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An alternative quantization rule, in which time becomes a self-adjoint operator and position is a parameter,
was proposed by Dias and Parisio [Phys. Rev. A 95, 032133 (2017)]. In this approach, the authors derived a
space-time-symmetric (STS) extension of quantum mechanics (QM) where a new quantum state (intrinsic to
the particle) |φ(x)〉 is defined at each point in space. The quantum state |φ(x)〉 obeys a space-conditional (SC)
Schrödinger equation and its projection on |t〉, 〈t |φ(x)〉, represents the probability amplitude of the particle’s
arrival time at x. In this work we provide an interpretation of the SC Schrödinger equation and the eigenstates
of observables in the STS extension. Analogous to the usual QM, we propose that by knowing the initial
state |φ(x0)〉, which predicts any measurement on the particle performed by a detector localized at x0, the SC
Schrödinger equation provides |φ(x)〉 = Û(x, x0 )|φ(x0)〉, enabling us to predict measurements when the detector
is at x ≶ x0. We also verify that for space-dependent potentials, momentum eigenstates in the STS extension
|Pb(x)〉 depend on position just as energy eigenstates in the usual QM depend on time for time-dependent
potentials. In this context, whereas a particle in the momentum eigenstate in the standard QM, |ψ (t )〉 = |P〉|t ,
at time t , has momentum P (and indefinite position), the same particle in the state |φ(x)〉 = |Pb(x)〉 arrives at
position x with momentum Pb(x) (and indefinite arrival time). By investigating the fact that |ψ (t )〉 and |φ(x)〉
describe experimental data of the same observables collected at t and x, respectively, we conclude that they
provide complementary information about the same particle. Finally, we solve the SC Schrödinger equation for
an arbitrary space-dependent potential. We apply this solution to a potential barrier and compare it with a
generalized Kijowski distribution, showing that they can predict distinct traversal times.
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I. INTRODUCTION

In ordinary quantum mechanics (QM), time is a parameter
t and position is a self-adjoint operator X̂ . In this asym-
metric formulation, the state of a particle represented in the
eigenstates of X̂ provides the probability amplitude ψ (x|t ) ≡
〈x|ψ (t )〉 of finding this particle at position x, given that the
measurement takes place at time t . Because of this time-
conditional (TC) character of QM, it will be convenient for
us to use the denotation (x|t ). This asymmetry is in part
responsible for serious conflicts in the foundations of QM,
including the problem of time in attempts to unify QM and
general relativity [1,2], the interpretation of the time-energy
uncertainty relation [3], and the predictions of arrival and
tunneling times [3–5].

Aiming for a more symmetrical treatment for space and
time in QM, Dias and Parisio in Ref. [6] proposed a com-
plementary way of quantizing classical variables. Position
becomes a parameter and time a self-adjoint operator T̂ obey-
ing the canonical commutation relation [Ĥ, T̂] = ih̄. Here Ĥ
is a Hamiltonian operator different from the usual one, even
though both come from the same classical Hamiltonian. In ad-
dition to the TC state |ψ (t )〉, Ref. [6] postulated the existence
of a space-conditional (SC) state |φ(x)〉 intrinsic to the particle
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and defined at every position in space. Its wave function φ(t |x)
is a two-component vector that represents [analogously to
ψ (x|t ) under x � t] the probability amplitude of measuring
the particle at time t , given that the observation happens at
position x.

From this space-time-symmetric (STS) extension of QM,
Ref. [6] proposed how |φ(x)〉 changes in space, similarly to
how |ψ (t )〉 evolves in time. From now on, we will call this
dynamic constraint the SC Schrödinger equation, which was
also studied in Refs. [7–10]. For the free-particle case [6], this
equation resulted (with a particular assumption that will be
discussed later) in Kijowski’s time of arrival (TOA) distribu-
tion [11], which has been derived via different methods using
the usual QM [12–15].

The ordinary TOA problem consists of predicting the time
probability distribution for a particle to arrive at a given po-
sition x > 0, given its initial wave packet ψ (x|t0) restricted
to x < 0. The existing models of this problem can be divided
into classes: independent [6,11,13–33] and dependent on the
measurement device [12,34–46]. The former distributions are
an intrinsic property of the particle state and aim to describe
the so-called ideal TOA.

A common approach to the ideal TOA [13–18] assumes
that, like any observable in QM, it can be determined
by the spectral decomposition of a time operator and the
measurement-free state of the particle state |ψ (t )〉. Never-
theless, such a procedure faces the Pauli objection [47]: A
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self-adjoint time operator T̂ satisfying [Ĥ, T̂ ] = ih̄ requires
a Hamiltonian unbounded from below, which is unphysical in
the usual QM. As a result, these ideal models are compelled
to abdicate either the canonical commutation relation with
the Hamiltonian or the self-adjointness of the time operator
[15]. Because of this objection, the theoretical description of
arrival, traversal, and tunneling times remains controversial,
with multiple approaches emerging in recent decades. As it
will be clear later, the Pauli argument does not apply to the
STS extension because of its distinct quantization rules.

Another traditional model of the ideal TOA is the quan-
tum flux (probability current) density [19–31,34], which, like
other approaches, is not unrestrictedly valid [11,26–30]. For
instance, it is known that the quantum flux can predict nega-
tive probabilities, an effect called quantum backflow [48–50],
and cannot always be described by a positive-operator-valued
measure.

The numerous disparate models of the TOA in the litera-
ture, as well as the appealing symmetrical formulation of the
STS extension, motivated us to develop this theory. Besides
that, the STS extension has been shown to be a promising
approach to the arrival and tunneling time problems [6–9]. In
particular, Ref. [9] generalizes the STS extension to a particle
moving in three-dimensional space and discusses how it can
be extended to the relativistic domain. The results of Ref. [7]
will be mentioned later.

In this work we propose an interpretation of the STS ex-
tension and we solve the SC Schrödinger equation for an
arbitrary time-independent potential. This solution is applied
to a potential barrier. This paper is organized as follows. In
Sec. II we review in detail the STS extension. In Sec. III we
investigate how to represent the solutions |φ(x)〉 of the SC
Schrödinger equation for arbitrary potentials in the momen-
tum basis, which plays an equivalent role to the energy basis in
the usual QM. In Sec. IV we propose an interpretation of these
solutions and the eigenstates (along with their wave functions)
of any observable in the STS extension. In Sec. V we solve the
SC Schrödinger equation for an arbitrary time-independent
potential. We apply this solution to a potential barrier and
compare it with a generalized Kijowski distribution. As our
focus is on the interpretation of the STS theory, comparisons
between our solution with other time of arrival distributions
and the experiments of Ref. [51] are left for future work.

II. REVIEW OF THE STS EXTENSION OF QM

Let us review the STS extension of QM by using a notation
similar to that of Ref. [6] and drawing a parallel with some
basic concepts of QM. It is worth mentioning that the original
work on the STS extension, Ref. [6], is a relatively short
article, so a more detailed formulation of this theory is still
lacking.

The goal of the STS extension proposed in Ref. [6] is
to deal with experimental situations complementary to those
of the usual QM, which involve TC distributions intrinsic to
the particle |ψ (x|t )|2. For instance, one could ask about the
joint probability P (x, t )dxdt of finding the particle in a given
region of space [x, x + dx] and in a certain interval of time
[t, t + dt]. In this situation, P (x, t ) is equal to the probability
density of finding the particle at position x given that the

observation occurs precisely at t , P (x|t ) = |ψ (x|t )|2, times
the probability density P (t ) of the system being measured at
instant t , whatever the outcome. Thus, we have

P (x, t )dxdt = P (x|t )P (t )dxdt = |ψ (x|t )|2P (t )dxdt, (1)

where P (x, t ) and P (t ) cannot be obtained exclusively
through |ψ (x|t )|2. It is worth remarking that the last equality
of Eq. (1) assigns to P (x|t ) the modulus square of a com-
plex function. This relationship, together with the linearity
of QM, differentiates QM from classical probability theo-
ries. These features allow probabilities such as |ψ1(x|t ) +
ψ2(x|t )|2, yielding the interference phenomenon in the pos-
sible positions where one can find the particle. From Eq. (1),
Ref. [6] defines a global wave function �(x, t ) whose mod-
ulus square is the joint probability distribution of finding the
particle at x and t , P (x, t ) = |�(x, t )|2, and is normalizable
by integration over space and time.

The STS extension emerges by using Bayes’ theorem,
which allows P (x, t ) in Eq. (1) to be rewritten as

P (x, t )dxdt = P (t |x)P (x)dxdt, (2)

where P (t |x) is the probability density of finding the particle
at t , given that the observation takes place at position x, and
P (x) is the probability distribution of finding the particle at x,
irrespective of the time the observation happens. In Ref. [6],
P (t |x) is interpreted as the TOA distribution at position x.
Note that in Eq. (1), x and t play opposite roles in comparison
with Eq. (2). In this context, the STS extension conjectures
that the time probability distribution P (t |x), analogously to
the space distribution P(x|t ) = |ψ (x|t )|2, comes from the
modulus square of a complex function intrinsic to the particle,
but now conditioned at position x,

P (t |x) ≡ N |φφφ(t |x)|2, (3)

where N is a normalization factor and the use of boldface will
be clear later. In this manner, the interference phenomenon for
the TOA of the particle emerges naturally. From this perspec-
tive, the usual QM can be seen as a time-conditional QM and
its STS extension as a space-conditional QM. This work will
focus on the SC wave function φφφ(t |x) rather than the global
wave function �(x, t ).

With this initial discussion, we have the physical intuition
to define the mathematical elements of the STS extension.
First, to make a parallel with QM, we review some of its basic
properties. In the usual QM, the state of a one-dimensional
spinless particle |ψ (t )〉 is defined at every instant t and be-
longs to a Hilbert space H|t . The notation |t does not mean a
time dependence; instead, it emphasizes that time is a parame-
ter in this space, i.e., its physical states |ψ (t )〉 are conditioned
on a given time. Here position is an operator acting on H|t
such that

X̂ |x〉 = x|x〉, [X̂ , P̂] = ih̄, (4)

where 〈x|x′〉 = δ(x − x′) and P̂ is the momentum operator.
The commutation relation (4) leads to the uncertainty prin-
ciple of position and momentum �X̂�P̂ � h̄/2, where � is
the root-mean-square deviation. In the position representation,
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P̂ is

〈x|P̂|x′〉 = −ih̄
∂

∂x
δ(x − x′) (5)

and its eigenstate |P〉 ≡ |P〉|t , with P̂|P〉|t = P|P〉|t , is

|P〉|t = 1√
2π h̄

∫ ∞

−∞
dx eiPx/h̄|x〉. (6)

As it will be clear in Sec. IV, the notation | 〉|t will be essential
to distinguish between eigenstates of the same classical ob-
servable in the usual QM and the STS extension (| 〉|x), which
have different physical meanings. Again, | 〉|t does not mean a
time dependence. Here the resolution of the identity reads∫ ∞

−∞
dx|x〉〈x| =

∫ ∞

−∞
dP|P〉|t |〈P| = 1. (7)

The physical information about the particle position at
instant t is contained in |ψ (t )〉 via the expansion

|ψ (t )〉 =
∫ ∞

−∞
dx ψ (x|t )|x〉, (8)

which is the solution of the Schrödinger equation

Ĥ |ψ (t )〉 = ih̄
d

dt
|ψ (t )〉. (9)

Here Ĥ is obtained from the classical Hamiltonian via the
quantization rule (x, P) → (X̂ , P̂), i.e.,

H (x, P; t ) = P2

2m
+ V (x, t ) → Ĥ (X̂ , P̂; t ) = P̂2

2m
+ V̂ (X̂ , t ).

(10)

Substituting Eq. (10) into Eq. (9) and projecting the resulting
expression on |x〉, we obtain(

− h̄2

2m

∂2

∂x2
+ V (x, t )

)
ψ (x|t ) = ih̄

∂ψ (x|t )

∂t
. (11)

Finally, the probability of finding the particle in the region
[x, x + dx] given that the measurement takes place at time t is

P (x|t )dx = |〈x|ψ (t )〉|2dx = ψ∗(x|t )ψ (x|t )dx. (12)

Now we turn our attention to the STS extension proposed
in Ref. [6]. For the sake of understanding, let us formulate
it following the same steps as above for QM. In the STS
extension, a distinct quantization rule is performed. The state
of a one-dimensional spinless particle |φ(x)〉 is defined at each
position x and belongs to a Hilbert space H|x. Like |t in the
usual QM, |x does not mean a space dependence but that the
physical states |φ(x)〉 belonging to H|x are conditioned on
a given position. Time is an operator T̂ acting on H|x and
canonically conjugated to the Hamiltonian operator Ĥ ( 
=Ĥ),
i.e.,

T̂|t〉 = t |t〉, [Ĥ, T̂] = ih̄, (13)

where 〈t |t ′〉 = δ(t − t ′). This commutation relation leads to
the time-energy uncertainty relation �T̂�Ĥ � h̄/2.

It is important not to confuse Ĥ acting on H|x with Ĥ
[Eq. (10)] acting on H|t , although both refer to the same
Hamiltonian of classical mechanics. They arise from distinct

quantization rules and act upon different Hilbert spaces. In the
time representation, Ĥ is defined as

〈t |Ĥ|t ′〉 = ih̄
∂

∂t
δ(t − t ′) (14)

and its eigenstate |E〉|x (Ĥ|E〉|x = E |E〉|x) becomes

|E〉|x = 1√
2π h̄

∫ ∞

−∞
dt e−iEt/h̄|t〉. (15)

In this Hilbert space, the resolution of the identity is∫ ∞

−∞
dt |t〉〈t | =

∫ ∞

−∞
dE |E〉|x|〈E | = 1. (16)

Comparing Eqs. (4)–(7) with Eqs. (13)–(16), we observe that,
as with space and time, energy (momentum) in H|t plays the
same role as momentum (energy) in H|x. From Eq. (16), E
can be a priori negative, in the same way as P in Eq. (7).
In this scenario, just as the amplitudes of |ψ (t )〉 in the basis
{|P〉|t }, t |〈P|ψ (t )〉, select the possible momenta of the sys-
tem (depending on the potential, and initial and boundary
conditions), the amplitudes of |φ(x)〉 in the basis {|E〉|x},
x|〈E |φ(x)〉, select the energies of the system. Since in the very
formulation of the theory, the basis {|E〉|x} includes energies
from minus to plus infinity, the Pauli objection does not apply
to the Hilbert space of the STS extension.

Analogous to Eq. (8), with x � t , the physical information
about the TOA of the particle at position x is contained in
|φ(x)〉 via the expansion

|φ(x)〉 =
∫ ∞

−∞
dt φφφ(t |x)|t〉. (17)

The physical constraint of |φ(x)〉, defined below, makes the
SC wave function φ(t |x) a two-component object

φφφ(t |x) =
(

φ+(t |x)
φ−(t |x)

)
. (18)

By defining the kets |+〉 ≡ (1
0

)
and |−〉 ≡ (0

1

)
, Eq. (17) can be

written as

|φ(x)〉 =
∫ ∞

−∞
dt[φ+(t |x)|t〉 ⊗ |+〉 + φ−(t |x)|t〉 ⊗ |−〉].

(19)

Since one takes x � t (and P � E ) in QM to formulate the
STS extension, |φ(x)〉 should change in space analogously to
how |ψ (t )〉 evolves in time via the Schrödinger equation (9).
As described above, in the usual QM, the generator of time
translations Ĥ is obtained by quantizing the classical Hamil-
tonian (10). To obtain the corresponding generator of space
translations in the STS extension, we should apply the new
quantization rules [Eqs. (13) and (14)] to the classical mo-
mentum, i.e.,

P(t, H ; x) = ±
√

2m[H − V (x, t )]

→ P̂(T̂, Ĥ; x) = σz

√
2m[Ĥ − V (x, T̂)], (20)

where σz = diag(+1,−1). Then, for the space translation of
|φ(x)〉 to be analogous to the time translation of |ψ (t )〉, |φ(x)〉
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should obey

P̂|φ(x)〉 = −ih̄
d

dx
|φ(x)〉, (21)

which we call the SC Schrödinger equation. In the time repre-
sentation {|t〉}, Eq. (21) reads

σz

√
2m

(
ih̄

∂

∂t
− V (x, t )

)
φφφ(t |x) = −ih̄

∂φφφ(t |x)

∂x
, (22)

with φφφ(t |x) given by Eq. (18). Analogous to t in the usual
QM, x in the STS extension is a continuous parameter that
one can choose with arbitrary precision to evaluate the time
probability amplitude φφφ(t |x). Similar to what happens with
Ĥ and t , P̂ and x cannot satisfy the standard uncertainty
principle.

From φφφ(t |x) we obtain the probability for the particle to
arrive at x in [t, t + dt] via

P (t |x)dt = |〈t |φ(x)〉|2
〈φ(x)|φ(x)〉dt = φφφ†(t |x)φφφ(t |x)

〈φ(x)|φ(x)〉 dt, (23)

where the dagger is the conjugate transpose operation. In
Eq. (23) the normalization with 〈φ(x)|φ(x)〉 is necessary
because P̂ is not always Hermitian. As a result, the SC
Schrödinger equation (21) is not unitary in general. Note that
〈φ(x)|φ(x)〉 is the probability for the particle to arrive at x
regardless of the TOA. Although we can observe a particle
at any instant of time [admitting that it exists, 〈ψ (t )|ψ (t )〉 =
1], we cannot observe it at any position, even if we wait
for an infinite time interval. Therefore, we can have 0 �
〈φ(x)|φ(x)〉 � 1 [7]. Here an essential difference between H|t
and H|x becomes evident: The physical states in H|t and in
H|x have square-integrable wave functions in space and in
time, respectively.

The formulation above of the STS extension does not
involve the quantum states of detectors and/or clocks that
measure the TOA, but only the properties of the particle it-
self. In this manner, φφφ(t |x) can be identified as a probability
amplitude of an ideal TOA. At this point, it is worth noting the
difference between the well-known Page-Wootters formalism
[52–55] and the STS extension. The former considers an extra
physical system playing the role of a clock, with a time su-
perposition referring to the history of the system. In contrast,
in the STS extension, the time superposition refers to a single
event, the particle’s TOA.

Reference [6] solves Eq. (22) only for the free-particle
situation V (x, t ) = 0. Identifying

√
d/dt with the Riemann-

Liouville fractional derivative −∞D1/2|t , which is equiv-
alent to the Caputo fractional derivative [56], we have

−∞D1/2
t exp(−iwt ) = √−iw exp(−iwt ). Under these cir-

cumstances, the time probability density (23) becomes

P (t |x) = 1

2πmh̄

(∣∣∣∣
∫ ∞

0
φ̃(+P)

√
PeiPx/h̄−iEPt/h̄dP

∣∣∣∣
2

+
∣∣∣∣
∫ ∞

0
φ̃(−P)

√
Pe−iPx/h̄−iEPt/h̄dP

∣∣∣∣
2)

× 1

〈φ(x)|φ(x)〉 , (24)

where |φ̃(P)|2 is the probability density of the particle hav-
ing momentum P (where P is a real number), given that its
observation happens at position x. Reference [6] recognizes
Eq. (24) as the normalized Kijowski TOA distribution [11]
by identifying φ̃(P) as the momentum wave function in the
usual QM, ψ̃ (P). Nevertheless, since probabilities in the STS
extension are conditioned on a given position, this identifica-
tion requires a more careful investigation. Later, after giving
an interpretation of the STS extension, we will discuss the
consequences of assuming φ̃(P) = ψ̃ (P).

III. |ψ(t )〉 IN THE ENERGY BASIS VERSUS |φ(x)〉
IN THE MOMENTUM BASIS

From Eqs. (9) and (21) we verify that the energy eigen-
value equation in the usual QM plays an equivalent role to
the momentum eigenvalue equation in the STS extension.
Thus, to help understand the interpretation proposed in the
next section, let us compare |ψ (t )〉 and |φ(x)〉 in the energy
and momentum bases, respectively, for an arbitrary potential
V = V (x, t ). It is worth emphasizing that Ref. [6] focused
solely on the free-particle case, whereas the discussion in this
section concerns V 
= 0.

In the usual QM, the instantaneous energy eigenstates
satisfy [57]

Ĥ (t )|Ea(t )〉 = Ea(t )|Ea(t )〉, (25)

where 〈Ea′ (t )|Ea(t )〉 = δa′a and
∑

a |Ea(t )〉〈Ea(t )| = 1. Simi-
lar to |ψ (t )〉, we are omitting |t in |Ea(t )〉. An arbitrary state
in H|t can then be expanded in this instantaneous energy basis

|ψ (t )〉 =
∑

a

ψ̄ (a|t )|Ea(t )〉, (26)

where

ψ̄ (a|t ) ≡ 〈Ea(t )|ψ (t )〉 = C(a|t )eiθa (t ), (27)

with θa(t ) = −1/h̄
∫ t

0 dt ′Ea(t ′) the dynamical phase. From the
Schrödinger equation (9), it is straightforward to see that the
coefficient C(a|t ) satisfies

dC(a|t )

dt
= −

∑
a′

C(a′|t )ei�θa′a(t )〈Ea(t )| d

dt
|Ea′ (t )〉, (28)

where we introduce �θa′a(t ) = θa′ (t ) − θa(t ). Note that
P (a|t ) = |ψ̄ (a|t )|2 = |C(a|t )|2 [θa(t ) is a real number] is
the probability density of measuring the particle in the state
|Ea(t )〉 [with energy Ea(t )], given that the measurement hap-
pens at time t . Now projecting Eq. (26) on |x〉 yields

ψ (x|t ) = 〈x|ψ (t )〉 =
∑

a

ψ̄ (a|t )ψa(x|t ), (29)

where ψa(x|t ) = 〈x|Ea(t )〉 is the probability amplitude for the
particle to be found at position x, given that the observation
happens at time t and its state is |Ea(t )〉. For the Hamiltonian
(10), the projection of Eq. (25) on |x〉 gives(

− h̄2

2m

∂2

∂x2
+ V (x, t )

)
ψa(x|t ) = Ea(t )ψa(x|t ). (30)

In particular, for the free-particle situation, where [Ĥ, P̂] =
0, the energy eigenstate (25) becomes time independent,
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|Ea(t )〉 = |E ; ±〉|t , where ± refers to the sign of the momen-
tum and E = P2/2m. Also, ψ̄ (a|t ) of Eq. (27) can be written
as ψ̄ (E ; ±|t ) = ψ̄ (E ; ±) exp(−iEt/h̄). Thus, Eq. (26) can be
rewritten as

|ψ (t )〉 =
∫ ∞

0
dE [ψ̄ (E ; +)|E ; +〉|t

+ ψ̄ (E ; −)|E ; −〉|t ]e−iEt/h̄, (31)

with P (E ; ±|t ) = |ψ̄ (E ; ±)|2. Finally, the energy eigenfunc-
tion ψa(x|t ) = 〈x|Ea(t )〉|t also becomes time independent,

ψE ;±(x) = 〈x|E ; ±〉|t = 1√
2π h̄

( m

2E

)1/4
e±i

√
2mEx/h̄. (32)

The equivalent analysis for V = V (x, t ) in the STS exten-
sion starts with the momentum eigenvalue equation

P̂(x)|Pb(x)〉 = Pb(x)|Pb(x)〉, (33)

where

|Pb(x)〉 = |P+
b (x)〉 ⊗ |+〉 + |P−

b (x)〉 ⊗ |−〉

=
(|P+

b (x)〉
|P−

b (x)〉
)

, (34)

with 〈Pb′ (x)|Pb(x)〉 = δb′b and
∑

b |Pb(x)〉〈Pb(x)| = 1. Here
we are omitting |x in the momentum eigenstates. Note that
just as time-dependent potentials in the usual QM yield time-
dependent energy eigenstates, a space-dependent potential
in the STS extension leads to space-dependent momentum
eigenstates. This means that the states with well-defined mo-
mentum depend on the position at which we describe the
particle. In contrast, recall that momentum (energy) eigen-
functions in the usual QM (STS extension) are always the
same, proportional to exp(iPx/h̄) [exp(−iEt/h̄)].

Analogous to Eq. (26), from the linearity of the SC
Schrödinger equation (21), an arbitrary physical state in H|x
at a position x can be expanded in the momentum basis as

|φ(x)〉 =
∑

b

φ̃(b|x)|Pb(x)〉, (35)

where

φ̃(b|x) ≡ 〈Pb(x)|φ(x)〉 = C(b|x)eiθb(x), (36)

with θb(x) = 1/h̄
∫ x

0 dx′Pb(x′) equivalent to the dynamical
phase θa(t ) in the usual QM. From the SC Schrödinger equa-
tion (21), we can also readily verify that the coefficient Cb(x)
satisfies an equation similar to (28),

dC(b|x)

dx
= −

∑
b′

C(b′|x)ei�θb′b(x)〈Pb(x)| d

dx
|Pb′ (x)〉, (37)

where �θb′b(x) = θb′ (x) − θb(x). Now we have

P (b|x) = |φ̃(b|x)|2
〈φ(x)|φ(x)〉 (38)

as the probability amplitude of measuring the particle in the
state |Pb(x)〉 [with momentum Pb(x)], given that the measure-
ment happens at position x. Projecting Eq. (35) on |t〉, we

obtain an expansion equivalent to Eq. (29),

φφφ(t |x) = 〈t |φ(x)〉 =
∑

b

φ̃(b|x)φφφb(t |x), (39)

where

φφφb(t |x) =
(〈t |P+

b (x)〉
〈t |P−

b (x)〉
)

≡
(

φ+
b (t |x)

φ−
b (t |x)

)
(40)

is the probability amplitude for the particle to arrive at time t ,
given that the detector is at position x and its state is |Pb(x)〉.
Now using P̂ defined in Eq. (20), the projection of Eq. (33)
on |t〉 gives

σz

√
2m

(
ih̄

∂

∂t
− V (x, t )

)
φφφb(t |x) = Pb(x)φφφb(t |x). (41)

Reference [6] analyzed the momentum eigenvalue equa-
tion (41) for the free-particle situation, where [P̂, Ĥ] =
0. Similar to the time independence in the usual QM,
the momentum eigenstate (34) becomes space independent,
|Pb(x)〉 = |P〉|x, where

|P〉|x = |φP〉|x ⊗ |+〉 =
(|φP〉|x

0

)
for P > 0 (42)

and

|P〉|x = |φ|P|〉|x ⊗ |−〉 =
(

0
|φ|P|〉|x

)
for P < 0, (43)

with Pb(x) = ±|P| = ±√
2mE . Also, φ̃(b|x) defined in

Eq. (36) can be written as

φ̃(P|x) = φ̃(P)eiPx/h̄. (44)

Thus, the general solution (35) becomes

|φ(x)〉 =
∫ ∞

−∞
dP φ̃(P)eiPx/h̄|P〉|x

=
∫ ∞

0
dP

(
φ̃(P)eiPx/h̄|φP〉|x

φ̃(−P)e−iPx/h̄|φP〉|x

)
, (45)

where we consider E > 0. In the next section we will discuss
the physical difference between |P〉|x and |P〉|t .

Under the circumstances above, the momentum eigen-
function φφφb(t |x) in Eq. (40) becomes space independent
[φφφb(t |x) = φφφP(t ) = 〈t |P〉|x] and is given by

φφφP(t ) =
(〈t |φP〉|x

0

)
=

(
φP(t )

0

)
for P > 0 (46)

and

φφφP(t ) =
(

0
〈t |φ|P|〉|x

)
=

(
0

φ|P|(t )

)
for P < 0, (47)

with

φ|P|(t ) =
√

|P|
2πmh̄

e−iP2t/2mh̄. (48)

Finally, projecting Eq. (45) on |t〉, the SC wave function (39)
becomes

φφφ(t |x) =
∫ ∞

0
dP

(
φ̃(P)eiPx/h̄φP(t )

φ̃(−P)e−iPx/h̄φP(t )

)
, (49)
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where its modulus square is P (t |x) given in Eq. (24). It
is worth noticing the similarity between Eqs. (30)–(32) and
Eqs. (41)–(49). Nevertheless, in contrast to the usual QM,
where P (E ; ±|t ) = |ψ̄ (E ; ±)|2 is time independent for free
particles, P (P|x) = |φ̃(P)|2/〈φ(x)|φ(x)〉 [see Eq. (38)] can
depend on x because of the normalization factor 〈φ(x)|φ(x)〉.

IV. INTERPRETATION OF THE STS EXTENSION AND ITS
CONNECTION TO QM

First, it should pointed out that Ref. [6] primarily focuses
on the free-particle case, which limits significantly the physi-
cal consequences predicted by the STS extension. Moreover,
Ref. [6] also concentrates on arrival-time probability ampli-
tudes [specifically φ(t |x) and φP(t ) ≡ φ(t |P)] and does not
provide a proper interpretation of the wave functions of other
observables of the particle. In particular, when the momen-
tum probability amplitude φ̃(P) is introduced, it is identified,
without physical arguments, as the momentum probability
amplitude of the standard QM. As a result, Ref. [6] obtains the
Kijowski distribution as the solution of the SC Schrödinger
equation for the free-particle case (as discussed at the end of
Sec. II).

In contrast, in this section we will give an interpreta-
tion of the STS extension that challenges the connection
between |φ(t |x)|2 and the Kijowski distribution established in
Ref. [6]. We will begin by interpreting the solutions of the
SC Schrödinger equation and attributing physical meaning
to the eigenstates (along with their wave functions) of any
observable in the STS extension. Thus, we will observe that
the differences in the measurement procedures for obtaining
φ̃(P) and ψ̃ (P) strongly indicate that these wave functions in
general diverge from each other. After comparing the infor-
mation contained in |ψ (t )〉 and |φ(x)〉 using the equations of
Sec. III, we will conclude that they provide complementary
information about the same particle.

To propose an interpretation of the solutions of the SC
Schrödinger equation (21), let us keep in mind the information
provided by the time-dependent Schrödinger equation: Know-
ing the initial wave function ψ (x|t0), the probability amplitude
of finding the particle at position x, given that the observation
takes place at the initial time t0, the solution of the Schrödinger
equation, ψ (x|t ), provides the probability amplitude of find-
ing the particle at x, given that the observation takes place
at a later time t > t0. Note that time is an external classical
parameter (the time of the laboratory clock) and hence can
be chosen with arbitrary precision to evaluate the state of the
system and its probabilities.

As discussed in the preceding section, the STS extension
is formulated by switching the roles of position and time (and
energy and momentum) in QM. Therefore, following the same
reasoning as in the preceding paragraph and taking x � t , the
interpretation of the solutions of the SC Schrödinger equa-
tion (22) becomes the following: Knowing the initial SC wave
function φφφ(t |x0), the probability amplitude for the particle
to arrive at instant t , given that the observation happens at
position x0, the solution of Eq. (22), φφφ(t |x), provides the
probability amplitude of the particle arriving at t , given that
the observation occurs at x ≶ x0. Now position is the external
parameter (the position of the classical detector). To better

FIG. 1. Illustrations of the (a) time and (b) space translations
prescribed by the Schrödinger and the SC Schrödinger equations,
respectively. Knowing ψ (x|t0) and φ(t |x0), the Schrödinger and SC
Schrödinger equations provide ψ (x|t ) and φ(t |x), respectively.

understand this interpretation, Fig. 1 illustrates the difference
between the time evolution of QM and the space evolution of
its STS extension.

Analogous to the standard QM, this interpretation works
for any observable of the particle, not only the time of ar-
rival. In practice, by knowing |ψ (t0)〉 we are able to predict
measurements of observables of the particle performed by a
detector designed to measure precisely at time t0 and large
enough to interact with the whole wave packet ψ (x|t0) at t0.
The necessity of a spatially extended detector will be dis-
cussed later in the context of momentum measurements. Then,
by providing |ψ (t )〉, the Schrödinger equation enables us to
predict measurements when the same detector is designed
to measure at time t > t0. In a similar manner, by knowing
|φ(x0)〉 we are able to predict measurements of the same
observables as the usual QM, but now performed by a detector
localized at position x0 and activated all the time. Then, by
providing |φ(x)〉, the SC Schrödinger equation enables us to
predict measurements when the same detector is localized at
position x ≶ x0.

To make this interpretation more transparent, let us express
the space evolution of |φ(x)〉 in a manner analogous to the
time evolution of |ψ (t )〉, in which we use the time-evolution
operator. Given a state |φ(x0)〉, we define

|φ(x)〉 = Û(x, x0)|φ(x0)〉, (50)

where Û(x, x0) is the space-evolution operator. Plugging
Eq. (50) into the SC Schrödinger equation (21), we obtain

P̂(x)Û(x, x0) = −ih̄
d

dx
Û(x, x0). (51)

Note that, just as in the standard QM, where it is possible to
have [Ĥ (t1), Ĥ (t2)] 
= 0, here we can have [P̂(x1), P̂(x2)] 
=
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0. Therefore, to solve Eq. (51), we first introduce a space-
ordering operator, analogous to the time-ordering operator in
the usual QM,

Ŝ�(Â(x1)B̂(x2)) =
{
B̂(x2)Â(x1) if x1 ≶ x2

Â(x1)B̂(x2) if x2 ≶ x1,
(52)

where Ŝ→ (Ŝ←) orders operations in terms of increasing (de-
creasing) values of x. The need for the two ordering operators
Ŝ� arises from the fact that, unlike in the standard QM, where
the temporal evolution has a single direction (forward in time),
in the STS extension we can “evolve” back and forth in space.
In this picture, the general solution of Eq. (51) is given by

Û�(x, x0) = Ŝ�

[
exp

(
i

h̄

∫ x

x0

dx′P̂(x′)
)]

, (53)

where we must use Û→(x, x0) for x > x0 and Û←(x, x0)
for x < x0. It is worth noting that since P̂(x) is not always
Hermitian, which occurs when V (x) > E , the space-evolution
operator is not necessarily unitary, as expected. Thus, the
norm of |φ(x0)〉 may not be preserved when translating it
to |φ(x)〉. For Û→(x, x0) [Û←(x, x0)] to be unitary, we must
have E > V (x) throughout the entire interval [x0, x] ([x, x0]).

At first sight, one can think the STS extension is not de-
signed to answer the ordinary TOA problem: Given a particle
with a wave function of positive momenta at t0, ψ (x|t0), re-
stricted to a region x < x∗, when does this particle arrive at
x∗? This is because, following the above interpretation, just
as the Schrödinger equation provides time translations of a
previously known wave function ψ (x|t0), the SC Schrödinger
equation (22) describes space translations of a SC wave func-
tion φφφ(t |x0) that should also be known. Besides, we cannot
figure out a certain conditional distribution P (a|b) [|φ(t |x0)|2]
only by knowing P (b|a) [|ψ (x|t0)|2]. Nevertheless, if ψ (x|t )
and φφφ(t |x) share common information about other observ-
ables, e.g., energy and/or momentum, ψ (x|t0) can eventually
determine φφφ(t |x) and vice versa.

With this discussion in mind, let us compare |ψ (t )〉 and
|φ(x)〉 more deeply by representing them in terms of eigen-
states associated with the same observable. We choose the
momentum eigenstates and compare Eq. (35) with

|ψ (t )〉 =
∫ ∞

−∞
dP ψ̃ (P|t )|P〉|t , (54)

where |P〉|t = 1/
√

2π h̄
∫ ∞
−∞ dx eiPx/h̄|x〉. Let us begin the

comparison by proposing the physical differences between
|P〉|t and |Pb(x)〉.

When one says, e.g., that a system has a well-defined mo-
mentum in usual QM, implicitly one is claiming that |ψ (t )〉 =
|P〉|t , i.e., the particle has momentum P (and indefinite po-
sition) at instant t . Therefore, eigenstates in QM refer to a
well-defined property at a fixed time, justifying the notation
| 〉|t . On the other hand, based on the interpretation of the
SC Schrödinger equation, we interpret |φ(x)〉 = |Pb(x)〉 (|P〉|x
for the free-particle situation) as the state of a particle with
momentum Pb(x) at position x, i.e., the particle arrives at x (at
an indefinite time) with momentum Pb(x).

The difference between |P〉|t and |Pb(x)〉|x also becomes
evident by noting that |P〉|t is the Fourier transform of
|x〉, which involves all space, and has the same expression

regardless of the applied potential. In contrast, |Pb(x)〉 is
defined at a specific position and is the solution of the momen-
tum eigenvalue equation (33), thus depending on the potential
involved.

Keeping in mind the physical distinction between |P〉|t and
|Pb(x)〉, we now focus on comparing the momentum wave
functions ψ̃ (P|t ) and φ̃(b|x). When incorporating the inter-
pretations above into the state of the particle |φ(x)〉, the wave
function φ̃(b|x) becomes the probability amplitude of the par-
ticle arriving at position x with momentum Pb(x). Note that,
similar to the space independence of |φ̃(b|x)|2 = |φ̃(P|x)|2 in
Eq. (44), |ψ̃ (P|t )|2, the probability density of measuring the
particle with P, given that the observation happens at t , is time
independent for the free-particle situation,

ψ̃ (P|t ) = ψ̃ (P)e−iP2t/(2mh̄). (55)

In general, the impossibility of connecting these two wave
functions is because while |ψ̃ (P|t )|2 predicts experimental
data of momentum collected at a fixed instant t , |φ̃(b|x)|2
predicts experimental data of momentum collected at a fixed
position x. In this scenario, as discussed above, to obtain the
predictions of a time-dependent |ψ̃ (P|t )|2 accurately, the de-
tector must be big enough to interact simultaneously with the
entire wave packet ψ (x|t ) precisely at time t . This is because
ψ̃ (P|t ) is the Fourier transform of ψ (x|t ), which is a feature
of the whole wave function at t . In contrast, the predictions of
φ̃(b|x) require the presence of a detector located at position x
that does not select any time t .

An example of this incompatibility is the following. If
a wave function ψ (x|t ) cannot cross a potential barrier, the
particle never reaches a certain position x∗ on the transmission
side. In this region, the particle is free and φ̃(b|x∗) = φ̃(P|x∗)
is zero for all P, while ψ̃ (P|t ) 
= 0. We see that linking the mo-
mentum wave functions leads to a similar problem to relating
ψ (x|t ) and φφφ(t |x); while |ψ (t )〉 describes observables of the
particle at a given time, |φ(x)〉 describes the same observables
but at a given position.

Let us focus the discussion above on the simplest possible
situation, a free particle with positive momentum that always
arrives at a given point x∗, i.e., 〈φ(x∗)|φ(x∗)〉 = 1. This sit-
uation is described by the solution (49) with φ̃(−P) = 0. As
the entire wave packet ψ (x|t ) passes through x∗, all possible
momenta of the time-independent distribution |ψ̃ (P|t )|2 =
|ψ̃ (P)|2 can be measured if a detector is at x∗. In this scenario,
one may expect that |ψ̃ (P)|2 equals |φ̃(P|x∗)|2 = |φ̃(P)|2 (the
probability for the particle to arrive at x with momentum
P, regardless of the time it arrives). If one also assumes
their phases are the same, i.e., φ̃(P) = ψ̃ (P) (which is not
a trivial statement), P (t |x) of Eq. (24) becomes the Ki-
jowski distribution, as considered in Ref. [6] without further
justification.

An opposing viewpoint to the validity of |ψ̃ (P)|2 =
|φ̃(P)|2 is as follows. We are aware that to measure
|φ(P|x)|2 = |φ̃(P)|2 the detector should be situated at po-
sition x. Describing this measurement within the standard
QM, even for a time-independent |ψ̃ (P|t )|2 = |ψ̃ (P)|2, we
envision the Schrödinger wave function of the particle grad-
ually reaching (and interacting with) the detector, starting
with its front tail. Consequently, one may expect that the
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momentum distribution measured by this localized detector
diverges from |ψ̃ (P)|2, which should involve an interaction
of the entire ψ (x|t ) simultaneously at time t , as previously
discussed. Furthermore, it is important to note that assuming
φ̃(P) = ψ̃ (P) is equivalent to assuming that |P〉|t and |P〉|x
represent the same quantum state, which is not true according
to our interpretation of the STS extension. In this context, in
scenarios where the Schrödinger packet is spatially narrow
and fast enough, we may have |ψ̃ (P)|2 ≈ |φ̃(P)|2. Never-
theless, the eventual validity of the relationship |ψ̃ (P)|2 ≈
|φ̃(P)|2 in some physical regime can only be established
with a detailed description of the experimental procedure for
obtaining |φ̃(P|x)|2. Note that merely stating the need for
a localized detector is insufficient. Just as challenges arise
when measuring the particle’s arrival time (including issues
like particle reflection), similar challenges may occur when
measuring the particle momentum with the detector at a fixed
position.

With this discussion in mind, it should be pointed out that
as is the goal of any ideal TOA model, we expect that the pre-
dictions of |φφφ(t |x)|2 can be confirmed by taking some limits
of ideal measurements, where well-designed detectors and/or
clocks coupled to the particle register the TOA of a particle.
Describing this situation via the usual QM, the information
of |φφφ(t |x)|2 should be contained, e.g., in the clock’s state
belonging to H|t and not in the free-measurement state of the
particle [ψ (x|t )]. With this result, we can test, e.g., the validity
of |ψ̃ (P)|2 ≈ |φ̃(P)|2 in some physical regime. If this relation
is valid and hence |φφφ(t |x)|2 is approximately the Kijowski dis-
tribution for the free-particle case, it can be measured from the
time probability density of detecting the first emitted photon
when a two-level atom enters a laser-illuminated region [58].
By using the quantum jump technique and operator normal-
ization [59], this probability density becomes the Kijowski
distribution in the limit of a strong laser field and fast decay
[60].

From the discussion above, we verify that in general
the information provided by the STS extension is not en-
tirely embodied in the intrinsic state of the particle |ψ (t )〉
(a free-measurement state). Thus, |ψ (t )〉 and |φ(x)〉 provide
complementary information about the same particle and as a
result the quantum state of the particle at time t is as funda-
mental as its quantum state at position x.

V. SOLUTIONS FOR V = V (x) AND THE TOA OF A
PARTICLE CROSSING A POTENTIAL BARRIER

In Sec. V A we will solve the SC Schrödinger equation for
an arbitrary time-independent potential. Then, in Sec. V B,
we will apply this solution to predict the TOA of a particle
traversing a square potential barrier. We will assume that
φ̃(P) = ψ̃ (P) for a free incident particle with momentum
P > 0 and use this relation for the initial condition φ(t |x0) on
the left side of the barrier. We will compare our results with
a generalization of the Kijowski distribution [15,61,62]. The
consequences of considering φ̃(P) = ψ̃ (P) will be discussed.
We will not consider the case of φ̃(P) 
= ψ̃ (P) on the left
side of the barrier because in this work we will not propose
an operational method to obtain or measure φ̃(P), making it

challenging to justify any specific choice of φ̃(P) for the initial
condition φ(t |x0).

A. General solution of the SC Schrödinger equation
for V = V (x)

It is convenient to solve the SC Schrödinger equation (21)
for an arbitrary time-independent potential V = V (x) using
the energy representation {|E〉|x},

|φ(x)〉 =
∫ ∞

−∞
dE φ̄φφ(E |x)|E〉|x

=
∫ ∞

−∞
dE

(
φ̄+(E |x)

φ̄−(E |x)

)
|E〉|x, (56)

where 〈t |E〉|x = 1/
√

2π h̄ e−iEt/h̄ and |φ̄φφ(E |x)|2 =
φ̄φφ

†
(E |x) φ̄φφ(E |x) is the probability density for the particle

to arrive at x with energy E , regardless of its arrival time. For
the free-particle situation [6],

φ̄±(E |x) = φ̄±(E )e±i
√

2mEx/h̄. (57)

Substituting Eq. (56) into the SC Schrödinger equa-
tion (21), we have∫ ∞

−∞
dE σzφ̄φφ(E |x)

√
2m[Ĥ − V (x)1̂]|E〉|x

= −
∫ ∞

−∞
dE ih̄

∂φ̄φφ(E |x)

∂x
|E〉|x. (58)

Expanding the operator
√
Ĥ − V (x)1̂, for V (x) 
= 0, in power

series of H, we obtain√
Ĥ − V (x)1̂ =

∞∑
n=0

( 1
2

n

)
i1−2n[V (x)]1/2−nĤn, (59)

which applied to |E〉|x yields

∞∑
n=0

( 1
2

n

)
i1−2n[V (x)]1/2−nĤn|E〉|x

=
∞∑

n=0

( 1
2

n

)
i1−2n[V (x)]1/2−nEn|E〉|x

=
√

E − V (x)|E〉|x. (60)

Substituting this equation back into Eq. (58) and projecting
the resulting expression on |E ′〉|x, we obtain a differential
equation for φ̄φφ(E ′|x) given by

σz

√
2m[E ′ − V (x)]φ̄φφ(E ′|x) = −ih̄

∂

∂x
φ̄φφ(E ′|x). (61)

The solution for each component is

φ̄±(E |x) = φ̄±(E |x0) exp

(
±i

∫ x

x0

dx′√2m[E − V (x′)]/h̄

)
,

(62)

where we replace E ′ with E . Substituting Eq. (62) into |φ(x)〉
of Eq. (56) and projecting the resulting expression on |t〉
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yields

φ±(t |x) =
∫ ∞

−∞
dE

φ̄±(E |x0)√
2π h̄

× exp

(
±i

∫ x

x0

dx′√2m[E − V (x′)]/h̄ − iEt/h̄

)
.

(63)

This is the general solution for the probability amplitude of the
ideal TOA at position x of a particle under the action of V =
V (x). By taking V (x) = 0, imposing normalization in time,
and changing the variable of integration to P, we recover the
free-particle solution of Eq. (49).

By inspecting Eq. (63), it can be noticed that if, e.g.,
V (x) > E in the interval −∞ < x < x0 = 0, the solution
φ+(t |x) of Eq. (63) diverges when x → −∞ as the integral
in x goes to −i∞. To understand this nonphysical behavior,
first recall that since φ+(t |x0) describes the particle arriving
at x = x0 = 0 from the left, limx→−∞ φ+(t |x) describes the
particle arriving at x → −∞ from the left. Thus, if φ+(t |x0)
is finite, the divergence of limx→−∞ φ+(t |x) means that it is
impossible for a particle to start from x → −∞ and arrive
at x0 with a finite probability when, along its entire path, its
energy is lower than the applied potential. It is worth noting
that, for the same potential considered above (V (x) > E in
[−∞, 0]), the aforementioned divergence can be eliminated
by taking x0 → −∞. In this case, when normalizing φ+(t |x0),
the general solution (63) yields φ+(t |x = 0) ≈ 0. This result
agrees with the previous analysis, indicating once again that
a particle starting from x → −∞ does not arrive at x0 [as
|φ+(t |x = 0)|2 ≈ 0] if V (x) > E over a sufficiently long re-
gion along its trajectory. This behavior is expected as in the
standard QM, the Schrödinger wave function decays expo-
nentially when the particle enters a region with V (x) > E ,
eliminating any probability of finding it in deeper regions of
the potential.

We conclude this section pointing out the similarity be-
tween Eq. (63), which is valid for V = V (x), and the solution
of the Schrödinger equation for potentials that depend exclu-
sively on time, V = V (t ), which is given by

ψ (x|t ) =
∫ ∞

−∞
dP

ψ̃ (P|t0)√
2π h̄

× exp

(
−i

∫ t

t0

dt ′[P2/2m + V (t ′)]/h̄ + iPx/h̄

)
.

(64)

Here we observe that one can go from one solution to the
other via the transformation (t, P, H (t )) → (x, E ,±P(x)),
with H (t ) and P(x) given by the classical expressions of
Eqs. (10) and (20), respectively. This symmetry becomes even
more apparent by identifying the classical action S in Eq. (63),
for V = V (x), and in Eq. (64), for V = V (t ), which allows us
to rewrite them as

φ±(t |x) = 1√
2π h̄

∫ ∞

−∞
dE φ̄±(E |x0)e−iS(E ,x)/h̄ (65)

and

ψ (x|t ) = 1√
2π h̄

∫ ∞

−∞
dP ψ̃ (P|t0)e−iS(P,t )/h̄. (66)

Using the solution of Eq. (63), in the next section we
will calculate the TOA distribution of a particle crossing a
potential barrier.

B. Comparing the STS extension with a generalization
of the Kijowski distribution

Let us apply the solution of Eq. (63) to a free particle pre-
pared far to the left and detected after crossing a square barrier
of height V0, width L, and located in the interval 0 < x < L.
The particle initially (ti = 0) has a state in the usual QM given
by a Gaussian wave packet centered at xi (h̄ = 1),

ψ (x|0) = 1

(2πδ2)1/4
e−[(x−xi )/(2δ)−iPiδ]2−P2

i δ2
, (67)

where ψ (x|0) = 〈x|ψ (0)〉. Here xi, Pi, and δ will assume
values such that the packet is to the left of the origin and has
only positive momenta.

To compute the TOA on the transmission side using the
interpretation of the SC Schrödinger equation given in the
preceding section, we should apply Eq. (63) to an initial prob-
ability amplitude of the TOA, φφφ(t |x0). If we want the solution
φφφ(t |x > L) to take into account the barrier traversal time, x0

must be located on the left side of the barrier xi < x0 � 0. We
consider ψ (x0|ti ) ≈ 0, meaning that at time ti, the particle has
not arrived at x0. As discussed in Sec. IV, since the particle
travels freely on the left side of the barrier and it always
passes through the point x0, let us assume that |φφφ(t |x0)|2 is the
Kijowski distribution (24), i.e., φ̃(P) = ψ̃ (P), where ψ̃ (P) is
the momentum wave function of ψ (x|ti),

ψ̃ (P) =
(

2δ2

π

)1/4

e−δ2(P−Pi )2−iPxi . (68)

As we are interested in the TOA of the particle in the
transmitted region, where there are only positive momenta, we
will focus exclusively on φ+(t |x). Using Eqs. (49) and (68)
under the circumstances above, the initial condition at x0 of
the SC wave function becomes

φ+(t |x0) =
∫ ∞

0
dP ψ̃ (P)

√
P

2πmh̄
eiPx0/h̄−iP2t/2mh̄, (69)

where P = √
2mE . To apply the SC solution (63) to φ+(t |x0)

[Eq. (69)], we have to figure out φ̄+(E |x0) for this particu-
lar initial condition. Considering x0 = 0, Eq. (63) at x = x0,
where V (x0) = 0, reduces to

φ+(t |x0) = 1√
2π h̄

∫ ∞

−∞
dE φ̄+(E |x0)e−iEt/h̄. (70)

Changing the variable of integration P in Eq. (69) to E and
comparing the resulting expression with Eq. (70), we identify

φ̄+(E |x0) = �(E )

(
m

2E

)1/4

ψ̃ (
√

2mE ), (71)

where �(E ) is the Heaviside step function. Now we have to
substitute Eq. (71) into the SC wave function (63), considering
V (x) as the square potential barrier defined at the beginning
of this section. Finally, evaluating the resulting expression at
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x > L, we obtain

φ+(t |x) = 1√
2π h̄

∫ ∞

−∞
dE �(E )

(
m

2E

)1/4

ψ̃ (
√

2mE )

× ei
√

2m(E−V0 )L/h̄+i
√

2mE (x−L)/h̄−iEt/h̄. (72)

This solution gives the time probability amplitude for the
particle to arrive at x > L.

Considering φ̃(P) = ψ̃ (P) for the incident-free particle al-
lows us to compute the arrival time after the barrier using
the STS extension in another way. As the transmitted par-
ticle is free and always passes through x > L, one can also
consider the free-particle solution of Eq. (49) [whose squared
modulus is given by Eq. (24)] to describe the particle in
this region, but now with amplitude φ̃(P) = ψ̃T (P), where
ψ̃T (P) = T (P)ψ̃ (P) is the momentum wave function of the
transmitted packet. Here

T (P) = 4PP′e−i(P−P′ )L/h̄

(P + P′)2 − e2iP′L/h̄(P − P′)2
(73)

is the transmission amplitude and P′ =
√

P2 − 2mV0. Replac-
ing φ̃(P) with ψ̃T (P) in Eq. (24) and taking φ̃(−P) = 0,
P (t |x) becomes

�N
K (t |x) =

∣∣ ∫ ∞
0 dP T (P)ψ̃ (P)

√
Pe−iP2t/(2mh̄)+iPx/h̄

∣∣2

2πmh̄
∫ ∞

0 dP|T (P)ψ̃ (P)|2 . (74)

Note that the probability for the particle to arrive at x, regard-
less of the time [〈φ(x)|φ(x)〉], equals the probability for the
particle to be transmitted [

∫ ∞
0 dP|T (P)ψ̃ (P)|2]. Equation (74)

is the normalized Kijowski distribution for the transmitted
packet. This equation gives the probability density for the
TOA at x, given that the particle has been transmitted through
the potential barrier. Ximenes et al. considered this approach
in Ref. [7]. We showed that for an electromagnetic experiment
that simulates quantum tunneling [63], the average traversal
time obtained via Eq. (74) agrees better with the experimental
data than the traditional Büttiker-Landauer and phase-time
models [64–66].

It is worth pointing out that Eq. (74) was obtained by
different methods using the usual QM [61,62,67,68]. In par-
ticular, it arises from the same operational model discussed
at the end of Sec. IV, which computes the detection time of
the first emitted photon when a two-level atom enters a laser-
illuminated region. In this situation, when one adds a square
potential barrier and takes the limits of a strong laser field and
fast decay, the TOA distribution at x > L becomes Eq. (74)
for the transmitted particles [68]. Below we compare the
TOA distributions ρ(t |x) ≡ P (t |x), computed from Eq. (72),
and �N

K (t |x) of Eq. (74). Thus, we investigate whether the
assumptions φ̃(P) = ψ̃ (P) and φ̃T (P) = ψ̃T (P) lead to incon-
sistencies in the STS extension.

We plot the TOA probability distribution in Fig. 2 using
physical parameters similar to those of Ref. [61]. This refer-
ence also uses the initial condition (67) and obtains Eq. (74)
by canonically transforming the quantum TOA of the free
particle. The width of the barrier is L = 10, the detector is
at x = 50, and the parameters of the initial wave packet (67)
are xi = −50, P0 = 2, δ = 10, and m = 1 (we use the natural
units of the problem with h̄ = 1). Note that the average energy

FIG. 2. Probability distributions for the arrival time of the trans-
mitted particles at x = 50. The initial wave packet ψ (x, 0) has P0 =
2, δ = 10, x0 = −50, and m = 1. The width of the barrier is L = 10.
The solid and dashed lines illustrate the prediction of P (t |x) and
�N

K (t |x), respectively.

of the incident particle is E0 = P2
0 /2m = 2. The solid and

dashed curves in Fig. 2 show the TOA distribution at x = 50
using Eqs. (72) and (74), respectively, for V0 = 0, V0 = 1.125
(<E0), V0 = 1.8 (<E0), and a tunneling regime with V0 = 4.5
(> E0). Note that the TOA of a free classical particle with
velocity P0/m = 2 is 50 since the total length of the particle’s
path is 100 units.

Inspecting Fig. 2, first, we observe that compared to the
free-particle situation V0 = 0, both solid and dashed curves
illustrate a delay of the TOA for V0 = 1.125 and 1.8 and ad-
vancement for V0 = 4.5. This advancement is responsible for
the Hartman effect [69], as discussed in Ref. [61]. In addition,
while the solution of the SC Schrödinger equation for the po-
tential barrier, given by Eq. (72), and the Kijowski distribution
(74) are the same for V0 = 0, they can predict different arrival
times when V0 
= 0. In the tunneling regime, we verified that
the larger the value of V0 is, the closer the solid and dashed
curves become, such that they are visually indistinguishable
for V0 � 20 in the scale of Fig. 2. For more details about the
predictions of Eq. (74), see Ref. [61].

The disagreement of Fig. 2 also shows that if both rela-
tions φ̃(P) = ψ̃ (P) and φ̃T (P) = ψ̃T (P) are correct, which
is not expected from the discussion of Sec. IV, some com-
putation and/or interpretation of the STS extension must be
somehow reformulated. Ultimately, the correct formalism (if
any) of the STS extension will be defined by figuring out
how φ(t |x) can actually be measured in the laboratory. A
more elaborate investigation of the predictions of Eq. (63) is
currently being developed, including comparisons with other
TOA approaches in the presence of interaction and the ex-
periment of Ref. [51]. For example, Ref. [68] obtains another
generalization of the Kijowski distribution similar to Eq. (74)
but with ψ̃T (P) = T (P)ψ̃ (P)/|T (P)|. We hope this analysis
sheds light on the validity of the relationships used above.

VI. CONCLUSION

First, it is worth remarking that the STS extension has
no intention to replace QM. It is in agreement with QM but
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enlarges the range of statistical scenarios to which QM is
applicable. The most emblematic example refers to the ideal
TOA, which, as discussed above, is still an open problem
within the scope of traditional quantum theory.

In this work we first derived in detail the STS extension
of QM proposed in Ref. [6]. Then, considering arbitrary
potentials, we investigated the momentum eigenvalue equa-
tion in the STS theory, which plays a role equivalent to the
energy eigenvalue equation in the usual QM. We have seen
that, similar to the traditional QM, where time-dependent
potentials yield time-dependent energy eigenstates, in the STS
extension, position-dependent potentials produce position-
dependent momentum eigenstates.

Then we proposed an interpretation of the solutions of
the SC Schrödinger equation inspired by the role of the
Schrödinger equation in the usual QM: Given an initial
condition φ(t |x0), which represents the time probability am-
plitude of the particle arriving at x0, the solution of the SC
Schrödinger equation provides the time probability amplitude
of the particle arriving at x ≶ x0. In this scenario, whereas
in the standard QM, to experimentally obtain |ψ (x|t )|2 the
detector must be spread in space and switched on at time
t , in the STS extension, to experimentally obtain |φ(t |x)|2
the detector must be localized at position x and switched on
all the time. Thus, while the SC Schrödinger equation tells
how probabilities change with the position of the detector, the
Schrödinger equation provides how probabilities change with
the time established for the detector to measure the particle.
To make this interpretation more transparent, we described
the solution of the SC Schrödinger equation in terms of a
space evolution operator, akin to the time evolution operator
of standard QM. To do this, we defined a space-ordering
operator (analogous to the time-ordering operator of the usual
QM), which orders operations in terms of either increasing or
decreasing values of x.

We also proposed an interpretation of the eigenstates of
the STS extension. We focused on the differences between
the eigenstates of the same observable in the STS extension
and in standard QM. Specifically, we highlighted a crucial
distinction. In standard QM, |P〉 ≡ |P〉|t signifies the state of

a particle with momentum P (and indefinite position) at time
t . Besides, |P〉|t maintains its mathematical form regardless
of the applied potential, given by the Fourier transform of |x〉.
On the other hand, in the STS extension, |Pb(x)〉 represents the
state of a particle with momentum Pb(x) at position x, meaning
that the particle arrives at position x with momentum Pb(x) (at
an indefinite arrival time). Importantly, unlike |P〉|t , |Pb(x)〉
depends on the potential involved and must be determined
through the eigenvalue equation (33). When incorporating
these interpretations into the state of the particle |φ(x)〉, we
verified that the momentum wave function in the STS exten-
sion, φ̃(b|x), becomes the probability amplitude of the particle
arriving at position x with momentum Pb(x).

After considering these interpretations of the STS exten-
sion and examining some illustrative examples, we concluded
that |ψ (t )〉 and |φ(x)〉 provide complementary information
about the same particle. In this manner, the quantum state
of the particle at time t is as fundamental as its quantum
state at position x. Finally, we solved the SC Schrödinger
equation for an arbitrary V = V (x), allowing us to predict
traversal and tunneling times of a potential barrier. From
this investigation, we concluded that if we do not establish
a connection between the momentum wave functions of the
STS extension and the usual QM, the predictions of the
STS extension can diverge from the Kijowski distribution. A
deeper exploration of the physical consequences of Eq. (63)
and looking for an operational procedure by using detectors
and clocks in the usual QM for obtaining the predictions of
|φ(x)〉 is left for future work, as is the investigation of the
three-dimensional version of the STS extension proposed in
Ref. [9].
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