi.org/10.1103/PhysRevLett.125.180603
https://doi.org/10.3390/e15062100
https://doi.org/10.1038/s41534-020-0264-6


IMPACT OF NON-MARKOVIAN QUANTUM BROWNIAN … PHYSICAL REVIEW A 109, 012224 (2024)

[45] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J.
Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G.
Poschinger, Phys. Rev. Lett. 123, 080602 (2019).

[46] G. Thomas, N. Siddharth, S. Banerjee, and S. Ghosh, Phys. Rev.
E 97, 062108 (2018).

[47] A. Kumar, S. Lahiri, T. Bagarti, and S. Banerjee, Physica A 623,
128832 (2023).

[48] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, New J.
Phys. 17, 075015 (2015).

[49] F. Campaioli, F. A. Pollock, and S. Vinjanampathy, Quantum
batteries - Review chapter, arXiv:1805.05507.

[50] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold,
S. Vinjanampathy, and K. Modi, Phys. Rev. Lett. 118, 150601
(2017).

[51] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123 (2013).
[52] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A.

Acín, Phys. Rev. Lett. 111, 240401 (2013).
[53] R. Rodriguez, B. Ahmadi, G. Suarez, P. Mazurek, S. Barzanjeh,

and P. Horodecki, arXiv:2207.00094.
[54] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.

Polini, Phys. Rev. Lett. 120, 117702 (2018).
[55] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock,

Phys. Rev. A 97, 022106 (2018).
[56] F. Caravelli, G. Coulter-De Wit, L. P. García-Pintos, and A.

Hamma, Phys. Rev. Res. 2, 023095 (2020).
[57] F. Zhao, F.-Q. Dou, and Q. Zhao, Phys. Rev. Res. 4, 013172

(2022).
[58] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti,

and M. Polini, Phys. Rev. Lett. 122, 047702 (2019).
[59] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V.

Giovannetti, Phys. Rev. B 99, 035421 (2019).

[60] F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, and A. C.
Santos, New J. Phys. 22, 083007 (2020).

[61] M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, New J.
Phys. 22, 083085 (2020).

[62] D. Tiwari and S. Banerjee, Frontiers Quantum Sci. Technol. 2,
1207552 (2023).

[63] G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V.
Giovannetti, and M. Polini, Phys. Rev. B 98, 205423
(2018).

[64] F. T. Tabesh, F. H. Kamin, and S. Salimi, Phys. Rev. A 102,
052223 (2020).

[65] A. Caldeira and A. Leggett, Ann. Phys. 149, 374 (1983).
[66] A. Touil, B. Çakmak, and S. Deffner, J. Phys. A: Math. Theor.

55, 025301 (2022).
[67] A. Sone and S. Deffner, Entropy 23, 1107 (2021).
[68] J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro,

npj Quantum Inf. 5, 23 (2019).
[69] A. D. Varizi, M. A. Cipolla, M. Perarnau-Llobet, R. C.

Drumond, and G. T. Landi, New J. Phys. 23, 063027
(2021).

[70] M. Łobejko, Quantum 6, 762 (2022).
[71] J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki,

Phys. Rev. Lett. 89, 180402 (2002).
[72] M. Horodecki and J. Oppenheim, Nat. Commun. 4, 2059

(2013).
[73] M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Phys.

Rev. X 5, 021001 (2015).
[74] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,

041003 (2017).
[75] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).

012224-9

https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1103/PhysRevE.97.062108
https://doi.org/10.1016/j.physa.2023.128832
https://doi.org/10.1088/1367-2630/17/7/075015
https://arxiv.org/abs/1805.05507
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevLett.111.240401
https://arxiv.org/abs/2207.00094
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevResearch.2.023095
https://doi.org/10.1103/PhysRevResearch.4.013172
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1088/1367-2630/ab9ee2
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.3389/frqst.2023.1207552
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevA.102.052223
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1088/1751-8121/ac3eba
https://doi.org/10.3390/e23091107
https://doi.org/10.1038/s41534-019-0138-y
https://doi.org/10.1088/1367-2630/abfe20
https://doi.org/10.22331/q-2022-07-14-762
https://doi.org/10.1103/PhysRevLett.89.180402
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevLett.113.140401

