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Bloch-electron dynamics under the influence of a quantized radiation field
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A theory is described for a Bloch electron accelerating in a homogeneous external electric field of arbitrary
time dependence while interacting with a quantized radiation field. The external electric field is described in the
vector potential gauge. The quantum radiation field is described by the free space quantized electromagnetic field
in the Coulomb gauge. The instantaneous eigenstates for the Bloch Hamiltonian are introduced as basis states to
analyze the Bloch dynamics to all orders in the external electric field; as well, the eigenstates of the free quantum
electromagnetic field are utilized as a component of the full basis set to develop a direct time-dependent solution
of the Schrödinger equation. As an alternative consideration, the Glauber displacement operator is utilized to
transform the original problem to a canonical form. For both the initial and transformed scenarios considered,
the first-order solution to the Schrödinger equation is obtained and used to calculate the Bloch electric current
in a form useful for studying the spectral content of solids. It is found that the Glauber transformed Hamiltonian
and subsequent quantum dynamics is quite effective in providing solid-state band information in general and as
noted in the first-order calculated Bloch-electron current.

DOI: 10.1103/PhysRevA.109.012223

I. INTRODUCTION

Bloch-electron dynamics in external electric fields has
been a subject of intense interest from the early development
of solid-state physics [1]. Moreover, the modern develop-
ment of band-engineered superlattices (SLs), tailored periodic
structures, and low-dimensional materials (LDMs) has fur-
ther stimulated a host of electric-field-mediated transport and
optical absorption phenomena from SLs and quantum well
(QW) nanostructures where the low-dimensional band gaps
and bandwidths are typically several orders of magnitude
smaller than those of bulk solids [2]. The band parameters
of SLs, QWs, and LDMs give rise to transport with extreme,
even ballistic, mean-free paths and radiation properties in the
infrared and submillimeter wave range [3].

Most recently, there has been intense activity generated
with the advent of picosecond to attosecond time-resolved
technologies [4]. This has led to exciting new probe dy-
namics relevant to atomic and solid-state materials, and has
stimulated new phenomena including high harmonic genera-
tion (HHG) [5]. With regard to the solid state, time-resolved
methods draw attention to methodologies for addressing
Bloch-electron dynamics in time-dependent radiation fields.
In the typical theoretical approach for solids, the exciting
radiation field is treated as a classical, time-dependent radia-
tion field [6]. Yet, in experimental situations involving such
phenomena as HHG, especially in the high-field intensity
regime, the presence of high photon density dictates treating
the quantum nature [6–8] of the exciting field as observable
[9]. Thus, in this work, attention is focused on Bloch-electron
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dynamics in a quantized radiation field rather than a classical
radiation field. The Bloch-electron current is calculated in
considering the manifestation of useful spectral properties.

In Sec. II, the Hamiltonian for an accelerated Bloch elec-
tron in the free-space quantum electrodynamic field of interest
is developed. The classical, time-dependent, homogeneous
electric field is described in the vector potential gauge, and the
free-space quantized electromagnetic radiation field is treated
using the Coulomb gauge. In Sec. III, the single quantum field
mode interaction with a Bloch electron is treated; the instan-
taneous eigenstates of the Bloch Hamiltonian are developed
[10] as basis states to analyze the Bloch dynamics to all or-
ders in the accelerating homogeneous electric field. Also, the
eigenstates of the free quantum radiation field are utilized as
a component of the complete basis set in developing the time-
dependent solution to the Schrödinger equation. In addition,
as an alternative formulation, the Glauber displacement [11]
operator is utilized to transform the Schrödinger equation and
Hamiltonian to an alternative form. In Sec. IV, it is shown
that the current associated with the Glauber transformed case
is solely dependent upon the Bloch band parameters. A first-
order solution to the Schrödinger equation is obtained and
utilized in the calculation of the Bloch-electron current in a
form useful for studying the spectral content of solids. Sec-
tion V provides a summary of results and conclusions. Seven
Appendixes are included to supplement detail mathematical
discussions as noted.

II. BLOCH HAMILTONIAN IN MULTIMODE
ELECTROMAGNETIC FIELD

The Hamiltonian for a single electron in a periodic
crystal potential Vc(r) subject to an external time-varying
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electromagnetic field is

Ĥ (r, p̂, t ) = 1

2me

[
p̂ − e

c
Â(r, t )

]2

+ Vc(r) + Ĥr . (1)

Here, e is the electron charge (that is, e = −|e|) and p̂ =
−ih̄∇r is the electron momentum operator, me is the free-
electron mass, r is the space coordinate, Â(r, t ) = Ac(t ) +
Âr (r) is the total vector potential for the external homoge-
neous electric field, E(t ), and for the free quantized radiation
field described by the Hamiltonian Ĥr . The vector potential
Ac(t ) is given by

Ac(t ) = −c
∫ t

t0

E(t ′)dt ′, (2a)

where c is the speed of light in a vacuum, and t0 is the time
when the external electric field is turned on. The vector poten-
tial Âr (r) for the free multimode quantized radiation field is
given as

Âr (r) =
(

2π h̄c

V

)1/2 ∑
q,λ

1

q1/2
(âqλλeiq·r + â†

qλλ
∗e−iq·r ).

(2b)

Here, λ is the two-component polarization [12] vector for each
radiation mode of frequency ωq = cq (q = |q|), the free-space
photon dispersion with wave vector q, V is the volume of
the system, and h̄ is the Planck constant divided with 2π . Âr

satisfies the Coulomb gauge so that ∇r · Âr = 0 or λ · q = 0
for each polarization direction. Finally, Ĥr for the quantized
radiation field is given by

Ĥr =
∑
q,λ

h̄ωq

(
â†

qλâqλ + 1

2

)
, (3)

where in both Âr and Ĥr , â†
qλ and âqλ are the well-known

creation and annihilation boson operators for the quantum
radiation field.

In substituting the vector potential Â(r, t ) into Eq. (1), the
Hamiltonian can be reexpressed as

Ĥ = Ĥ0 + Ĥr + Ĥ ′
i , (4)

where

Ĥ0 = 1

2me
(p̂ + pc)2 + Vc(r), (5)

Ĥr is given by Eq. (3), and Ĥ ′
i is given as

Ĥ ′
i = Ĥi + ĤA, (6a)

where

Ĥi = − e

mec
Âr · (p̂ + pc), (6b)

and

ĤA = e2

2mec2
Â2

r . (6c)

In solving the time-dependent Schrödinger equation asso-
ciated with the Hamiltonian of Eq. (4),

ih̄
∂

∂t
|�(t )〉 = Ĥ |�(t )〉, (7)

we note that, in a natural approach, we use the instantaneous
eigenstates of Ĥ0 and Ĥr as basis functions and look for a
general solution of Eq. (7) in terms of the complete set of
functions. For Ĥ0 of Eq. (5), we chose the instantaneous
eigenstates of Ĥ0, the well-established states [10,13],

Ĥ0ψnK(r, t ) = εn[k(t )]ψnK(r, t ), (8a)

where k(t ) = K + kc(t ), kc(t ) = pc(t )/h̄ = (e/h̄)
∫ t

t0
E

(t ′)dt ′, εn(K) represents the energy dispersion of the band n,
and

ψnK(r, t ) = eiK·r

V 1/2
unk(t )(r, t ), (8b)

where V is the volume of the crystal. For Ĥr of Eq. (3), we
have the well-known oscillator states |{nqλ}〉 given by

Ĥr |{nq,λ}〉 =
∑
q,λ

h̄ωq|{nqλ}〉. (8c)

Then, we formally look for |�(t )〉 of Eq. (7) in the form

|�(t )〉 =
∑
n,k

∑
{nqλ}

Ank,{nqλ}(t )ψnK|{nqλ}〉

× e− i
h̄

∫ t
t0

dt ′{εn[k(t ′ )]+∑
q,λ h̄ωqnqλ}, (9)

where the coefficients, Ank,{nqλ}(t ), are found by substituting
Eq. (9) into Eq. (7) and appropriately solving for Ank,{nqλ}(t ).
In this general formalism, we emphasize that Eq. (9) includes
the sum over {nqλ}; this indicates that the general solution
requires a sum over all the radiation modes of the quantum
field. This ensures that all possible multiphoton processes are
included in the general solution.

The Hamiltonian of Eq. (4) is in a convenient form for
developing perturbation theory solutions to the Schrödinger
equation since it orders the quantized field in powers of Âr .
But this Hamiltonian is also quite sensitive to the type of po-
larization characterizing the radiation field. This was clearly
demonstrated [14] for a single-mode analysis where the elec-
tron Hamiltonian was assumed to be that of a free particle;
this referenced work makes use of the Glauber displacement
operator to simplify the Hamiltonian associated with the free-
particle case consideration. In our work, we make use of a
similar approach with a single-mode analysis, but with the
electron Hamiltonian defined for a single Bloch electron in
a homogeneous electric field of arbitrary time dependence.

III. BLOCH DYNAMICS IN A SINGLE-MODE
RADIATION FIELD

The Hamiltonian taken from Eq. (4) can be written in a
form convenient for single-mode consideration as

Ĥ (r, p̂, t ) = 1

2me
(p̂ + pc)2 + Vc(r) + Ĥr

− e

mec
Âr · (p̂ + pc) + e2

2mec2
Â2

r . (10)

Letting ωq = ω and âqλ = â, then Ĥr and Âr reduce to

Ĥr = h̄ω
(
â†â + 1

2

)
, (11a)
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and

Âr =
(

2π h̄c

V q

)1/2

(âλeiq·r + â†λ∗e−iq·r ), (11b)

respectively; in the Coulomb gauge, p̂ · Âr = 0. In Eq. (11b),
λ is the polarization [12] vector for the radiation field with
|λ|2 = 1. For linear polarization, in the x̂ direction, λ(x̂) =
(1, 0); in the ŷ direction, λ(ŷ) = (0, 1). For circular polar-
ization, λ · λ = λ∗ · λ∗ = 0 and |λ|2 = 1, for right helicity,
λR = (1, i)/

√
2, and left helicity, λL = (1,−i)/

√
2. General

polarization algebra can also be established, but we focus here
especially on right circular polarization for the remainder of
this analysis.

For Â2
r , it follows from Eq. (11b) that

Â2
r = 4π h̄c

V q

(
â†â + 1

2

)
. (12)

We note that the radiation field Hamiltonian Ĥr , given in
Eq. (11a), and Â2

r terms of Eqs. (6c) and (12) combine to
give

Ĥr ≡ Ĥr + ĤA = h̄	
(
â†â + 1

2

)
, (13)

where

	 = ω

(
1 + ω2

p

2ω2

)
, (14)

and ωp = (4πe2/meV )1/2 is the plasma frequency [15]. Thus,
the single-mode Hamiltonian which follows from Eq. (10) for
circular polarization is

Ĥ (r, p̂, t ) = Ĥ0 + h̄	
(
â†â + 1

2

) + Ĥ ′, (15a)

Ĥ ′ = −D0(p̂ + pc) · (âλeiq·r + â†λ∗e−iq·r ), (15b)

where D0 = (e/me)(2π h̄/V ω)1/2, and λ belongs to λR and λL.
To solve the time-dependent Schrödinger equation, Eq. (7),
we use two different methods which are described below.

A. Direct solution of time-dependent Schrödinger
equation for the Hamiltonian Ĥ

For our purpose here, it is convenient to reexpress the
Hamiltonian Ĥ in Eq. (15a) in the form

Ĥ (r, p̂, t ) = Ĥ0 + Ĥ ′, (16a)

where we have redesignated Ĥ0 of Eq. (5) as

Ĥ0 = 1

2me
(p̂ + pc)2 + Vc(r) + h̄	

(
â†â + 1

2

)
, (16b)

and Ĥ ′ is given in Eq. (15b). We look for the solution
to the time-dependent Schrödinger equation, Eq. (7), us-
ing the instantaneous eigenstates of Ĥ0 in Eq. (16b) as
basis states. These states are described by the band wave
functions, ψnK(r, t ) with eigenvalues εn[k(t )], given in
Eqs. (8a) and (8b); also, the eigenvectors |m〉 and eigenvalues
Em = h̄	(m + 1

2 ) of the harmonic-oscillator Hamiltonian in
Eq. (13). Then, we can express the solution to Eq. (7) as

|�(t )〉 =
∑
n,k

∑
m

Ank(m, t )ψnK(r, t )|m〉e− i
h̄

∫ t
t0

{εn[k(τ )]+Em}dτ
. (17)

Putting |�(t )〉 into Eq. (7) and taking the scalar products with ψnK(r, t )|m〉, using the orthogonality properties of both ψnK and
|m〉, we obtain

Ȧnk(m, t ) = − 1

ih̄

∑
n′ �=n

An′k(m, t )F(t ) · Rnn′ (k)e
i
h̄

∫ t
t0

[εn (k)−εn′ (k)]dτ

+ 1

ih̄

∑
n′,k′

∑
m′

An′k′ (m′, t )Ĥ ′
nk,n′k′ (m, m′, t )e

i
h̄

∫ t
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
, (18a)

where

F(t ) = eE(t ), Rnn′ (k) = i

	c

∫
	c

u∗
nk(r)∇kun′k(r)dr, (18b)

and 	c is the volume of the unit cell. For matrix elements of Ĥ ′ given in Eq. (15b), we find using the chosen basis set of functions
that

Ĥ ′
nk,n′k′ (m, m′, t ) = −D0[âmm′λ · (p̂ + pc)nk,n′k′δk,k′+q + â†

mm′λ
∗ · (p̂ + pc)nk,n′k′δk,k′−q], (19)

where âmm′ = (m′)1/2δm,m′−1, â†
mm′ = (m′ + 1)1/2δm,m′+1, and the terms δk,k′±q come from the radial contribution from the matrix

elements of Eq. (19). From Eq. (18a), it follows after integration that

Ank(m, t ) = − 1

ih̄

∑
n′ �=n

∫ t

t0

dt ′An′k(m, t ′)F(t ′) · Rnn′ (k)e
i
h̄

∫ t ′
t0

[εn(k)−εn′ (k)]dt ′

+ 1

ih̄

∑
n′,k′

∑
m′

∫ t

t0

dt ′An′k′ (m′, t ′)Ĥ ′
nk,n′k′ (m, m′, t ′)e

i
h̄

∫ t ′
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
. (20)
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Seeking an approximate solution to Eq. (20) in the form

Ank(m, t ) 	 δn,n0δK,K0δm,m0 + A(1)
nk (m, t ), (21a)

where Ank(m, t0) = δn,n0δK,K0δm,m0 and A(1)
nk (m, t0) = 0 correspond to the initial state ψn0K0 |m0〉 at t = t0, we find after insertion

into right-hand side of Eq. (20) and integration

A(1)
nk (m, t ) 	 − 1

ih̄

∫ t

t0

dt ′F(t ′) · Rnn0 (k)e
i
h̄

∫ t ′
t0

[εn(k0 )−εn0 (k0 )]dτ
δk,k0δm,m0

− m1/2
0

D0

ih̄

∫ t

t0

dt ′λ · (p̂ + pc)nk,n0k0 e
i
h̄

∫ t ′
t0

[εn(k0+q)−εn0 (k0 )−h̄	]dτ
δk,k0+qδm,m0−1

− (m0 + 1)1/2 D0

ih̄

∫ t

t0

dt ′λ∗ · (p̂ + pc)nk,n0k0 e
i
h̄

∫ t ′
t0

[εn(k0−q)−εn0 (k0 )+h̄	]dτ
δk,k0−qδm,m0+1. (21b)

Here, k0(t ) = K0 = pc(t )/h̄. In Eq. (21b), the first term
is the well-known [10] Zener tunneling coefficient, and the
second and third terms are the single-photon absorption
and emission coefficient. We therefore express the result of
Eq. (21b) as

A(1)
nk (m, t ) = A(Z )

nk (t ) + A(a)
nk (m, t ) + A(e)

nk (m, t ). (22)

Thus, the solution to the Schrödinger equation (7) is found to
first order by putting Eq. (22) into Eq. (17). We note that in the
absorption and emission terms, when considering electron-
photon dynamics in Bloch bands, the values of photon vector
q are orders of magnitude smaller than Bloch k vector well
into the UV. Thus, |q| 
 |k| may be suppressed relative to |k|
(see Appendix A).

B. Alternative approach based on unitary transformation

In this section, we consider an alternative approach to
solving Eqs. (7) and (16a) by applying the Glauber-type [11]
unitary transformation � = D̂�, Ĥ = D̂−1ĤD̂ (D̂† = D̂−1

and D̂−1D̂ = D̂D̂−1 = Î), where

D̂ = eσ̂ â†−σ̂ †â, D̂† = eσ̂ †â−σ̂ â†
, (23a)

but where σ̂ , σ̂ † are arbitrary operators that are independent
of â, â† and therefore commute with â and â†. With respect to
â and â†, D̂ possesses the transformation properties [11]

D̂−1âD̂ = â + σ̂ , D̂−1â†D̂ = â† + σ̂ †. (23b)

Thus, in using D̂, D̂† in Eq. (16a), we obtain

Ĥ ≡ D̂−1ĤD̂ = D̂−1Ĥ0D̂ + D̂−1Ĥ ′D̂. (24)

In applying the transformation D̂ with properties from
Eq. (23b) to Ĥ0 and Ĥ ′ specified in Eqs. (16b) and (15b),
respectively, and then choosing σ̂ and σ̂ † to eliminate the
linear dependence of â and â† in the transformed Ĥ , we find
that Eq. (24) becomes

Ĥ = Ĥ0 − h̄	σ̂ σ̂ †, (25a)

where

Ĥ0 = D̂−1Ĥ0D̂, (25b)

and the required choice for σ̂ , σ̂ † is

σ̂ = D0

h̄	
(p̂ + pc) · λ∗e−iq·r, σ̂ † = D0

h̄	
(p̂ + pc) · λeiq·r.

(26)

In applying the transformation properties of D̂ in Eqs. (23b)
to (24), we note, as seen in Eq. (26), that σ̂ and σ̂ † will
generally depend on noncommuting variables r and p̂. The
quantum nature of this noncommutation must be taken into ac-
count when evaluating σ̂ σ̂ † and Ĥ0 in the unfolding quantum
dynamical equations. The general commutation properties of
σ̂ , σ̂ † are discussed in Appendix B.

However, we note that when considering electron-photon
dynamics in Bloch bands of crystals, the values of photon
wave vector q of interest in this work are orders of magnitude
smaller than the Bloch K vector. Thus, we suppress q relative
to k (Appendix A), and we therefore ignore e±iq·r in Ĥ ′ of
Eq. (15b). This approximation is essentially equivalent [16] to
the dipole approximation for atoms; it differs from the atomic
case in that for solids the effective dipole approximation
becomes transparent through momentum transition matrix el-
ements over the Bloch states in question [see Eqs. (19), (21b),
and (22), for example]. In this work, we invoke the dipole
approximation by letting q → 0 (see Appendix A).

In general, we note that using σ̂ , σ̂ † of Eq. (26), D̂ can be
reexpressed as

D̂ = e(p̂+pc )·α̂, (27a)

where

α̂ = D0

h̄	
(λ∗â†e−iq·r − λâeiq·r ). (27b)

But, invoking the dipole approximation, we let q → 0, so that
α̂ of Eq. (27b) becomes α̂0, where

α̂0 = D0

h̄	
(λ∗â† − λâ), (27c)

with α̂†
0 = −α̂0. Then D̂ of Eq. (27a) becomes D̂0, where

D̂0 = e(p̂+pc )·α̂0 , D̂†
0 = e−(p̂+pc )·α̂0 . (28)

We find from Eqs. (26) and (B7) that, when q → 0, σ̂ → σ̂0,
and σ̂ † → σ̂

†
0 , where

σ̂0 = D0

h̄	
λ∗ · (p̂ + pc), σ̂

†
0 = D0

h̄	
λ · (p̂ + pc), (29)

so that the Hamiltonian Ĥ of Eqs. (24) and (25a) becomes

Ĥ = 1

2me
(p̂ + pc)2 + Vc(r + ih̄α̂0) + h̄	

(
â†â + 1

2

)

− D2
0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ. (30)
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The Schrödinger equation (7) is transformed via |�(t )〉 =
D̂0|�(t )〉 using D̂0 of Eq. (28) into the equation

ih̄

[
∂

∂t
+ D̂†

0

∂D̂0

∂t

]
|�(t )〉 = Ĥ|�(t )〉. (31)

From Eq. (28), with D̂0 = D̂0(t ), we find

D̂†
0

∂D̂0

∂t
= α̂0 · ṗc (32a)

and

D̂†
0Vc(r)D̂0 = Vc(r + ih̄α̂0). (32b)

In Eq. (32b), we have made use of the fact that D̂0 from
Eq. (28) commutes with p̂, and [r, D̂0] = ih̄∇pD̂0 = ih̄α̂0D̂0.
Then, the Schrödinger equation transformation of Eq. (31)
becomes

ih̄
∂

∂t
|�(t )〉 + ih̄α̂0 · ṗc

=
{

1

2me
(p̂ + pc)2 + Vc(r + ih̄α̂0) + h̄	

(
â†â + 1

2

)

− D2
0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ

}
|�(t )〉, (32c)

which can be written in the form similar to Eq. (7) as

ih̄
∂

∂t
|�(t )〉 = (Ĥ0 + Ĥ′)|�(t )〉, (33a)

where

Ĥ0 = 1

2me
(p̂ + pc)2 + Vc(r) + h̄	

(
â†â + 1

2

)
(33b)

and

Ĥ′ = Vc(r + ih̄α̂0) − Vc(r)

− D2
0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ − ih̄α̂0 · ṗc. (33c)

As noted by comparison, Eqs. (16b) and (33b) are iden-
tical with respect to Ĥ0, so that we can adopt the same dual
basis set; that is, instantaneous Bloch electron eigenstates
and harmonic-oscillator eigenstates of Eq. (16b) in solving
the transformed Schrödinger equation of Eq. (33a). However,
Eq. (15b) of the original Hamiltonian and Eq. (33c) of the
transformed Hamiltonian are quite different, with Eq. (33c)
reflecting the transforming properties of the unitary operator,
D̂0; that is, the notable spatial shift of α̂0 in the crystal poten-
tial energy, Vc(r + ih̄α̂0) − Vc(r), a shift which is reminiscent
of the Henneberger-Kramers shift [17]. As well, this shift
serves as a spatial optical inner probe of Vc(r) and, together
with the term ih̄α̂0 · ṗc, represents an explicit measure of the
competition between the Bloch and classical fields, medi-
ated by the radiation field interaction through α̂0. Lastly, the
(p̂ + pc) · λ∗ (p̂ + pc) · λ term, when expanded for circularly

polarized λ,λ∗, results in − D2
0

2h̄	
(p̂ + pc)2

⊥, representing a con-
tracted perpendicular component of the kinetic energy due to
the quantum circular polarization.

We also note that in expressing D̂0 of Eq. (28) in terms of
σ̂0 of Eq. (29), it is easy to show using Eq. (23b) that |σ̂0〉 =

D̂0|0〉 is a coherent-like state in that â|σ̂0〉 = σ̂0|σ̂0〉, where σ̂0

commutes with â.
As noted, the interesting feature of Vc(r + ih̄α̂0) arises

when we observe the matrix elements with the chosen basis
functions. For this purpose, representing Vc(r) by its crystal
Fourier representation

Vc(r) =
∑

G

UGeiG·r, UG = 1

	c

∫
	c

Vc(r)e−iG·rdr, (34)

with G belonging to the reciprocal lattice, we see that

〈m′|ψn′K′ |Vc(r + ih̄α̂0)|ψnK|m〉
=

∑
G

UG〈ψn′K′ |eiG·r|ψnK〉〈m′|e−h̄G·α̂0 )|m〉.

Since

〈ψn′K′ |eiG·r|ψnK〉 = 1

V

∫
V

u∗
n′k′unkei(k−k′+G)·rdr

= 1

	c

∫
	c

u∗
n′k′unkdr δk′−k,G,

so that k′ − k = G, noted as the electron-diffraction condi-
tion, we can write

〈m′|ψn′K′ |Vc(r + ih̄α̂0)|ψnK|m〉
= Uk′−kOn′k′,nk〈m′|e−h̄(k′−k)·α̂0 |m〉, (35a)

where

On′k′,nk = 1

	c

∫
	c

u∗
n′k′ (r)unk(r)dr δk′−k,G

= 1

	c

∫
	c

u∗
n′k(r)eiG·runk(r)dr δk′−k,G. (35b)

The first-order evaluation [18] of Eq. (35b) at k′ = k + G
results in 1

	c

∫
	c

u∗
n′k′ (r)unk(r)dr 	 δn′,nδk′,k + iG · Rn′n(k),

where Rn′n(k) is given in Eq. (18b), thus denoting transitions
at the Brillouin-zone boundaries. Also 〈m′|e−h̄(k′−k)·α̂0 )|m〉,
with α̂0 of Eq. (27c), distributes the (m′, m) matrix elements
of h̄(k′ − k) · α̂0 in a noncommuting binomial distribution,
which is addressed below.

In looking for the approximate solution to Eq. (33a), we
first represent |�(t )〉 in the same form as Eq. (17), namely,

|�(t )〉 =
∑
n′,k′

∑
m′

Bn′k′ (m′, t )ψn′K′ (r, t )|m′〉

× e− i
h̄

∫ t
t0

{εn′ [k′(τ )]+Em′ }dτ
. (36)

In putting Eq. (36) into Eq. (33a), and taking the inner product
using 〈m|ψ∗

nk, we find after solving for Ḃnk(m, t ) and integra-
tion over time that

Bnk(m, t ) = − 1

ih̄

∑
n′ �=n

∫ t

t0

dt ′Bn′k(m, t ′)

× F(t ′) · Rnn′ (k)e
i
h̄

∫ t ′
t0

[εn(k)−εn′ (k)]dτ

+ 1

ih̄

∑
n′,k′

∑
m′

∫ t

t0

dt ′Bn′k′ (m′, t ′)Ĥ′
nk,n′k′

× (m, m′, t ′)e
i
h̄

∫ t ′
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
. (37a)
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Here, Ĥ′ is given by Eq. (33c), with matrix elements

Ĥ′
nk,n′k′ (m, m′, t ) = [Vc(r + ih̄α̂0)]nkm,n′k′m′ −

[
Vc(r) + D2

0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ

]
nk,n′k′

δm,m′ − ih̄(α̂0)mm′ · ṗcδn,n′δk,k′ .

(37b)

As was done in Eq. (21a), we again seek approximate solution to Eq. (37a) in the form

Bnk(m, t ) 	 δn,n0δK,K0δm,m0 + B(1)
nk (m, t ). (38a)

Then B(1)
nk (m, t ) from Eq. (37a) becomes

B(1)
nk (m, t ) = A(Z )

nk (t ) + 1

ih̄

∫ t

t0

dt ′Ĥ′
nk,n0k0

(m, m0, t ′)e
i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ
, (38b)

where the matrix elements of Ĥ′
nk,n0k0

(m, m0, t ′) are obtained from Eq. (37b) by replacement (n′k′m′) with (n0k0m0), respec-

tively; A(Z )
nk (t ) is defined in Eqs. (21b) and (22).

Regarding the first term in Eq. (37b), we note that, to first order in α̂0, assuming small magnitude of D0/h̄	 (see Appendix C),
Vc(r + ih̄α̂0) = Vc(r) + ih̄α̂0 · ∇rVc(r) + O(α̂2

0). Then, the matrix elements for the first two terms in Eq. (37b) become

[Vc(r + ih̄α̂0)]mm′ − Vc(r)δm,m′ = −ih̄(α̂0)mm′ · Fc(r) + O
(
α̂2

0

)
, (39)

where Fc(r) = −∇rVc(r). Then Eq. (37b) simplifies to

Ĥ′
nk,n′k′ (m, m′, t ) = −ih̄(α̂0)mm′ · [Fc(r)nk,n′k′ + ṗcδn,n′δk,k′] − D2

0

h̄	
[(p̂ + pc) · λ∗ (p̂ + pc) · λ]nk,n′k′δm,m′ , (40)

where (α̂0)mm′ is now stand-alone, and Fc(r) competes directly with ṗc. Thus, the use of Eq. (40) in Eq. (38b) greatly simplifies
the approach. The calculation of B(1)

nk (m, t ) using Eq. (40) in Eq. (38b) is straightforward. We note that (α̂0)mm0 for use in
Eq. (38b) is (α̂0)mm0 = (D0/h̄	)[(m0 + 1)1/2δm,m0+1λ

∗ − m1/2
0 δm,m0−1λ]. We then find that Eq. (38b) reduces to

B(1)
nk (m, t ) = A(Z )

nk (t ) + 1

ih̄

∫ t

t0

dt ′
{

− ih̄
D0

h̄	

[
(m0 + 1)1/2δm,m0+1λ

∗ − m1/2
0 δm,m0−1λ

] · [
(Fc)nk,n0k0

+ ṗcδn,n0δk,k0

]

− D2
0

h̄	
[(p̂ + pc) · λ∗ (p̂ + pc) · λ]nk,n0k0

δm,m0

}
e

i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ
. (41)

Otherwise, we must necessarily deal with Eqs. (37a) and
(37b), which are significantly more complex. In this regard, to
approach the analysis of the full matrix element Ĥ′, appearing
in Eq. (37b), we consider a complete formulation of Vc(r +
ih̄α̂0). Defining an operator Q̂ such that

Q̂Vc(r) = Vc(r + ih̄α̂0), (42a)

where

Q̂ = e(p̂+pc )·α̂0 ≡ eÛ , (42b)

we express Q̂ of Eq. (42b) in the form

Q̂ = 1 +
∞∑

N=1

Û N

N!
. (42c)

Using α̂0 from Eq. (27c), we find that Û becomes

Û = D0

h̄	
(p̂ + pc) · (λ∗â† − λâ)

= D0

h̄	
[(p̂ + pc) · λ∗â† − (p̂ + pc) · λâ]. (43)

In letting

Â = ε�̂
†
0â, B̂ = −ε�̂0â†, (44a)

where

�̂0 = (p̂ + pc) · λ∗, �̂0
† = (p̂ + pc) · λ, (44b)

and

ε = D0

h̄	
, (44c)

then Û of Eq. (43) becomes Û = −ε(�̂†
0â − �̂0â†) = −(Â +

B̂), so that

eÛ = e−(Â+B̂) = e−Âe−B̂e− 1
2 [Â,B̂]. (45a)

This follows from the use of the Baker-Campbell-Hausdorff
(BCH) theorem [19], where from Eq. (44a) and the use of
[â, â†] = 1, it is clear that

[Â, B̂] = −ε2�̂
†
0�̂0. (45b)

It is noted from Eqs. (44a) and (45b) that [Â[Â, B̂]] =
[B̂[Â, B̂]] = 0, so that the use of the BCH theorem is appro-
priate. Therefore, it follows from Eqs. (42b) and (45a) that

Q̂ = e−ε�̂
†
0 âeε�̂0 â†

e
1
2 ε2�̂

†
0 �̂0 . (46)
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Since we seek to establish the matrix elements of Q̂Vc(r)
in Eq. (42a), that is,

〈ψnK|〈m|Q̂Vc(r)|m′〉|ψn′K′ 〉, (47)

it is more convenient to use Q̂ in the form of Eq. (42c). In this
case, we have

Q̂ = 1 +
∞∑

N=1

(−1)N (Â + B̂)N

N!
, (48a)

which is in the form of an infinite sum of binomial coefficients
composed of noncommuting operators in that [â, â†] = 1.
However, this type of binomial expression is realized through
the use of the BCH theorem, namely,

eλ(Â+B̂) = eλÂeλB̂e− λ2

2 [Â,B̂]. (48b)

Here, the binomial expression in Eq. (48a) is obtained for
the two noncommuting operators by expanding both sides
of Eq. (48b) to equal orders of λ, and then comparing each
side, term by term. The details of this analysis are found in
Appendix D, where we find, using Eqs. (44a)–(44c), along

with Eq. (D3), that

Û N

N!
= εN

N∑
s=0,(N−s)[2]

(
1
2 �̂

†
0�̂0

)(N−s)/2

s![(N − s)/2]!

×
s∑

r=0

(−1)s−r

(
s

r

)
(�̂†

0â)r (�̂0â†)s−r . (49)

In equation (49), for any integer N ranging from 1 to infinity,
we note that s is in the range [0, N] such that (N − s)/2 is an
integer [this is the meaning of the indication (N − s)[2]].

Thus, from Eq. (42a), the term by term application on
Vc(r) gives rise to an additive N-photon process leading to
the full multiphoton process. Therefore, the first term in the
matrix element of Ĥ′ in Eq. (37b) can be determined for
[Vc(r + ih̄α̂0)]nkm,n′k′m′ using Eq. (49). In taking the matrix
elements of (m, m′) with respect to âr and (â†)s−r , we find
that (see Appendix E for details) matrix elements of Q̂Vc(r)
become

〈m′|Q̂Vc(r)|m〉 =
{
δmm′ + 1√

m′!m!

∞∑
N=1

(
D0

h̄	

)N N∑
s=0,(N−s)[2]

(
1

2

) N−s
2

s∑
r=0

(m + r)!(−1)
N−s

2 +s−r

(
s

r

)
(�̂†

0 )
N−s

2 +r �̂
N+s

2 −r
0

}
Vc(r).

(50a)

Here, Eq. (50a) has been arranged in a symmetric form with respect to �̂m
0 and (�̂†

0 )m; this will facilitate in evaluating the matrix
elements with respect to (nk, n′k′) over {(

s

r

)
(�̂†

0 )
N−s

2 +r �̂
N+s

2 −r
0

}
Vc(r).

Of course, the contribution of the order of the sum over N will be, to an extent, determined by the magnitude of D0/h̄	 which
is less than unity (see Appendix A). We note that with the subsequent evaluation with respect to the states (nk, n′k′) over{(

s

r

)
(�̂†

0 )
N−s

2 +r �̂
N+s

2 −r
0

}
Vc(r),

the initial term Vc(r)δm,m′ cancels with the counter term in Eq. (50a) of Ĥ′, leaving only the sum over N . Hence, as noted, each
term in the sum over N is considered to be an N-photon contribution to the total Ĥ′ scattering process.

Thus, in fully evaluating

Ĥ′
nk,n0k0

(m, m0, t ′)e
i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ

for use in Eq. (38b), it follows from Eq. (37b) that

Ĥ′
nk,n0k0

(m, m0, t ′)e
i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ = {
[Vc(r + ih̄α̂0)]nkm,n0k0m0

− [Vc(r)]nk,n0k0
δm,m0

}
e

i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ

− D2
0

h̄	
[(p̂ + pc) · λ∗ (p̂ + pc) · λ]nk,n0k0

δm,m0 e
i
h̄

∫ t
t0

[εn(k)−εn0 (k0 )]dτ

− ih̄(α̂0)mm0
· ṗce

i
h̄

∫ t
t0

(Em−Em0 )dτ
δn,n0δk,k0 . (50b)

In Eq. (50b), we note that (α̂0)mm0 is off-diagonal in mm0, and the selection rules have been observed in the energy exponential
term. Also, from Eq. (50a), it follows that

[Vc(r + ih̄α̂0)]nkm,n0k0m0
− [Vc(r)]nk,n0k0

δm,m0 = 1√
m!m0!

∞∑
N=1

(
D0

h̄	

)N N∑
s=0,(N−s)[2]

(
1

2

) N−s
2

s∑
r=0

(m + r)!(−1)
N+s

2 −r

(
s

r

)

× (
ψnk,

{
(�̂†

0 )
N−s

2 +r �̂
N+s

2 −r
0 Vc(r)

}
ψn0k0

)
. (50c)
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The specific term of Eq. (50c),

�nk,n0k0 = (
ψnk,

{
(�̂†

0 )
N−s

2 +r �̂
N+s

2 −r
0 Vc(r)

}
ψn0k0

)
, (51)

can be further reduced by using the general Fourier representation for Vc(r) of Eq. (34). Inserting Vc(r) of Eq. (34) into Eq. (51)
and noting Eq. (44b), we find that

�nk,n0k0 =
∑

G

UG[(h̄G + pc) · λ]
N−s

2 +r[(h̄G + pc) · λ∗]
N+s

2 −r(
ψnK, eiG·rψn0K0

)
. (52a)

Since (
ψnK, eiG·rψn0K0

) = 1

	c

∫
	c

u∗
nk(r)un0k0 (r)dr δk−k0,G, (52b)

and k − k0 = G is the selection rule emanating from the Bloch integral, we can evaluate the sum in Eq. (52a) as

�nk,n0k0 = Uk−k0{[h̄(k − k0) + pc] · λ} N−s
2 +r{[h̄(k − k0) + pc) · λ∗} N+s

2 −r 1

	c

∫
	c

u∗
nk(r)un0k0 (r)dr δk−k0,G, (52c)

where

Uk−k0 = 1

	c

∫
	c

Vc(r)e−i(k−k0 )·rdr. (52d)

Finally, letting a = h̄(k − k0) + pc and remembering from Eq. (11b) that λ = (1, i)/
√

2, λ∗ = (1,−i)/
√

2, we find

a · λ = a√
2

eiφ, a · λ∗ = a√
2

e−iφ,

with ax = a cos φ and ay = a sin φ, and tan φ = ay/ax; so that �nk,n0k0 of Eq. (52c) becomes

�nk,n0k0 = Uk−k0 Onk,n0k0

(
a√
2

)N

ei(2r−s)φeiφ, (53)

where Uk−k0 is given in Eq. (52d) and Onk,n0k0 is given in Eq. (35b). Then, inserting (53) into (50c), we obtain

[Vc(r + ih̄α̂0)]nkm,n0k0m0
− [Vc(r)]nk,n0k0δm,m0

= 1√
m!m0!

Uk−k0 Onk,n0k0

∞∑
N=1

(
D0

h̄	

)N(
a√
2

)N N∑
s=0,[(N−s)/2]

(
−1

2

) N−s
2

(−1)s
s∑

r=0

(m + r)!(−1)r

(
s

r

)
ei(2r−s)φ. (54a)

As noted in Eq. (54a), for any integer N ranging from zero to infinity, the value of s is in the range [0, N] such that (N − s)/2
is an integer. It then follows that for odd values of N = No, corresponding values of s will be odd ranging from so = 1 to No. As
well, for even values of N = Ne, corresponding values of s will be even ranging from se = 0 to Ne. Therefore, the sum over N
and s in Eq. (54a) can be expressed as

∞∑
N=1

N∑
s=0,[(N−s)/2]

=
∞∑

No=1

No∑
so=1

+
∞∑

Ne=2

Ne∑
se=0

. (54b)

Breaking Eq. (54a) into a sum like Eq. (54b), we let No = 2N + 1 with N = 0, 1, 2, . . ., and Ne = 2N with N = 1, 2, 3, . . .;
then, so = 2s + 1 and se = 2s with s ranging from s = 0, 1, 2, . . . N . Then, Eq. (54a) can be rewritten in the form of Eq. (54b) as

[Vc(r + ih̄α̂0)]nkm,n0k0m0
− [Vc(r)]nk,n0k0

δm,m0

= 1√
m!m0!

Uk−k0 Onk,n0k0

{ ∞∑
N=0

(
D0

h̄	

)2N+1( a√
2

)2N+1 N∑
so=0

(
−1

2

)N−so

(−1)2so+1
2so+1∑
r=0

(m + r)!(−1)r

(
2so + 1

r

)
ei(2r−2so−1)φ

+
∞∑

N=1

(
D0

h̄	

)2N(
a√
2

)2N N∑
se=0

(
−1

2

)N−se

(−1)2se

2se∑
r=0

(m + r)!(−1)r

(
2se

r

)
ei2(r−se )φ

}
. (54c)

Equation (54c) can be further resumed and simplified. In separating the first term in the sum (N = 1) and then combining the
remaining two terms, we find

[Vc(r + ih̄α̂0)]nkm,n0k0m0
− [Vc(r)]nk,n0k0

δm,m0

= 1√
m!m0!

Uk−k0 Onk,n0k0

{
− D0

h̄	

a√
2
�(1) +

∞∑
N=2

(
D0

h̄	

)N(
− a

23/2

)N N∑
s=0

(−2)s�(s)

}
, (54d)
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where

�(s) =
s∑

r=0

(m + r)!(−1)r

(
s

r

)
ei(2r−s)φ. (54e)

Here, Uk−k0 , Onk,n0k0 , and φ are given in Eqs. (52d), (52b),
and (53), respectively.

This establishes the exact matrix element in terms of
the key relevant parameters to any desired order in D0/h̄	.
Thus, it follows using Eq. (50b) in Eq. (38b) that we obtain
B(1)

nk (m, t ) for the complete formulation of Vc(r + ih̄α̂0).
As a comparative note on approaches 1 and 2, in both cases,

we have been working with a Hamiltonian of the form of
Eq. (16a), where for both cases Ĥ0 is given in Eq. (16b); but
for case 1, Ĥ ′ ≡ Ĥ ′

1 is in Eq. (15b) and for case 2, Ĥ ′ ≡ Ĥ ′
2

is in Eq. (33c). In case 1, given the states of Ĥ0 noted in
Eq. (16b), Ĥ ′

1 of Eq. (15b) scatters the states of Ĥ0 to provide
Zener tunneling and first-order optical absorption and emis-
sion. Whereas, in case 2, in a unitary equivalent picture, Ĥ ′

2
[Eq. (33c)] scatters the states of Ĥ0 from the inner crystal
potential energy with ih̄α̂0 serving as a spatial optical probe
and coupling constant. Ĥ ′

2 also contains an added contribution
to the perpendicular component of the kinetic energy due to

the circular polarization λ,λ∗; as well as a contribution from
the classical force ṗc.

IV. CALCULATION OF CURRENT, WAVE FUNCTION
FORMULATION

For Bloch bands, the electron current j is

j = e

〈
p̂

me

〉
= e〈v̂〉 = e

∫
�∗v̂� dr, (55)

where v̂ is the operator of the electron velocity, given by

v̂ = 1

ih̄
[r, Ĥ ], (56)

and � is the solution to the time-dependent Schrödinger
equation.

In this section, we develop the current j for the two canoni-
cal Hamiltonians treated in Sec. II. Since both Hamiltonians to
be treated are of the same form, i.e., Ĥ = Ĥ0 + Ĥ ′, with iden-
tical Ĥ0 but differing Ĥ ′, we make use of the same duel basis
set; that is, instantaneous Bloch eigenstates and harmonic-
oscillator eigenstates, to represent � with appropriate expan-
sion coefficients consistent with the specific time-dependent
Schrödinger equation. As such, we express � in general as a
representative solution [as in Eqs. (17) and (36)]

|�(t )〉 =
∑
n,k

∑
m

Cnk(m, t )ψnK(r, t )|m〉e− i
h̄

∫ t
t0

{εn[k(τ )]+Em}dτ
. (57)

Using the wave function of Eq. (57) in j of Eq. (55), we find

j(t ) = e
∑
n,k,m

∑
n′,k′,m′

C∗
n′k′ (m′, t )Cnk(m, t )v̂n′k′m′,nkme− i

h̄

∫ t
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
, (58a)

where v̂n′k′m′,nkm are matrix elements of the electron velocity given by

v̂n′k′m′,nkm = 1

ih̄
[r, Ĥ]n′k′m′,nkm. (58b)

We note that j(t ) of Eq. (58a) can be expressed in terms of the density matrix as

j(t ) = e
∑
n,k,m

∑
n′,k′,m′

�̂nkm,n′k′m′ (t )v̂n′k′m′,nkm(t ),

so that, by comparison, protocols using the same wave functions, we see that

�̂nkm,n′k′m′ (t ) = C∗
n′k′ (m′, t )Cnk(m, t )e− i

h̄

∫ t
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
. (59)

While we proceed in this section by developing Cnk(m, t ) to lowest order, one can use the power of density matrices in developing
more advanced protocols. Such a protocol is outlined in Appendix F (density matrix formulation of current).

Now, we calculate the current for the two Hamiltonian systems addressed in Sec. II. They were generally of the form
Ĥ = Ĥ0 + Ĥ ′, where for Eqs. (16b), (15b) and for (33b), (33c), we have the following:

(1) Direct single-mode Hamiltonian

Ĥ0 = 1

2me
(p̂ + pc)2 + Vc(r) + h̄	

(
â†â + 1

2

)
, (60a)

Ĥ ′
1 = −D0(p̂ + pc) · (âλeiq·r + â†λ∗e−iq·r ). (60b)

(2) Glauber-transformed Hamiltonian

Ĥ0 = 1

2me
(p̂ + pc)2 + Vc(r) + h̄	

(
â†â + 1

2

)
, (61a)

Ĥ′
2 = Vc(r + ih̄α̂0) − Vc(r) − D2

0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ − ih̄α̂0 · ṗc, (61b)

where α̂0 = D0
h̄	

(λ∗â† − λâ).
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In developing v̂ of Eq. (56), the key commutation relations to be utilized are [xr, p̂s] = ih̄δr,s and [â, â†] = 1; all components
of position and momentum commute with â, â†. λ,λ∗ are the circular polarization vectors noted below Eq. (11b); and pc is a
c-number with respect to all operators. For case 1 above, it is straightforward to show that

v̂1 = 1

me
(p̂ + pc) − D0(âλeiq·r + â†λ∗e−iq·r ), (62a)

and for case 2

v̂2 = 1

me
(p̂ + pc) − D2

0

h̄	
(p̂ + pc)⊥, (62b)

where (p̂ + pc)⊥ = (p̂ + pc)xx̂ + (p̂ + pc)yŷ. In using the Bloch instantaneous eigenstates, ψnK of Eq. (8b), and the harmonic-
oscillator states (â†â + 1/2)|m〉 = Em|m〉, where Em = h̄	(m + 1/2), m = 0, 1, 2, . . ., we find

(v̂1)n′k′m′,nkm = 1

me
(p̂n′n + pcδn′n)δk′,kδm′m − D0(λâm′mδk′,k+q + λ∗â†

m′mδk′,k−q). (63a)

Here, âm′m = m1/2δm′,m−1, â†
m′m = (m + 1)1/2δm′,m+1, and the terms δk′,k±q come from the radial contribution from the matrix

elements. Also, we find

(v̂2)n′k′m′,nkm =
[

1

me
(p̂n′n + pcδn′n) − D2

0

h̄	
(p̂n′n + pcδn′n)⊥

]
δk′,kδm′,m. (63b)

Inserting the matrix elements of v̂1 and v̂2 from Eqs. (63a) and (63b) into the current expression of Eq. (58a), we find that

j1(t ) = e
∑
n,k,m

∑
n′

{
C∗

n′k(m, t )Cnk(m, t )
1

me
(p̂n′n + pcδn′n)e− i

h̄

∫ t
t0

[εn(k)−εn′ (k)]dτ

− D0
[
C∗

n′k+q(m − 1, t )Cnk(m, t )m1/2λe− i
h̄

∫ t
t0

[εn(k)−εn′ (k+q)+h̄	]dτ

+C∗
n′k−q(m + 1, t )Cnk(m, t )(m + 1)1/2λ∗e− i

h̄

∫ t
t0

[εn(k)−εn′ (k−q)−h̄	]dτ ]}
, (64a)

and

j2(t ) = e
∑
n,n′

∑
m

C∗
n′k(m, t )Cnk(m, t )

[
1

me
(p̂n′n + pcδn′n) − D2

0

h̄	
(p̂n′n + pcδn′n)⊥

]
e− i

h̄

∫ t
t0

[εn(k)−εn′ (k)]dτ
. (64b)

We generally observe that j1(t ) is an implicit function of (nkm) whereas j2(t ) is dependent upon only (nk) since the sum∑
m C∗

n′k(m, t )Cnk(m, t ) ≡ Fn′knk(t ). This suggests that the unitary transformation to the canonical form (case 2) may be quite
fruitful for studying the spectral content of the Bloch bands from frequency-dependent Fourier analysis of j2(t ).

Next, in determining Cnk(m, t ), we put �(t ) of Eq. (57) into the Schrödinger equation (7) and take the scalar products with
respect to ψnK(r, t )|m〉; using the orthogonality properties of both ψnK(r, t ) and |m〉, we obtain

Ċnk(m, t ) = − 1

ih̄

∑
n′ �=n

Cn′k(m, t )F(t ) · Rnn′ (k)e
i
h̄

∫ t
t0

[εn(k)−εn′ (k)]dτ

+ 1

ih̄

∑
n′k′

∑
m′

Cn′k′ (m′, t )Ĥ′
nk,n′k′ (m, m′, t )e

i
h̄

∫ t
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
, (65)

where F(t ) and Rnn′ (k) are given in Eq. (18b), and Ĥ′ corresponds to either Eq. (15b) or Eq. (33c) for this current calculation.
From Eq. (65), it follows after integration

Cnk(m, t ) = − 1

ih̄

∑
n′ �=n

∫ t

t0

dt ′Cn′k(m, t ′)F(t ′) · Rnn′ (k)e
i
h̄

∫ t ′
t0

[εn(k)−εn′ (k)]dτ

+ 1

ih̄

∑
n′k′

∑
m′

∫ t

t0

dt ′Cn′k′ (m′, t ′)Ĥ′
nk,n′k′ (m, m′, t ′)e

i
h̄

∫ t ′
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
. (66)

Seeking an approximate solution [an alternative solution to Eq. (65) is discussed in Appendix G] to Eq. (66) in the form

Cnk(m, t ) 	 δn,n0δK,K0δm,m0 + C(1)
nk (m, t ), (67a)
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where (n0K0m0) are initial states of the system, that is, Cnk(m, t0) [20], we find, after insertion into the right-hand side of Eq. (66),
the first-order solution for Cnk(m, t ) to be

C(1)
nk (m, t ) 	 − 1

ih̄

∫ t

t0

dt ′F(t ′) · Rnn0 (k0)e
i
h̄

∫ t ′
t0

[εn(k0 )−εn0 (k0 )]dτ
δk,k0δm,m0

+ 1

ih̄

∫ t

t0

dt ′Ĥ′
nk,n0k0

(m, m0, t ′)e
i
h̄

∫ t ′
t0

[εn (k)−εn0 (k0 )+Em−Em0 ]dτ
. (67b)

In C(1)
nk (m, t ) of Eq. (67b), the first term describes the classic Zener tunneling component of the transition probability, noted by

A(Z )
nk (m, t ) in Eqs. (21b) and (22), whereas the second term represents the first-order transitional behavior due to Ĥ′.

In putting Eq. (67a) into j(t ) of Eq. (58a) and keeping terms to first order in C(1)
nk , we find

j(t ) = e

[
v̂n0k0m0,n0k0m0 + 2Re

∑
n,k

∑
m

C(1)
nk (m, t )v̂n0k0m0,nkm(t )e− i

h̄

∫ t
t0

[εn (k)−εn0 (k0 )+Em−Em0 ]dτ

]
. (68)

The results in j(t ) of Eq. (68) will, of course, depend on the behavior of C(1)
nk (m, t ), which is determined by Eq. (67b) for a

given Ĥ′; and will depend on the matrix elements of the velocity, vn0k0m0,nkm, given in Eqs. (63a) and (63b) depending on the
transformation we explore. It then follows that by inserting C(1)

nk (m, t ) of Eq. (67b) into j(t ) of Eq. (68), we obtain to first order

j(t ) = e

[
v̂n0k0m0,n0k0m0 (t ) + 2Re

∑
n �=n0

A(Z )
nk0

(m0, t )v̂n0k0m0,nk0m0 (t )e− i
h̄

∫ t
t0

[εn(k0 )−εn0 (k0 )]dτ

+2Re
∑
n,k

∑
m

1

ih̄

∫ t

t0

dt ′Ĥ′
nk,n0k0

(m, m0, t ′)v̂n0k0m0,nkm(t )e− i
h̄

∫ t
t ′ [εn(k)−εn0 (k0 )+Em−Em0 ]dτ

]
. (69a)

In Eq. (69a), the velocity matrix elements in the two first terms are determined from Eqs. (63a) and (63b) for each case 1 or 2
considered. In all situations,

p̂n0,n0 (k) = me

h̄
∇kεn0 (k), (69b)

and

p̂n0,n(k) = 1

	c

∫
	c

u∗
n0k(r)p̂unk(r)dr = me

ih̄
[εn(k) − εn0 (k)]Rn0n(k). (69c)

The results for the third term are determined by inserted both matrix elements for Ĥ′ and v̂ into the expression and evaluating
the sum over (nkm) while observing the implicit selection rules present in the matrix elements.

For case 1, with Ĥ′ given by Eq. (60b) and v̂1 by Eq. (62a), we find that

Ĥ′
nk,n0k0

(m, m0, t ) ≡ (
ψnK, 〈m|Ĥ′|m0〉ψn0K0

)
= −D0

[
m1/2

0 (p̂ + pc)nn0
· λδk,k0+qδm,m0−1 + (m0 + 1)1/2(p̂ + pc)nn0

· λ∗δk,k0−qδm,m0+1
]
, (70a)

and

(v̂1)n0k0m0,nkm = 1

me
(p̂ + pc)n0nδk0,kδm0,m − D0

[
m1/2λδk0,k+qδm0,m−1 + (m + 1)1/2λ∗δk0,k−qδm0,m+1

]
δn,n0 . (70b)

Putting the matrix elements of Eqs. (70a) and (70b) into j(t ) of Eq. (69a), we find after combining terms that, for case 1,

j1(t ) = e

{
1

h̄
∇kεn0 (k)|k=k0 + 2Re

∑
n �=n0

A(Z )
nk0

(m0, t )
1

me
p̂nn0 (k0)e− i

h̄

∫ t
t0

[εn(k0 )−εn0 (k0 )]dτ

+ 2D2
0Re

1

ih̄

∑
n

[
m0

∫ t

t0

dt ′λ∗(p̂ + pc)nn0
· λe− i

h̄

∫ t
t ′ [εn(k0+q)−εn0 (k0 )−h̄	]dτ

+ (m0 + 1)
∫ t

t0

dt ′λ(p̂ + pc)nn0
· λ∗e− i

h̄

∫ t
t ′ [εn(k0−q)−εn0 (k0 )+h̄	]dτ

]}
. (71)
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For case 2, Ĥ′
2 is given by Eq. (61b) and v̂2 is given by Eq. (62b). In considering the case when α̂0 is small, we can expand

the key component of Ĥ′
2 so that it is represented in the form

Ĥ′
2 	 −ih̄α̂0 · (Fc + ṗc) − D2

0

h̄	
(p̂ + pc) · λ∗ (p̂ + pc) · λ. (72a)

Then, the key matrix element is

(Ĥ′
2)nk,n0k0 (m, m0, t ) 	 −ih̄(α̂0)mm0

· [
(Fc)nk,n0k0

+ ṗcδn,n0δk,k0

] − D2
0

h̄	
[(p̂ + pc) · λ∗ (p̂ + pc) · λ]nk,n0k0

δm,m0 , (72b)

where (α̂0)mm0 is given below Eq. (40). As well, as noted in Eq. (63b),

(v̂2)n0k0m0,nkm =
[

1

me

(
p̂n0n + pcδn0,n

) − D2
0

h̄	

(
p̂n0n + pcδn0,n

)
⊥

]
δk0,kδm0,m. (72c)

The strength of the perpendicular component in v̂2 of Eq. (72c) is easily noted by adapting to the parametrization of Appendix C
so that meD2

0/h̄	 = 1/(1 + 2ω2/ω2
p). Then, in choosing ωp ∼ 1016 rad/s (metallic-like), we estimate that meD2

0/h̄	 
 1
for frequencies above the UV. Whereas, for ωp ∼ 1014 rad/s (a heavily doped semiconductor), meD2

0/h̄	 remains small for
frequencies above the far IR. Thus, the contributing strength of meD2

0/h̄	 is determined by the density of free carriers provided
by the specific material system.

Then, using the matrix elements of (Ĥ′
2)nk,n0k0 (m, m0, t ) and (v̂2)n0k0m0,nkm in j(t ) of Eq. (69a), we find for case 2 that

j2(t ) = e

{
1

me

[
p̂n0n0 (k0) + pc

] − D2
0

h̄	

[
p̂n0n0 (k0) + pc

]
⊥

+ 2Re
∑
n �=n0

A(Z )
nk0

(m0, t )

[
1

me
p̂n0n(k0) − D2

0

h̄	
p̂⊥n0n(k0)

]
e− i

h̄

∫ t
t0

[εn(k0 )−εn0 (k0 )]dτ

− 2
D2

0

h̄	
Re

∑
n

1

ih̄

∫ t

t0

dt ′[(p̂+pc)·λ∗ (p̂+pc) · λ]nk0,n0k0

×
[

1

me
(p̂n0n + pcδn0,n)− D2

0

h̄	
(p̂n0n + pcδn0,n)⊥

]
k=k0(t )

e− i
h̄

∫ t
t ′ [εn(k0 )−εn0 (k0 )]dτ

}
. (73)

We note in Eq. (73) that

1

me
(p̂ + pc) − D2

0

h̄	
(p̂ + pc)⊥

can be expressed as

1

me

[(
1 − meD2

0

h̄	

)
(p̂ + pc)⊥

]
+ 1

me
(p̂ + pc)z;

here,

1 − meD2
0

h̄	
= 2ω2/ω2

p

1 + 2ω2/ω2
p

.

This shows that low-frequency quantum radiation values quench the perpendicular component of (p̂ + pc), whereas high-
frequency values tend to restore the fractional coefficient of (p̂ + pc) to unity.

Finally, with regard to case 2, should one want to consider the evaluation of j(t ) in Eq. (69a) for arbitrary α̂0, then we would

need to use Ĥ′
nk,n0k0

(m, m0, t ′)e
i
h̄

∫ t ′
t0

[εn(k)−εn0 (k0 )+Em−Em0 ]dτ derived from Eq. (50b). In the calculations, v̂2 for use in Eq. (69a) is

given in Eq. (63b) as used for the case of α̂0 small. Also, �̂0 and �̂
†
0 are specified in Eq. (44b). We then find that j2(t ) becomes

j2(t ) = e

{
1

me

[
p̂n0n0 (k0) + pc

] − D2
0

h̄	

[
p̂n0n0 (k0) + pc

]
⊥

+ 2Re
∑
n �=n0

A(Z )
nk0

(m0, t )

[
1

me
p̂n0n(k0) − D2

0

h̄	
p̂⊥n0n(k0)

]
e− i

h̄

∫ t
t0

[εn(k0 )−εn0 (k0 )]dτ

+ 2Re
∑

n

1

ih̄

∫ t

t0

dt ′
{

[Vc(r + ih̄α̂0)]nk0m0,n0k0m0
− [Vc(r)]nk0,n0k0
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− D2
0

h̄	
[(p̂ + pc) · λ∗ (p̂ + pc) · λ]nk0,n0k0

}

×
[

1

me

(
p̂n0n + pcδn0,n

) − D2
0

h̄	

(
p̂n0n + pcδn0,n

)
⊥

]
k=k0(t )

e− i
h̄

∫ t
t ′ [εn(k0 )−εn0 (k0 )]dτ

}
. (74)

Here, the [Vc(r + ih̄α̂0) − Vc(r)] matrix elements are given
in Eq. (54d). j2(t ) of Eqs. (73) and (74) is rich in spectral
information relevant to the Bloch bands. A major part of the
temporal dependence of Eq. (74) is denoted in the third term
of j2(t ) by [we note that the other matrix element terms are
also time dependent through pc(t )]

Inn0 (t ) =
∫ t

t0

dt ′e− i
h̄

∫ t
t ′ [εn(k0 )−εn0 (k0 )]dτ ; (75a)

here,

εn(k) =
∑

l

εn(l)eikleikcl, (75b)

where kc(t ) = pc(t )/h̄.
The Fourier transform of j2(t ) and I (t ) aids in revealing the

detailed nature of the spectral structure of εn with respect to
εn0 . εn(k) is mediated by the classical field which can be used
as a tuning probe. But for simplicity here, we set pc = 0 and
t0 = 0 in j2(t ), and we find that

Inn0 (t ) = ih̄
e− i

h̄ [εn(K0 )−εn0 (K0 )]t − 1

εn(K0) − εn0 (K0)
. (76)

Here, εn(K0) − εn0 (K0) is the energy spacing between bands
n0 and n at the Brillouin-zone value K0. j(t ) has a frequency-
dependent Fourier transform which can be evaluated with the
use of a δ function plus a principal value [21] highlighting the
state sums over energy differences; that is, through the use of∫ ∞

0
eiKxdK = i

P

x
+ πδ(x).

A complete spectral intensity analysis of j1(t ) and j2(t ) would
entail the evaluation of Sj (ω) ∼ ω2|j(ω)|2 [22]; such a com-
plex numerical analysis is not intended in this work.

In the overall analysis of the current, note that (v̂1)n′k′m′,nkm

of Eq. (63a) is off-diagonal in (m, m′), whereas (v̂2)n′k′m′,nkm

of Eq. (63b) is diagonal in (m, m′); this results in the current
j1(t ) of Eq. (71) possessing an explicit optical absorption
or emission component. Whereas in j2(t ) of Eqs. (73) and
(74), the current expression depends solely on (nk). This is
observed generally in Eq. (64b).

V. SUMMARY AND CONCLUSIONS

Electron dynamics has been developed for a Bloch elec-
tron accelerating in a homogeneous external electric field of
arbitrary time dependence while interacting with a quantized
electromagnetic radiation field. In considering the single-
mode description for the free-space quantized radiation field
in circular polarization state, we find, using as basis the instan-
taneous Bloch and harmonic-oscillator eigenstates, that the
first-order solution to the time-dependent Schrödinger equa-

tion yields Zener tunneling along with direct single-photon
optical absorption and emission.

In a canonical scenario, utilizing a Glauber-like displace-
ment unitary transformation of the initial problem, we see a
scenario which is significantly more revealing of the solid-
state spectral character as reflected in the Bloch electron
current. Moreover, the canonical form introduced a spatial
quantum spectral probative nature of the inner crystal poten-
tial energy through ih̄α̂0, which, when fully decomposed in
the transformed Hamiltonian, revealed the full spectral con-
tent of the Bloch Hamiltonian even through the lowest-order
calculated Bloch electron current.

APPENDIX A: SOLID-STATE DIPOLE APPROXIMATION

The central perturbing Hamiltonian for the single-mode
problem is noted in Eq. (15b) as

Ĥ ′ = −D0(p̂ + pc) · (âλeiq·r + â†λ∗e−iq·r ). (A1)

Since r and p̂ do not commute with each other, but do com-
mute with â and â†, we take the matrix elements of Ĥ ′ with
respect to the Bloch instantaneous eigenstates of Eq. (8a).
Then, we find

(Ĥ ′)n′k′,nk = −D0(âŜn′k′,nk + â†Ŝ†
n′k′,nk ), (A2)

where

Ŝn′k′,nk =
∫

V
ψ∗

n′K′ (r)(p̂ + pc) · λeiq·rψnK(r)dr

= 1

	c

∫
	c

u∗
n′k′ (r)(p̂ + pc) · λunk(r)drδk′,k+q+G,

(A3)

and

Ŝ†
n′k′,nk = 1

	c

∫
	c

u∗
n′k′ (r)(p̂ + pc) · λ∗unk(r)drδk′,k−q+G.

(A4)
In considering the first Brillouin zone, we take G = 0 so that
k′ = k ± q in Eqs. (A3) and (A4).

We note that in estimating the “order of magnitude” k value
as 2π/aL with aL = 5 × 10−8 cm, an approximate lattice pa-
rameter, and using q = ω/c with c = 3 × 1010 cm/s for the
momentum of photons, we find that k/q is much greater than
unity for a frequency range from less than microwaves into
the deep UV, greater than unity for frequencies ranging into
the x-ray region, but less than unity for γ rays and beyond.
Thus, for Eqs. (A1) and (A2) in the analysis, we adopt k � q,
so that on the scale of a lattice parameter the solid-state dipole
approximation is in effect. It is then clear from Eqs. (A1) and
(A2) that (|k|, |k′|) � |q|, so that eiq·r can be suppressed in
the matrix elements of Ĥ ′.
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A further, more quantitative consideration concerning the
magnitude of k relative to q can be found in reference [23]
with regard to optical transitions in semiconductors.

APPENDIX B: CALCULATION OF σ̂σ̂†

If we had not suppressed the q of eiq·r in Ĥ ′ of Eq. (15b),
we would have found that the σ̂ and σ̂ † of Eq. (26) would have
to be chosen as

σ̂ = D0

h̄	
(p̂ + pc) · λ∗e−iq·r, σ̂ † = D0

h̄	
(p̂ + pc) · λeiq·r,

(B1)
such that to arrive at Eq. (25a),

Ĥ = Ĥ0 − h̄	σ̂ σ̂ †. (B2)

Consider the commutator [σ̂ , σ̂ †] of the operators σ̂ and
σ̂ †, which are given in Eq. (26) for q �= 0,

[σ̂ , σ̂ †] =
(

D0

h̄	

)2

[(p̂ + pc) · λ∗e−iq·r, (p̂ + pc) · λeiq·r].

(B3)
For the calculation, the commutator on the right-hand side of
(B3) can be written as

[σ̂ , σ̂ †] =
(

D0

h̄	

)2

{[(p̂ + pc) · λ∗e−iq·r, (p̂ + pc) · λ]eiq·r

+ (p̂ + pc) · λ[(p̂ + pc) · λ∗e−iq·r, eiq·r]

+ (p̂ + pc) · λ∗[e−iq·r, (p̂ + pc) · λ]eiq·r

+ (p̂ + pc) · λ[(p̂ + pc) · λ∗, eiq·r]e−iq·r}. (B4)

Furthermore, using the result that

[(p̂ + pc) · λ∗, eiq·r] = h̄q · λ∗eiq·r,

[e−iq·r, (p̂ + pc) · λ] = h̄q · λe−iq·r, (B5)

we can write the commutator in Eq. (B4) as

[σ̂ , σ̂ †] =
(

D0

h̄	

)2

{(p̂ + pc) · λ∗(h̄q · λ)

+ (p̂ + pc) · λ(h̄q · λ∗)}. (B6)

Then we obtain

σ̂ σ̂ † = σ̂ †σ̂ +
(

D0

h̄	

)2

{(p̂ + pc) · λ∗(h̄q · λ)

+(p̂ + pc) · λ(h̄q · λ∗)}. (B7)

In the same way, we find

σ̂ †σ̂ =
(

D0

h̄	

)2

(p̂ + pc) · λeiq·r(p̂ + pc) · λ∗e−iq·r, (B8)

and

(p̂ + pc) · λ∗e−iq·r = −h̄q · λ∗e−iq·r, (B9)

so that

σ̂ †σ̂ =
(

D0

h̄	

)2

(p̂ + pc) · λ(−h̄q · λ∗)

= −
(

D0

h̄	

)2

h̄q · λ∗(p̂ + pc) · λ. (B10)

Thus, finally, we find that when q �= 0,

σ̂ σ̂ † =
(

D0

h̄	

)2

h̄q · λ(p̂ + pc) · λ∗ (B11)

for use in Eq. (25a).

APPENDIX C: ANALYSIS OF THE MAGNITUDE OF D0/�

Noting from Eqs. (14) and (15b), we see that both 	 and
D0 are naturally introduced and reoccur in a fundamentally
key fashion in connection with the development physical ob-
servables throughout the paper. In particular, the magnitude of
the ratio D0/	 becomes central to much of our analysis. Thus,
from Eqs. (14) and (15b), we note that

	 = ω

(
1 + ω2

p

2ω2

)
, (C1)

and, D0 in magnitude,

|D0| = |e|
mec

√
2π h̄c

V q
, (C2)

with ω = cq. All other quantities are explicitly specified in
Sec. II A.

Since 	 is already expressed in terms of the plasma fre-
quency for an effective one-electron atom of metallic spacing;
that is,

ωp =
√

4πe2

meV
∼ 1016 rad/s, (C3)

we can then similarly express |D0| of Eq. (C2) in terms of like
variables as

|D0| = ωp

(
ε0

ω

)1/2

, (C4)

where

ε0 = h̄

2me
. (C5)

It then follows from Eq. (C1) and (C4) that

|D0|
	

= �

(
ωp

ω

)√
ε0

ω
, (C6)

where

�(ωp/ω) = ωp/ω

1 + 1
2 (ωp/ω)2

. (C7)

We observe that �(x) in Eq. (C7) is a universal function of
x which peaks at x = x0 = √

2 with a value �(x0) = �0 =
1/

√
2. Thus, when ω is such that ω ≷ ω0 = ωp/

√
2, �( ωp

ω
)

will fall away from the maximum at �0. Then |D0|/	 in
Eq. (C6) will vary as

√
ε0/ω.

We note that, in Eq. (C6), � is a dimensionless pa-
rameter whereas the square-root term has dimensions of
length. For purposes of comparative analysis with respect
to varying h̄ω, it is useful to normalize |D0|/	 to a di-
mensionless quantity. In this regard, in arriving at the
approximation of Eq. (39), we expand Vc(r + ih̄α̂0) to or-
der α̂0, where from Eq. (27c) α̂0 = (D0/h̄	)(λ∗â† − λâ), so
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that

Vc(r + ih̄α̂0) 	 Vc(r)
[
1 + ih̄α̂0 · ∇rVc(r)/Vc(r) + O

(
α̂2

0

)]
.

(C8)

In estimating the magnitude of ∇rVc(r)/Vc(r) with the inverse
“average” lattice constant 1/aL, we can then express the mag-
nitude of the renormalized constant as

|D0|
	aL

= �

(
ωp

ω

)√
a0

aL

E1

h̄ω
	

√
�2

0.15

h̄ω(eV)
; (C9)

here, a0 = h̄2

mee2 	 0.5 Å, aL 	 5 Å, and E1 = e2/2aL 	
1.5 eV. |D0|/	aL of Eq. (C9) is much less than unity for
values of h̄ω ranging from the infrared to beyond the deep
ultraviolet part of the electromagnetic spectrum.

APPENDIX D: BINOMIAL EXPANSION OF TWO
NONCOMMUTING OPERATORS

We consider the binomial expansion of the function (Â +
B̂)N/N! as presented in Eq. (48a) when Â and B̂ are non-
commuting operators. To establish this consideration, it is
appropriate to use the BCH theorem, written in Eq. (48b) as

eλ(Â+B̂) = eλÂeλB̂e− λ2

2 [Â,B̂], (D1)

with [Â[Â, B̂]] = [B̂[Â, B̂]] = 0.
We proceed by expanding the exponentials on the right-

hand side of Eq. (D1) to obtain

eλ(Â+B̂) =
∑

m

1

m!

m∑
k=0

(
m

k

)
ÂkB̂m−kλme− Ĉ

2 , (D2)

where Ĉ = [Â, B̂]. Then, in expanding eλ(Â+B̂) on the left-hand

side, and e− λ2

2 [Â,B̂] (and combining λm to get λm+2s) on the
right-hand side, we find that, in comparing with order λn, term
by term,

(Â + B̂)n

n!
=

n∑
k=0,[(n−k)/2]

(−Ĉ/2)
n−k

2

k!
(

n−k
2

)
!

k∑
r=0

(
k

r

)
ÂrB̂k−r . (D3)

Here, [(n − k)/2] means that (n − k)/2 must be an integer.
For Â, B̂ as noted in Eqs. (44a) and (44b), Eq. (D3) reduces to
Eq. (49).

APPENDIX E: EVALUATION OF 〈m|âr(â†)k−r|m′〉
To complete the evaluation of Eq. (49), and thus move

ahead to the evaluation of 〈m′|Q̂Vc(r)|m〉 in Eq. (50a), we find
it necessary to establish the matrix element of the product
operator âr (â†)k−r with respects to the states (m, m′). We
accomplish this through the decomposition

〈m|âr (â†)k−r |m′〉 =
∑
m′′

〈m|âr |m′′〉〈m′′|(â†)k−r |m′〉. (E1)

It is straightforward to show that

〈m|âr |m′′〉 =
√

m′′!
(m′′ − r)!

δm,m′′−r, (E2a)

〈m′′|(â†)k−r |m′〉 =
√

(m′ + k − r)!

m′!
δm′′,m′+k−r . (E2b)

It then follows using Eqs. (E2a) and (E2b) that Eq. (E1)
becomes

〈m|âr (â†)k−r |m′〉 =
∑
m′′

√
m′′!

(m′′ − r)!

×
√

(m′ + k − r)!

m′!
δm,m′′−rδm′′,m′+k−r

=
√

(m + r)!(m′ + k − r)!

m!m′!
. (E3)

From the selection rules of Eqs. (E2a) and (E2b), it is clear
that eliminating m′′ we get m + r = m′ + k − r. Thus, we find

〈m|âr (â†)k−r |m′〉 = (m + r)!√
m!m′!

. (E4)

APPENDIX F: DENSITY MATRIX FORMULATION
OF CURRENT

In developing the current from the density matrix [24] for
our two Hamiltonians, we have

j(t ) = e
∑
n,k,m

∑
n′,k′,m′

�̂nkm,n′k′m′ (t )v̂n′k′m′,nkm(t )

= eTr(�̂v̂), (F1)

where the matrix elements of v̂ are given by Eqs. (62a) and
(62b), depending upon which case we are developing. The
matrix elements of �̂, the density-matrix operator, are gov-
erned by the Liouville equation

ih̄
∂�̂

∂t
= [Ĥ, �̂]. (F2)

Using the form for Ĥ given for the two canonical Hamil-
tonians in Sec. II, i.e., Ĥ = Ĥ0 + Ĥ ′, with identical Ĥ0 but
differing Ĥ ′, we use of the instantaneous Bloch eigenstates
and harmonic-oscillator eigenstates as basis states to further
develop the Liouville equation evaluation. As such, we find

ih̄

(
∂�̂

∂t

)
n′k′m′,nkm

= [Ĥ0, �̂]n′k′m′,nkm + [Ĥ ′, �̂]n′k′m′,nkm,

which, using the properties of ψnK and |m〉, evolves to

ih̄

(
∂�̂

∂t

)
n′k′m′,nkm

= [εn′ (k′) − εn(k) + Em′ − Em]�̂n′k′m′,nkm

+
∑

n′′,k′′,m′′

[
Ĥ ′

n′k′m′,n′′k′′m′′ �̂n′′k′′m′′,nkm

− �̂n′k′m′,n′′k′′m′′Ĥ ′
n′′k′′m′′,nkm

]
. (F3)

The last term in Eq. (F3) results from the insertion of the
“double prime” complete set of functions.

Taking into account that the instantaneous eigenstates are
time dependent and they satisfy

ih̄
∂ψnK(r, t )

∂t
= F ·

∑
n′′

Rn′′n[k(t )]ψn′′K(r, t ),
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it follows that

ih̄

(
∂�̂

∂t

)
n′k′m′,nkm

= ih̄
∂

∂t
�̂n′k′m′,nkm

+ F ·
∑

n′′
[Rn′′n′ (k′)�̂n′′k′m′,nkm

− Rn′′n(k)�̂n′k′m′,n′′km].

Putting this into (F3), we get

ih̄
∂

∂t
�̂n′k′m′,nkm = [En′ (k′) − En(k) + Em′ − Em]

×�̂n′k′m′,nkm + Ĥ ′′
n′k′m′,nkm[�̂nkm − �̂n′k′m′]

+
∑′

n′′,k′′,m′′

[
Ĥ ′′

n′k′m′,n′′k′′m′′ �̂n′′k′′m′′,nkm

− �̂n′k′m′,n′′k′′m′′Ĥ ′′
n′′k′′m′′,nkm

]
. (F4)

Here, �̂nkm = �̂nkm,nkm, En(k) = εn(k) + Ĥ ′′
nkm,nkm, and

Ĥ ′′
n′k′m′,n′′k′′m′′ = Ĥ ′

n′k′m′,n′′k′′m′′ − F(t ) · Rn′n′′ (k′)δk′,k′′δm′,m′′ .

In Eq. (F4), the off-diagonal elements and diagonal elements
of �̂ have been separated; the

∑′ indicates only off-diagonal
elements of �̂. In Eq. (F4), we now drop the term

∑′ which
contains higher-order terms in Ĥ ′′. Then, we can solve the
remaining equation for �̂n′k′m′,nkm, the off-diagonal matrix el-
ements, as

�̂n′k′m′,nkm(t ) = 1

ih̄

∫ t

t0

dt ′Ĥ ′′
n′k′m′,nkm(t ′)[�̂nkm(t ′) − �̂n′k′m′ (t ′)]

×e
i
h̄

∫ t ′
t [En′ (k′ )−En (k)+Em′ −Em]dτ , (F5)

with �̂n′k′m′,nkm(t0) = 0, n′k′m′ �= nkm being an approximate
expression for the off-diagonal matrix elements.

In Eq. (F4), if we consider n′k′m′ = nkm, then we can
write

ih̄
∂

∂t
�̂nkm =

∑′

n′′,k′′,m′′

[
Ĥ ′′

nkm,n′′k′′m′′ �̂n′′k′′m′′,nkm

+ �̂nkm,n′′k′′m′′Ĥ ′′
n′′k′′m′′,nkm

]
=

∑′

n′,k′,m′

[
(Ĥ ′′)∗n′k′m′,nkm�̂n′k′m′,nkm

+Ĥ ′′
nkm,n′k′m′ �̂

∗
n′k′m′,nkm

]
. (F6)

Then, in eliminating the off-diagonal matrix elements in
Eq. (F6) using (F5), we obtain a closed equation for the
diagonal matrix elements

∂

∂t
�̂nkm(t ) = 2

h̄2 Re
∑′

n′,k′,m′

[
Ĥ ′′

nkm,n′k′m′ (t )

×
∫ t

t0

dt ′Ĥ ′′
n′k′m′,nkm(t ′)e

i
h̄

∫ t ′
t [En′ (k′ )−En (k)+Em′−Em]dτ

×[�̂n′k′m′ (t ′) − �̂nkm(t ′)
]
. (F7)

Thus, in (F5) and (F7), we have developed approximate ex-
pressions for the off-diagonal and diagonal density-matrix
elements for our problem at hand. In evaluating the matrix

elements of the velocity and determining the diagonal and
off-diagonal components, we can then apply the appropri-
ate diagonal or off-diagonal density matrix elements from
Eqs. (F5) and (F7) to evaluate the current from Eq. (F1), that
is

j(t ) = e

[ ∑
n,k,m

�̂nkm(t )v̂nkm,nkm(t )

+
∑
n,k,m

∑
n′,k′ ,m′
�=n,k,m

�̂nkm,n′k′m′ (t )v̂n′k′m′,nkm(t )

]
. (F8)

APPENDIX G: MULTIBAND APPROACH TO EQ. (65)
USING WIGNER-WEISSKOPF APPROXIMATION

In seeking an approximate solution to Eqs. (65) or (66), we
have looked for a first-order solution in the form of Eq. (67a)
which results in Eq. (67b). We adopted this approach since
the solutions to Eqs. (65) and (66) are not tractable. But we
explore here an alternative methodology [25] for obtaining
an improved solution to Eq. (65). In this regard, we express
Eq. (65) in the form

ih̄Ċnk(m, t ) = −
∑

n′,k′,m′
Bnkm,n′k′m′ (t )Cn′k′ (m′, t ), (G1)

where

Bnkm,n′k′m′ (t ) = F(t ) · Rnn′ (k′)e
i
h̄

∫ t
t0

[εn(k′ )−εn′ (k′ )]dτ
δk,k′δm,m′

−Ĥ′
nk,n′k′ (m, m′, t )e

i
h̄

∫ t
t0

[εn(k)−εn′ (k′ )+Em−Em′ ]dτ
.

(G2)

Now, approximating Cn′k′ (m′, t ) on the right-hand side of
Eq. (G1) as

ih̄Ċn′k′ (m′, t ) = −Bn′k′m′,nkm(t )Cnk(m, t ), (G3)

where Bn′k′m′,nkm(t ) = B∗
nkm,n′k′m′ (t ), it follows that Eq. (G1)

becomes

Ċnk(m, t ) = − 1

h̄2

∑
n′,k′,m′

Bnkm,n′k′m′ (t )

×
∫ t

t0

dt ′B∗
nkm,n′k′m′ (t ′)Cnk(m, t ′). (G4)

Equations (G1) and (G3) are noted as the Wigner-Weisskopf
[25] approximation (WWA); in essence, the WWA couples
the state nkm to all states n′k′m′ while including only the
direct reflective feedback from each n′k′m′ state back to the
state of interest. This approximation guarantees conservation
of probability, since it can be shown that [26]

|Cnk(m, t )|2 +
∑

n′k′m′ �=nkm

|Cn′k′ (m′, t )|2 = 1, (G5)

when Cnk(m, t = t0) = 1 and Cn′k′ (m′, t = t0) = 0, n′k′m′ �=
nkm. Finally, we see that by using the WWA, the orig-
inal set of coupled equations for Cnk(m, t ) has been
reduced to nkm uncoupled integro-differential equations.
In pursuing the analysis, Eq. (G4) might be a fruitful
approach for calculating more accurate Bloch current in
Eq. (68).

012223-16



BLOCH-ELECTRON DYNAMICS UNDER THE INFLUENCE … PHYSICAL REVIEW A 109, 012223 (2024)

[1] F. Bloch, Uber die Quantenmechanik der Elektronen in Kristall-
gittern, Z. Phys. 52, 555 (1929); C. Zener, A theory of the
electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A
145, 523 (1934); J. M. Ziman, Principles of the Theory of Solids,
2nd ed. (Cambridge University Press, Cambridge, 1972),
Chap. 6, pp. 171–209.

[2] G. J. Iafrate, The solid state physics of small dimensions, Phys.
Scr. T19A, 11 (1987).

[3] L. Esaki and R. Tsu, Superlattice and negative differential con-
ductivity in semiconductors, IBM J. Res. Dev. 14, 61 (1970);
K. Leo, Interband optical investigation of Bloch oscillations in
semiconductor superlattices, Semicond. Sci. Technol. 13, 249
(1998).

[4] F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys.
81, 163 (2009).

[5] S. Ghimire, G. Ndabashimiye, A. D. DiChiara, E. Sistrunk,
M. I. Stockman, P. Agositni, L. F. DiMauro, and D. A. Reis,
Strong-field and attosecond physics in solids, J. Phys. B: At.,
Mol. Opt. Phys. 47, 204030 (2014).

[6] P. Földi, I. Magashedyi, A. Gombkötő, and S. Varro, Describing
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