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Causal networks beyond that in the paradigmatic Bell’s theorem can lead to new kinds and applications of
nonclassical behavior. Their study, however, has been hindered by the fact that they define a nonconvex set
of correlations and only very incomplete or approximated descriptions have been obtained so far, even for
the simplest scenarios. Here we take a different stance on the problem and consider the relative volume of
classical or nonclassical correlations a given network gives rise to, considering distances to sets of interest
and how they distribute too. Among other results, we show instances where the inflation technique, arguably
the most disseminated tool in the community, is unable to detect a significant portion of the nonclassical
behaviors, up to three copies of each source, and that a concentration phenomenon of distances happens in
one of them. Interestingly, we also show that the use of interventions, a central tool in causal inference, can
enhance substantially our ability to witness nonclassicality.
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I. INTRODUCTION

As first addressed by Bell in his seminal work on the
Einstein-Podolsky-Rosen paradox [1], quantum mechanics
predictions are incompatible with a local hidden-variable
model description of it, provided the joint-measureability re-
lations of the measurements involved are not trivial. This
fact, consequent of a further exploration of the discussion
of (in)completeness of the quantum theory and whose full
implications are not completely understood yet, poses the un-
derstanding of nonclassical behaviors as fundamental. In this
sense, by establishing mathematical requisites for classical
theories (i.e., those with only commuting operators and in
agreement with no superluminal signaling of information) in
the form of the so-called Bell inequalities [2], their violation
represents the strongest signature of such behaviors, as can
be observed in a device-independent context [3]. More specif-
ically, it demonstrates the incompatibility between quantum
correlations and classical concepts of cause and effect, once it
disputes the underlying locality condition of signals, without
relying on any assumptions about the internal mechanisms
involved in the preparation and measurement of the physical
system being analyzed.

In the simplest Bell scenario, two distant parties measure
two distinct dichotomic observables. However, this scenario
has been extended and generalized in various ways. These ex-
tensions include incorporating additional measurements [4] or
expanding the number of possible outcomes [5]. Furthermore,
the framework has been expanded to involve multiple parties
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[6] and relaxations of locality assumptions [7,8], as well as
measurement independence [9,10]. Of particular significance
are recent advancements that draw inspiration from causality
theory [11]. These generalizations explore networks with di-
verse topologies, growing in size and complexity, revealing a
number of novel nonclassical phenomena [12—19].

In the context of a specific causal structure, a central in-
quiry arises: does it exhibit a classical-quantum gap? In other
words, if the sources within the network are described by
entangled quantum states, can measurements on them produce
correlations that lack a classical interpretation? When con-
sidering networks with a single source, a classical depiction
involves the characterization of a polytope [20]: a convex set
defined by a finite number of extremal points or, equivalently,
a finite set of linear Bell inequalities. However, even in such
cases, the problem is recognized as intrinsically challenging,
residing in the NP-hard complexity class [20]. This difficulty
is further amplified when independent sources of correlations
exist, as is often the case in paradigmatic quantum networks.
In such scenarios the correlations compatible with a given
causal structure result in nonconvex sets, necessitating com-
putationally intensive algorithms rooted in algebraic geometry
[21] or various forms of approximation [22-27] proposed
throughout the years. Not surprisingly, given these difficulties,
there is still a very fragmented picture of the set of correlations
causal networks can give rise to.

Here we propose an alternative route to gather further
insights into the classical description of causal networks
and their potential incompatibility with quantum correla-
tions. Using quadratic optimization techniques (leveraging the
Gurobi optimizer [28]), already employed to address non-
convex constraints originating from causal networks in [29],
as well as other tools such as the inflation technique [27],
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FIG. 1. Causal DAGs. (a) Multipartite Bell scenario where the correlations between the distant parties are mediated by a single source
of correlations. (b) Bilocality scenario, akin to an entanglement swapping experiment [45], where two independent sources establish the
correlations between three spatially separated parties. (c) The Evans scenario with two independent sources of correlations but with a crucial
difference to the bilocality case: the inputs for two of the parties are the measurement outputs of the central node, that is, the correlations are
timelike and not spacelike separated. (d) The triangle scenario, where every party shares a bipartite and independent source of correlations

with every other party.

covariance approach [25], and Finner inequality [30], we
calculate the volumes [31,32] of classical and nonclassical
probability distributions that various causal structures can
yield. As we show, in spite of its wide applicability and
convergence in the asymptotic limit [33], in computational
practice the inflation technique might offer relatively poor
performance, since it is unable to reveal a significant por-
tion of nonclassical behaviors, at least up to the number
of copies of each source we have considered here, namely,
three. Interestingly, similarly to what happens in the standard
Bell scenario [34], we observe a concentration effect where
most nonclassical points concentrate an average distance from
the classical set, the probability of finding points far away
decaying exponentially. Finally, we show that the use of inter-
ventions [35,36] can significantly enhance our ability to detect
nonclassical behaviors.

The paper is organized as follows. In Sec. II we introduce
the framework and methods underlying our work, including
the definition of causal models and the three different causal
networks that we study; we also describe the sampling method
and the witness of nonclassicality we have employed. In
Sec. III for each of the three causal networks analyzed, we
present the results on the volume estimation regarding differ-
ent sets of correlations (classical, quantum, and nonsignaling)
as well as using different methods. In Sec. IV we discuss our

findings and point out relevant questions and directions for
future research.

II. PRELIMINARIES

A. Causal models

The causal modeling framework [11,37] offers a powerful
language to describe causal constraints in terms of directed
acyclic graphs (DAGs). In this formalism, each node A €
N(G) of the DAG G is associated with a random variable,
and causal relationships are defined by the directed edges
E(G) € N(G) x N(G) between these nodes. In any real sit-
uation, we do not have access to every relevant cause that can
influence our system; we then ought to distinguish between
nodes that are associated with observable variables Og C
N(G) and unobserved, or latent, ones L5 € N(G). Graphi-
cally, we will use circles and Latin letters for the former and
triangles and Greek letters for the latter (see, for example,
Fig. 1). Moreover, the random variables and the nodes will
be represented with uppercase letters A, B, ... while we will
use the corresponding lowercase ones a, b, . .. to denote their
outcomes.

Given a DAG G, we can define the concept of causal
parents Pa(A) [or children Ch(A)] of a given variable A in
G, as the set of nodes sharing incoming (or outgoing) edges
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with A. This notion immediately give a way to define what it
means, for a classical joint distribution p({a;};) on the random
variables associated with observable nodes A; € Og, to be
compatible with a causal DAG G.

Definition (Classical compatibility) A distribution p({a;};)
on the random variable associated with the nodes O(G), is
compatible with G if it satisfies the following decomposition:

pda}) =Y [] plpax)), (1)

reLg XeNg

where L; C Ng is the set of latent variables in G and pa(X)
the set of outcomes of all the parents of X .

The above decomposition is also called global Markov con-
dition. We will use C(G) to represent the set of distributions
compatible in this sense with a DAG G.

The compatibility notion defined above is valid only if
we consider that our distribution p arises from models where
latent variables can be considered classical systems. If instead,
we allow them to be quantum systems, in general, we obtain
a strictly larger set of compatible distributions, which we can
denote by Q(G) and for which generalizations of the global
Markov condition and the concept of a causal structure have
been proposed [38—41]

In some cases it might be interesting to consider postquan-
tum resources distributed in the network [42]. The distribu-
tions that may arise from these models must respect some
basic conditions that reflect the natural assumptions of no-
signaling and independence of the sources (NSI). The core
of the notion of the no-signaling principle to network scenar-
ios is that the outcomes of one party should be insensitive
to whatever the remaining parties do, including any local
modifications in the particular arrangement of the topology
of their part of the network. The set of correlations that arise
from NSI has been explicitly studied primarily in the triangle
scenario [43] and in the Evans scenario [29]. We denote the
set of correlations that is compatible with the principles of
no-signaling and independence as N'(G). We remark that the
resulting constraints derived from NSI will be valid for all
general probabilistic theories (GPTs) [44].

B. Single-source Bell scenario

Bell’s paradigmatic causal structure (and multipartite gen-
eralization thereof) is composed of a number of parties,
sharing classical correlations described by a random vari-
able A, locally measuring different observables parametrized
by X,Y,Z, ... with corresponding measurement outcomes
A, B, C, . ... This classical description is encoded in the class
of DAGs L, represented in Fig. 1(a), implying that the ob-
served distributions should follow the Markov condition given
by

p(a’byc’...pc’y’z’...)
= Zp(k)p(alx, MpDly, Mpelz, 1) ... ()
A

In a quantum description, this probability distribution is
given by the Born rule

p(a,b,c,...lx,y,z,...)=tr[(A§j®Bf,®C§®---)pA],

3)

where the measurement inputs and outputs are associated
with POVMSs (positive operator valued measurements) and
the classical node A is replaced by a multipartite (potentially
entangled) state pp.

Due to the absence of a causal link between nodes
associated with different parties, we also expect any compat-
ible distribution to respect some general linear constraints,
expressing their independence in terms of the observable
distribution, which are called no-signaling constraints [46]
defining a set Ny

plalx,y,z,...)=plalx,y',7,...) Va,y,y,z,7,...,
pblx,y,z,...)=pblx',y,2,...) Vbx,x',z,Z,...

“4)

for each party A,B,C,..., where p(alx,y,z,...) is the
marginalization of the distribution over all the other variables
different from A.

In the case of a single source of correlations,
C(Ly,), Q(Ly,), N(L,) are all convex sets, and, in particular,
C(L,) and N'(L,) can be described by a finite number of
constraints, making them convex polytopes. Moreover, it
is known that C(L,) C Q(L,) C N(L,). More recently, the
connection between causal modeling and Bell inequalities
prompted the study of the relationships between these
correlation sets in more complex causal scenarios that can also
include independence between latent variables. In this case,
the geometry of the correlation sets becomes considerably
more complicated, making them even nonconvex in general.
In our paper, we focused on three such models, the bilocality
scenario [12], the triangle scenario [13,14], and the Evans
scenario [29,47], which we will now describe in more detail.

C. Bilocality scenario

The bilocality scenario [12], represented by the DAG B in
Fig. 1b, presents two independent sources A and I' which
distribute correlations to three nodes, A, B, and C, that can
perform measurements chosen by the settings X and Y for A
and C, respectively, while the central node B has no external
settings. As in the Bell case, we can distinguish different sets
of compatible distributions associated with such a model. The
Markov condition (1) for this structure is given by

pla,b,clx,2) =Y pp(y)plalx, Wp(elz, y)pblr, y).

Ay
5)
As anticipated such a condition complicates considerably the
characterization of the set of allowed correlation C(B), which
is known to be nonconvex, as proved by the existence of
polynomial Bell inequalities [23].
Quantum distributions in this scenario p € Q(B) are in-
stead defined by

pla, b clx, 2) = [ (A ® B* @ C) (pa @ pr)] ()

for any couple of bipartite quantum states p,, or and any set
of POVMs with operators A%, B”, C¢.

Similarly to the multipartite Bell scenarios, here we have
that some of the correlations in the quantum set Q(B) are
incompatible with a classical description (5), even when some
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of them are still compatible with the one in the tripartite Bell
scenario C(L3), showing how the assumption of independence
between A and I increases the possibility to detect nonclassi-
cality.

Also in this scenario, we expect correlations to respect
some basic constraints given in terms of their observable dis-
tribution. But differently from the standard multipartite Bell
case, besides the linear constraints (4), here we have some
additional nonlinear ones due to the conditional independence
between the two sources. More specifically, it follows that

pla,clx,2) = Y pla, b, clx, 2) = plalx)p(clz) (1)
b

making this set strictly included in the set of nonsignaling
correlations in the tripartite Bell scenario A3. We will denote
this set of nonsignaling bilocal correlations by N'(B) C N.

D. Triangle scenario

The triangle scenario [13] is represented by the DAG in
Fig. 1d, where three bipartite sources distribute systems to
three separate parties forming a triangle-shaped structure. The
reason why this network is of particular interest to the com-
munity is that it allows for novel nonclassical phenomena
[14,18,49]. In particular, it allows for nonclassicality even in
the absence of measurement choices for the parties, that is,
when they perform a fixed measurement [13,17].

Classically, triangle correlations admit models given by

pla,b,c) =Y p()p(y)p(w)plalr, wpblx, y)plely, ),

Ay
®)
while the quantum description is given by'

pla.b,c) =t[(A°®B"® C)(pr ® por ® pu)].  (9)

Differently from the standard Bell or the bilocality cases,
the triangle does not have a simple NSI description, even
though a few approximations have already been proposed
[27,38,42,43,50].

Furthermore, the case where all parts have binary outputs
is particularly interesting. Recently, [51] has shown that this
minimal case supports postquantum advantage, i.e., the local
set and the nonsignaling set do not coincide, and that the set
of triangle nonsignaling correlations lies outside the quantum
set. Strikingly, the conjecture that the local and quantum sets
are identical [52] remains open for this minimal case.

E. Evans scenario

Given Bell’s theorem and its generalizations to networks
such as the bilocal and triangle networks described above, it is
natural to ask which causal structures can support a nonclassi-
cal behavior, a question that has been only partially answered
[47,53]. In particular, in the case of three observable nodes
[47], there are eight inequivalent classes of causal structures,
three of which involve latent factors, two of which have been
extensively analyzed in the literature, the instrumental [35]

'Note that when evaluating p, one should be attentive to which
Hilbert space supports each state and measurements.

and triangle networks [13,14]. The third one is the so-called
Evans scenario [47], which was only recently considered from
a quantum perspective [29]. The DAG E for this structure is
represented in Fig. lc. Its interest stems from the fact that
it gathers features of different causal structures. Just like in
the bilocality scenario, there are two latent factors A, I, with
the difference that, like in the triangle case, there are no
external inputs present. Finally, similarly to the instrumental
causal structure, there is classical communication between the
observable nodes, since B can communicate directly its value
to both A and C.
Equation (1) in this case becomes

pla,b,c) = Zp(k)p()/)P(alb, Mp(elb, y)p(blr, y),
Ay
(10)
and the quantum distribution is given by

pla, b, ¢) =t (A} ® B” ® Cj)(pa ® pr)] (11

for quantum states p,, or and POVMs A%, B?, C;.

Despite apparent similarities with the bilocal scenario, the
characterization of the classical and quantum sets C(E ), Q(E)
turns out to be much more complex [29], and whether the
inclusion of the former in the latter is strict or not is still an
open problem.

The set of nonsignaling correlations of the Evans sce-
nario is also poorly understood. Although a general route for
deriving such theory-independent constraints for this causal
structure has been proposed in [29], it relies on Fourier-
Motzkin elimination which can be very costly and out of
computational reach even for seemingly simple scenarios. It
is known that the nonsignaling set is strictly larger than the
classical set of correlations C(E) C N(E), at least for |A] = 3
and [B] = |C| = 2.

Furthermore, because there is communication between the
parts, Evans’s scenario allows us to go beyond passive obser-
vations of the experiment and ask what would happen if the
system is intervened upon [36,54]. We use do-conditionals
p(aldo(b)) [and p(c|do(b))] to denote the probability of Al-
ice’s (Charlie’s) outcome a (¢) when variable B is set by force
to be b. For classical correlations, this can be formalized with
the constraint

plaldo(b)) =) p()p(alr, b) 12)
A

and similarly for p(c|do(b)). Analogously, we can define what
the do-conditionals would look like in terms of a quantum
Strategy

plaldo(b)) = tr[ (Al ® I)pa]. (13)

and the same can be done for p(c|do(b)).

One might be interested in exploring interventions for
postquantum theories in the Evans scenario. In order to do
so, notice that the do-conditionals can be expressed in terms
of a marginal probability distribution of a particular interrup-
tion of the original graph, which consists in introducing new
independent variables that each inherits one outcoming edge
of the original variable; see Sec. IX of [48] for details. This
procedure allows us to map the restrictions due to no-signaling
involving do-conditionals of the Evans scenario to the
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no-signaling conditions on the bilocality scenario and iden-
tify the do-conditionals p(a|do(b)) and p(c|do(b)) with the
marginals p(a|lx = b) and p(c|z = D).

F. Tools for detecting nonclassicality

The compatibility problem consists of answering the ques-
tion: Are the statistics over the observed variables compatible
with the causal structure under scrutiny? For causal structures
with a single latent common cause, e.g., the Bell scenario,
this amounts to a linear feasibility problem. Indeed, it is
known that if we consider a decomposition of the form 2
we can, without loss of generality, incorporate any local ran-
domness present in the response functions, i.e., p(alx, A),
p(bly, A), p(clz, A) and so on to the source A and define a
deterministic model. In a deterministic model, each value of
A defines an assignment of one of the possible outputs to
each input. The model is a probabilistic mixture of these
deterministic assignments of outputs to inputs, with A spec-
ifying which particular assignment is chosen in each run of
the experiment. For each assignment, there is a corresponding
local deterministic behavior d,(a,b,c,...|x,y,2,,...) and
pla,b,c,...|x,y,z,...)1is compatible with the standard Bell
scenario if, and only if it can be expressed as a convex combi-
nation of deterministic local points, that is,

pislocal <= Jg(h)st.gr) =0, Y q) =1,
A

and pa,...|x,...)= Zq(x)dx(a, ).
A
(14)

Indeed, determining whether there exist weights g(A) satisfy-
ing the linear constraints in Eq. 14 is a typical instance of a
linear programming problem (LP) [55].

For a generic causal structure, i.e., more than one source,
we can use the inflation technique. Intuitively, the method
works by considering the hypothetical situation where one
has access to multiple copies of the sources and measure-
ment devices that compose the network and can rearrange
them in different configurations. Its core idea is to explore
simple (linear) conditions of this inflated network that ulti-
mately translate to polynomial inequalities on the observable
probabilities. It has been proven in [56] the existence of a
hierarchy of inflations that asymptotically converges to the
classical set of correlations of any network, and a test of
compatibility of a given level of this hierarchy can be done via
linear programming (LP) or semidefinite programming (SDP)
[55]. However, for each level n of this hierarchy the memory
resources required are superexponential on n. Notably, this
hierarchy relies on information broadcasting, a primitive that
is not allowed in quantum information.

The inflation technique can constrain not only the set of
classical correlations but also the set of quantum correlations
a network may give rise to. Quantum inflation [48] can be
seen as a quantum analog of the classical inflation technique
which avoids the latter’s reliance on information broadcasting.
This is done by adapting the Navascues-Pironio-Acin (NPA)
hierarchy [57], originally developed to characterize quantum
correlations in Bell scenarios, in the inflated scenario, which

can be tackled via noncommutative polynomial optimization
(NPO) theory [56]. The general goal of NPO theory is to
optimize the expectation value of a polynomial over operators
subject to a number of polynomial operators and statistical
constraints. This optimization is achieved by means of a
hierarchy of SDP tests.” The types of inflations we have used
in our work are shown in Fig. 2. For each inflation level,
we then study the set varying the NPA levels, and we will
denote by 9, ,,(G) the corresponding relaxation associated
with nth-order inflation and level m of the NPA hierarchy.

At the core of our numerical approach is the use of
quadratic programming (QP) techniques, like the branch and
bound method, that allows us to extend our optimization
problems to include nonlinear constraints with reasonable effi-
ciency [28]. These techniques work by iteratively breaking the
variables domain down into smaller problems that can each
be approximated by a corresponding convex program. This
branching subroutine enables primal and dual tasks to define
upper and lower bounds that converge, up to computational
precision (107°), to the global optimal solution.

Using this we can assess classicality for the bilocal and
the Evans networks by directly imposing the independence of
the sources p(A, y) = p(A)p(y). Notice that in both scenarios
we can, without loss of generality, make A determine the
outcome a for every x and, similarly, y determine c for every
z, while B has a stochastic response function p(b|X, y). There-
fore, we can take A = {ag, ..., an-1}, ¥ ={co, ..., Cz-1}
and p(a, b, c|x, z) is bilocal if and only if

dg(x, b, y) s.t.
g=0, > qnby)=1,
Aby

('I(ax = a’ b’ CZ = C) = p(aa bv C|.X, Z)a
and  g(A, y)=q)q(y), (15)

which can be cast as a QP. For compatibility with the Evans
scenario, it is sufficient to look at the same conditions but only
for x =z = b. We also use the arguments given in [29] to
extract tailored infeasibility certificates from these quadratic
programs.

G. Sampling nonsignaling distributions

The starting point for the analysis of the volumes is gener-
ating the data sets to be analyzed. These points must satisfy
NSI restrictions, which will be polynomial in the case of the
bilocal scenario. For this, we sample separately each coordi-
nate of the behavior vector (or its equivalent representation
by correlators) followed by a rejection step to handle the
constraints.® Specifically, we sampled points uniformly within
a hypercube and then selected the subset of interest. We em-
ployed the results in [58] to determine how many data points

These tests were implemented using [64].

30ther ways of sampling were tested, e.g., the Monte Carlo method,
which is able to include more complicated constraints to sample
from. However, the rejection method was the best in terms of nu-
merical performance; the reason for that being the cardinality of the
variables and the number of constraints.
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(a) 2nd order quantum inflation for the
Triangle scenario.

(b) 3rd order quantum inflation for the
Triangle scenario.

(¢) 2nd order quantum inflation for the Bilo-
cality scenario.

(d) 3rd order quantum inflation for the Bilo-
cality scenario.

FIG. 2. DAGs for the orders used in our analysis for quantum inflation: (a) second-order quantum inflation for the Triangle scenario;
(b) third-order quantum inflation for the Triangle scenario; (c) second-order quantum inflation for the Bilocality scenario; (d) third-order
quantum inflation for the Bilocality scenario. Here, similarly to the classical case, we considered the first two levels of standard quantum
inflation hierarchy [48], generated by using n copies of each latent variable. As in the other figures, latent nodes are represented by triangles

while observable nodes with circles.

were necessary to sample the whole space of distributions in
each situation, that is, at least (~ 2.1)? points uniformly gen-
erated in a hypercube of dimension d are required to estimate
a volume close to the hypercube itself. For example, for a hy-
percube of dimension eight (the simplest triangle scenario in
this work), one should consider data sets containing more than
400 points to start approximating well the corresponding set of
correlations. In view of such uniform distribution, the fraction
of points represented by a target subset can be associated with
the volume it occupies within the set containing it. More than
one data set was used in what follows, therefore we are going
to mention them according to their specific uses.

In all these cases, however, the idea behind them is the
same: test membership of the generated points in a set of
interest via LP, SDP, or QP tests. Such tests can be phrased in
terms of feasibility or optimization problems. In what follows,
we also investigate how these points are distributed inside the
set. To this end, we consider a corresponding optimization in
which the objective function to be minimized is the trace dis-
tance between the sampled distribution and some distribution
inside the set (see [59]).

The trace distance between two probability distributions
p(x) and q(x), is given by

1
D@, @) =3 ) ) — g, (16)

and the trace distance-based quantifier Q x (p) of the distance
of a probability distribution p(a, b, c|x, y,z) to a set X in a

tripartite scenario is computed through

Ox(p) =

min D(p, q), 17
[x||yllz| at@.b.clx.y.rex (., q) a7)

and |x|, |y|, and |z| stand for the cardinality of the set of
measurements for Alice, Bob, and Charlie, respectively. If X
is the local set, then we have a nonlocal distance, while if it
is the bilocal set, we have a nonbilocal distance, and similarly
to any other set. Finally, we compare the performance of the
aforementioned techniques for different cases.

II1. RESULTS

A. Bilocality scenario

In the case of the bilocality scenario, we estimated the
relative volume among the different sets of correlation C(B),
Q(B) and C(L3) with respect to randomly sampled points in-
side N'(B) for the case where all variables are binary. Figure 3
schematically illustrates these sets.

For doing so, we parametrize the conditional probability
distribution p(a, b, c|x, z) in terms of the single-, two-, and
three-party correlators (A,), (B), (C,), (A:B), (BC;), (A;C;) =
(Ax)(C;) and (A.BC;) for all x, z € {0, 1}, where (A,BC;) =
Y ane(—1 Yo+ p(a, b, c|x, z), and similarly for the other cor-
relators. This yields a total of 13 parameters in the interval
[—1, 1]. We generated a set of uniformly distributed points
in the 13-dimensional hypercube and, naturally, considered
only the ones inside the region of non-negative probability
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FIG. 3. Illustration of the different sets of correlations in the
bilocal scenario; proportions are not supposed to be exact. Solid
black lines delimit the part of the no-signaling set compatible with
the bilocal conditions, while the blue region with a dashed border
determines the local set and solid blue lines delimit the bilocal subset
within it. The hashed yellow region encompasses quantum behaviors.

distributions, i.e., we excluded the points that do not respect

pla, b, clx, 2)
= 11+ (=DA) + (=D(B) + (=1)°(C,)
+(=1)**(A,B) + (—1)"*(BC;)
F(= D" UANC.) + (= D*TPHABC.)) >0, (18)

which gives a set of uniformly distributed points in A/ (B). We
remark that this can be done without loss of generality for all
nonsignaling behaviors: one can always choose some minimal
representation or (for the case of binary outcomes) corre-
lators, i.e., expectation values, representation to isolate the
free parameters, and eliminate all equality constraints and, if
necessary, use inequality constraints to filter valid probability
distributions from the data set that are uniformly distributed
in the region under scrutiny.

First, we analyze which points in our data set violate the
standard tripartite Bell locality by computing their trace dis-
tance to the local set of distributions C(L3). Then, for the
remaining points, which have an explicit local decomposition,
we analyze different levels of the classical inflation hierarchy
C,(B) to compute their distances from the bilocal set C(B),
obtained by solving directly the QP problem and, from them,
estimate the relative volumes of these sets. The results for the
volumes are presented in Table I. Interestingly, while the set
of nonlocal distributions C(L3) = N(B) \ C(L3) amounts to
approximately only 2.39%, the nonbilocal set C(B) = N (B) \
C(B) occupies 32.6% of the correlation space, a clear signa-
ture of the advantage of considering the independence of the
sources when testing the nonclassicality of the data.

Regarding the use of inflation, the best witness of non-
classicality is represented by Cs, i.e., third-order inflation,
showing that 13.3% of its volume is nonbilocal, still a signif-
icantly smaller value than that obtained by QP. Besides being
less accurate in detecting nonclassicality, the inflation tech-
nique is computationally more demanding (around 50 times
more as compared with the QP approach), which is the reason
why we analyzed two independently generated samples of

TABLE I. Volumes of different correlation sets in the bilocality
scenario. In the first two rows we have the results provided by QP
on a data set with 10° samples, while in the last three we have
the volume associated with the set of nonbilocal behaviors C,(B)
computed for different orders of inflation 7, on a data set with only
10* instances. Order n = 3 was the highest configuration analyzed,
which is still considerably far from the value obtained by the QP
approach.

Set Volume
C(Ls) (Nonlocal) 0.0239
C(B) (Nonbilocal) 0.326
C,(B) (Inflation first order) 0.0233
C,(B) (Inflation second order) 0.0999
C5(B) (Inflation third order) 0.133

different sizes: N = 10* for the inflation and N = 10° in the
QP case.

Additionally, considering Q 3, i.e., second order of infla-
tion together with the third level of the NPA hierarchy, we
estimated the ratio of the quantum volume with respect to
the other sets. As can be seen in Table II, while the quantum
volume (with the NPA level considered) within the nonlocal
correlations is 43%, it increases to about 86% when consider-
ing the set of nonbilocal correlations.

To gather more information about the structure of different
correlation sets, beyond their relative volumes, we can also
estimate how these points are distributed relative to their
trace distances inside N'(B). From Fig. 4 we can see how
the points in N (B) have their distances from the local C(L3)
and bilocal C(B) set distributed according to a Poissonian-like
distribution. An interesting observation here is the presence of
a concentration of the distances for behaviors that are nonclas-
sical, i.e., the distribution is peaked at a small distance from
the local and bilocal sets, which can be seen as an instance of
the concentration phenomena reported in [34].

B. Triangle scenario

Differently from the bilocality and Evans scenarios, for
which there is a natural set of NSI correlations to sample
from, in the triangle scenario there is no simple way to en-
force the no-signaling and independence conditions [43]. For
this reason, we analyze different volumes of sets of correla-
tions relative to points sampled inside the eight-dimensional
simplex, that is, sampling over all well-defined probability
distributions p(a, b, ¢) with a, b, c =0, 1 being dichotomic

TABLE II. Volumes of the behaviors that are compatible with a
quantum description, evaluated considering the relaxation Q, ;(B),
i.e., the second order of quantum inflation and NPA level 3. The
results were obtained with a data set containing 10* behaviors.

Set Volume of 9, 3(B)
N (B) (Nonsignaling) 0.952
C(Ls3) (Nonlocal) 0.43

C(L3) Local 0.942

C(B) (Nonbilocal) 0.856

C(B) (Bilocal) 1.0
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FIG. 4. Distributions of distances in the bilocal scenario. In (a) we have nonlocal distances Q¢ ,) for around 2 x 10* behaviors with a gap
precision between primal and dual LP tasks equal to 0%. In (b) one can see how nonbilocal distances Q¢ g) are distributed considering points
within the whole nonbilocal set, while in (c) and (d) we split such a set between nonlocal and local, respectively, to offer a different perspective
and highlight the concentration observed in (c); results for around 4 x 10* behaviors using precision of 10% for the gap between primal and

dual solutions in this case.

variables. Also, given that the triangle scenario imposes non-
quadratic constraints there is no direct manner to use quadratic
optimizers, for this reason we rely on the inflation technique
[27,48] as well as the covariance approach [24,25] and the
Finner [30] and Shannontype [38,60] inequalities.

First, we compare the set of classical and quantum cor-
relations using the inflation technique on our data points.
Table III(b) shows the results for different orders of classical
inflations C,,(T') with m = 1, 2, 3, and for different quantum
inflations Q,, ,(T'") with m = 1,2 and up to level n =15 of
the NPA hierarchy. Notice how we are unable to detect non-
quantum behaviors without considering one extra copy of
each source at least. Moreover, we have found points that
are incompatible with a classical description but are quantum-
compatible with Q; 4, i.e., up to the second-order inflation and
NPA level 4. These points offer good candidates to resolve
a still open question: whether quantum nonclassical correla-
tions can emerge in the triangle scenario with all variables
dichotomic [51].

Then, we consider the covariance decomposition test—
which can test only the network topology and as such are valid

for all GPTs [50]—and the volume delimited by the Finner
and the Shannontype entropic inequalities found in [38,60];
the first of them are proven to follow for all quantum distri-
butions and conjectured to be satisfied for all nonsignaling
distributions [30], while the entropic ones, as the covariance
test, tell about the topology only. Table III(a) summarizes
these results. Among them, we can see that the covariance test
managed to exclude the largest number of behaviors.

C. Evans scenario

Now we move our attention to the Evans scenario. We start
by pointing out that the relationship between the Evans and
the bilocality scenario, which was first noticed for classical
and quantum correlations [29], indeed holds to all GPTs. In
fact, if one has access to GPT states and measurements one
can uniquely define a mapping between Evans and the bilocal
scenario by making an identification of the measurement ef-
fects of the variables A and C in each scenario, analogously
to what was argued in [29]. Therefore, the probability dis-
tribution p(a, b, c¢) in the Evans scenario is compatible with
any GPT if and only if there exists a bilocal distribution
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TABLE III. (a) Volume of incompatible distributions calculated
with other known methods, specifically the Finner and the entropic
inequalities [60] and the covariance method [50]. (b) Volumes of
points incompatible with classical C,(T) and quantum inflations
Qn.n(T) for the triangle scenario using different configurations of
n, m, on a data set of around 107 instances.

(a) Comparison of other methods to detect incompatibility with the
triangle network.

Method Incompatible volume
Covariance 0.0369
Finner 0.0191
Entropic 0.00095

(b) Volumes of behaviors incompatible with a classical or quantum
description. *Here we use about 10% of the data set due to the
computational cost.

Set Volume
Ci(T) 0.0
C(T) 0.09592
Cs(T) 0.113%*
Qu5(T) 0.0
Q,5(T) 0.1098

psla, b, c|x, z) compatible with the same GPT which satis-
fies pp(a, b, c|x = z = b) = p(a, b, ¢). Using this mapping,
we can explore the set of nonsignaling correlations in the
Evans scenario by virtue of the nonsignaling conditions of the
bilocality scenario.

We can formalize this with the following statement:

p(a, b, c) is NSI-compatible <—>

Apg(a, b, c|x, z) nonsignaling distribution,

s.t. pg(a, b, clx =z =>b) = p(a, b, c)

and pg(a, c|x, z) = pg(alx)pp(c|z). 19)

This tells how to explore the set of NSI-compatible correla-
tions in the Evans scenario using a single quadratic program.
Furthermore, this allows our test to be conclusive, i.e., if one
can prove that the conditions from Eq. (19) do not hold for
some candidate distribution p(a, b, ¢), then we can conclude
the distribution is NSI-incompatible, and, conversely, if one
can find a solution, then there exists a no-signaling distribution
psla, b, c|x, z) that respects the NSI requirements, such that
recovers p(a, b, c) by setting x = z = b, leaving no ambiguity
up to a small (~10~%) computational precision. We remark
that this is not the case for the inflation tests, as they constitute
only necessary conditions for compatibility.

We can, thus, estimate the volume of the Evans nonsignal-
ing set A/(E) inside the simplex of probability distributions;
see Table IV, which also includes results using different num-
bers of outputs for each party. Naively, one might believe
that nonsignaling is not relevant in the presence of signals
between parties of the network and in the absence of inputs,
but this is indeed not true as we can see that, approximately,
the nonsignaling set represents 84.94% of the volume relative
to the simplex of all probability distributions. Notice also how
the volume increases as we increase the number of outputs on

TABLE IV. Volume of the nonsignaling set N'(E) within the
simplex of valid probability distributions in the Evans scenario for
different numbers of outputs for each party. The number of samples
considered in each case was of the order of 10°.

|A] |B] IC| Volume
2 2 2 0.8494
2 3 2 0.9823
3 2 3 0.7475

Bob’s side, while a similar change on the other parties causes
the opposite effect.

Naturally, we also investigated the volume of the clas-
sically compatible distribution in the Evans scenario C(E)
and, remarkably, found a very small gap (*0.12%) of NSI-
compatible nonclassical distributions in the minimal case
where all variables are bits. Figure 5a shows the distribution of
the distances to the classical set. All nonclassical distributions
that we have found cannot be ruled out by quantum inflation
up to second-order inflation and NPA level 3; therefore we
cannot tell that these points are truly postquantum with our
current techniques. Even the classical version of the inflation
technique is unable to exclude any of the nonclassical points
we found. This opens the interesting possibility (with actual
candidate probability distributions) that a classical-quantum
gap exists in the Evans scenario, a question that remains open
[29].

In particular, starting from these points, we can propose the
candidate distribution

Pys(1,0,0) =2/81, Pys(0,0,1) = 1/55,
Pys(0,1,0) = 1/11, Pys(1,0,1) = 1/5,
Pys(1,1,0) = Pys(0,1,1) = 1/81,
Pys(1,1,1) = 1/2v/2,

> Pysa.b.o), (20)
a,b,c#0,0,0

which satisfies the NSI test 19 and can be certified to be
nonclassical with QP with a corresponding witness given by

Pys(0,0,0) =1 —

W =Y [p(a.b,c) — Pys(a, b, o)’ >

a,b,c

1
—. 21
36.853 @D

Moreover, we analyzed what happens if one considers ad-
ditional interventional data p(a, c|do(b)). For the particular
case of the Evans causal structure, it is sufficient to pro-
vide only p(aldo(b)) and p(c|do(b)), since p(a, c|do(b)) =
p(aldo(b))p(cldo(b)). To do so, we use the interruption tech-
nique to map valid nonsignaling probability distributions in
the bilocal scenario to valid hybrid data tables in the Evans
scenario. This is done by considering only pg(a, b, c|lx = z =
b) and the marginals pg(alx), pg(c|z) and identifying them
with p(a, b, ¢), p(aldo(b = x)) and p(c|do(b = z)) respec-
tively.

Similar to the observable case, we can ask what portion
of these valid nonsignaling hybrid data tables are classically
achievable. Remarkably, we found that interventions increase
the power to detect nonclassicality by two orders of magni-
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FIG. 5. Distribution of the trace (non-Evans) distances of nonclassical behaviors to the set of those compatible with a classical description
when (a) only passive observations are made and (b) interventional data are also taken into account. While in (a) all the nonclassical instances

have been used in the plot, in (b) only 10% has been considered.

tude. Indeed, the nonclassical volume, in the case where all
variables are binary, increases to 14.6% relative to the number
of nonsignaling distributions sampled, as opposed to 0.12%
using only passive observations. We also look at how these
points are distributed relative to their trace distances inside
the NSI set; see Fig. 5(b).

IV. DISCUSSION

From a modern viewpoint, Bell’s theorem can be seen as an
instance of a causal inference problem, more precisely causal
compatibility where we impose a given causal structure on a
quantum experiment and ask whether a classical causal model
can explain the observed correlations. This simple yet pow-
erful realization led to a number of generalizations of Bell’s
theorem for causal networks of growing size and complexity,
showing, for instance, the emergence of nonclassical behavior
even without the need for measurement choices [13,14,17,19]
or by allowing time-like rather than space-like correlation
scenarios [35]. Of particular relevance, are causal networks
composed of independent sources of correlations, scenarios
that unveiled new features such as the possibility of self-
testing all entangled quantum states [61] and quantum theory
itself [15], activation of nonclassical behavior [26,62], refined
notions of multipartite nonclassicality [18,63], and novel tests
of the role of complex numbers in quantum mechanics [16].

A basic problem within this context is that of characteriz-
ing the sets of correlations allowed by each causal structure
according to classical, quantum, and nonsignaling theories.
This is a problem that, differently from the standard Bell
scenario, relies on polynomial causal constraints that impose
a nonconvex structure to the set of allowed probability distri-
butions compatible with a given causal network. Recently a
number of different tools have been proposed to approach this
problem, but even simple causal networks still have a very
fragmented and partial characterization. Moreover, it is un-
clear how effective those different methods are in witnessing
nonclassicality. To obtain a more coherent and global picture
of both the sets of correlations as well as the tools designed to

address them, we analyzed the volumes of such different sets
of correlations.

Considering the simplest bilocality scenario and using QP
we obtained that only 2.4% of the NSI correlations are nonlo-
cal while 32.6% are nonbilocal, thus showing that the ability
to witness nonclassicality is significantly enhanced if we take
into account the independence of the sources. Furthermore,
the distribution of distances of the nonclassical points to the
local and bilocal sets show an exponential decay, meaning
that most of them are concentrated close to the classical
sets. In comparison, the best results we obtained with the
inflation technique—corresponding to a third-order inflation
level—provide a lower bound of 13.3% for the volume of the
nonbilocal set, meaning that more than half of the nonbilocal
points are not detected by this method.

In the Evans scenario, we have shown that NSI correlations
occupy a significant volume of the simplex set (the set of
all probability distributions), in some cases surpassing 98%.
Surprisingly, only 0.12% of those NSI correlations are actu-
ally nonclassical. In comparison, the inflation technique again
shows relatively poor performance, being unable to detect any
of these nonclassical points (up to the level of the hierarchy we
could handle numerically). Remarkably, however, the volume
of nonclassical correlations is increased to 14.6% when we
consider also the effect of interventions in the Evans scenario,
a clear signature that interventional data can enhance signifi-
cantly our ability to witness nonclassicality.

For the triangle network, since it involves third-order poly-
nomial constraints, we cannot directly use QP, and, for this
reason, we have employed and compared four specific tools:
the inflation technique, covariance test, Finner inequality, and
Shannon-type entropic inequalities. Once more, the third in-
flation level was the best approximation we achieved with the
inflation technique, lower bounding the volume of nonclassi-
cal correlations to 11.3% of the total set of tripartite probability
distributions. Interestingly, the lower bound on the volume of
postquantum correlations is 10.98%, pointing out that only a
small fraction of the nonclassical correlations in the triangle
scenario might have a quantum description. In comparison,
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the Finner inequality detects a volume of 1.91% of non-
classical correlations while the covariance approach and the
entropic inequalities lead to 3.69% and 0.095%, respectively.

In summary, our approach unveils a few interesting fea-
tures of the nonconvex sets of correlations of causal networks
of relevance in the literature. On the positive side, it shows
that taking into account the independence of the sources as
well as interventional data can greatly improve the volume
of nonclassical correlations, enhancing our ability to witness
them. In turn, the inflation technique, the most general tool at
the disposal, cannot detect a significant portion of nonclassical
correlations, at least the approximation level that was compu-
tationally accessible.

This shows that new tools might be needed to advance
our understanding of such networks and the nonclassical fea-
tures they entail. One interesting possibility is to adapt the
inflation method to generate quadratic constraints only, which
could then be efficiently handled by a quadratic optimizer.
Another relevant direction is to use these results as the starting
point to solve open questions. For instance, we have detected

nonclassical points in the simplest Evans and triangle sce-
narios that nonetheless pass the test of quantum inflation.
Those are good candidates for possible quantum viola-
tions of the causal constraints imposed by such networks,
and we hope our work motivates further research in those
directions.

We provide the code to reproduce our results at [65].

ACKNOWLEDGMENTS

The authors thank the International Institute of Physics
for hosting the workshop “Quantum Causality Retreat.”
This work was supported by the Serrapilheira Institute
(Grant No. Serra-1708-15763), the Simons Foundation (Grant
No. 1023171, RC), the Brazilian National Council for
Scientific and Technological Development (CNPq) (INCT-
IQ and Grant No 307295/2020-6), the S3o Paulo Re-
search Foundation FAPESP (Grants No. 2018/07258-7 and
2022/03792-4), and the Brazilian agencies MCTIC, CAPES,
and MEC.

[1] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys.
Fiz. 1, 195 (1964).

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Rev. Mod. Phys. 86, 419 (2014).

[3] S. Pironio, V. Scarani, and T. Vidick, New J. Phys. 18, 100202
(2016).

[4] D. Collins and N. Gisin, J. Phys. A: Math. Gen. 37, 1775 (2004).

[5] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,
Phys. Rev. Lett. 88, 040404 (2002).

[6] R. F. Werner and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).

[7] S. Pironio, Phys. Rev. A 68, 062102 (2003).

[8] J. B. Brask and R. Chaves, J. Phys. A: Math. Theor. 50, 094001
(2017).

[9] M. J. W. Hall, Phys. Rev. Lett. 105, 250404 (2010).

[10] R. Chaves, R. Kueng, J. B. Brask, and D. Gross, Phys. Rev. Lett.
114, 140403 (2015).

[11] J. Pearl, Causality (Cambridge University Press, Cambridge,
2009).

[12] C. Branciard, N. Gisin, and S. Pironio, Phys. Rev. Lett. 104,
170401 (2010).

[13] T. Fritz, New J. Phys. 14, 103001 (2012).

[14] M.-O. Renou, E. Baumer, S. Boreiri, N. Brunner, N. Gisin, and
S. Beigi, Phys. Rev. Lett. 123, 140401 (2019).

[15] M. Weilenmann and R. Colbeck, Phys. Rev. Lett. 125, 060406
(2020).

[16] M.-O. Renou, D. Trillo, M. Weilenmann, T. P. Le, A. Tavakoli,
N. Gisin, A. Acin, and M. Navascués, Nature (London) 600,
625 (2021).

[17] R. Chaves, G. Moreno, E. Polino, D. Poderini, I. Agresti, A.
Suprano, M. R. Barros, G. Carvacho, E. Wolfe, A. Canabarro et
al., PRX Quantum 2, 040323 (2021).

[18] A. Suprano, D. Poderini, E. Polino, I. Agresti, G. Carvacho,
A. Canabarro, E. Wolfe, R. Chaves, and F. Sciarrino, PRX
Quantum 3, 030342 (2022).

[19] E. Polino, D. Poderini, G. Rodari, I. Agresti, A. Suprano, G.
Carvacho, E. Wolfe, A. Canabarro, G. Moreno, G. Milani et al.,
Nat. Commun. 14, 909 (2023).

[20] I. Pitowsky, Math. Program. 50, 395 (1991).

[21] L. D. Garcia, M. Stillman, and B. Sturmfels, J. Symb. Comput.
39, 331 (2005).

[22] R. Chaves, L. Luft, T. Maciel, D. Gross, D. Janzing, and B.
Scholkopf, in Proceedings of the 30th Conference on Uncer-
tainty in Artificial Intelligence (UAI 2014 ) (AUAI Press, Quebec
City, Quebec, Canada, 2014), pp. 112-121.

[23] R. Chaves, Phys. Rev. Lett. 116, 010402 (2016).

[24] A. Kela, K. Von Prillwitz, J. Aberg, R. Chaves, and D. Gross,
IEEE Trans. Inf. Theory 66, 339 (2019).

[25] J. Aberg, R. Nery, C. Duarte, and R. Chaves, Phys. Rev. Lett.
125, 110505 (2020).

[26] A. Pozas-Kerstjens, R. Rabelo, L. Rudnicki, R. Chaves, D.
Cavalcanti, M. Navascués, and A. Acin, Phys. Rev. Lett. 123,
140503 (2019).

[27] E. Wolfe, R. W. Spekkens, and T. Fritz, J. Causal Inference 7,
20170020(2019).

[28] Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-
ual (2022).

[29] P. Lauand, D. Poderini, R. Nery, G. Moreno, L. Pollyceno, R.
Rabelo, and R. Chaves, PRX Quantum 4, 020311 (2023).

[30] M.-O. Renou, Y. Wang, S. Boreiri, S. Beigi, N. Gisin, and N.
Brunner, Phys. Rev. Lett. 123, 070403 (2019).

[31] A. Cabello, Phys. Rev. A 72, 012113 (2005).

[32] E. Wolfe and S. F. Yelin, Phys. Rev. A 86, 012123 (2012).

[33] M. Navascués and E. Wolfe, J. Causal Inference 8, 70
(2020).

[34] C. Duarte, S. Brito, B. Amaral, and R. Chaves, Phys. Rev. A 98,
062114 (2018).

[35] R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio, L. Aolita, S.
Giacomini, and F. Sciarrino, Nat. Phys. 14, 291 (2018).

[36] M. Gachechiladze, N. Miklin, and R. Chaves, Phys. Rev. Lett.
125, 230401 (2020).

[37] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, Predic-
tion, and Search (MIT Press, Cambridge, MA, 2000).

[38] R. Chaves, C. Majenz, and D. Gross, Nat. Commun. 6, 5766
(2015).

012220-11


https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1088/1367-2630/18/10/100202
https://doi.org/10.1088/0305-4470/37/5/021
https://doi.org/10.1103/PhysRevLett.88.040404
https://doi.org/10.1103/PhysRevA.64.032112
https://doi.org/10.1103/PhysRevA.68.062102
https://doi.org/10.1088/1751-8121/aa5840
https://doi.org/10.1103/PhysRevLett.105.250404
https://doi.org/10.1103/PhysRevLett.114.140403
https://doi.org/10.1103/PhysRevLett.104.170401
https://doi.org/10.1088/1367-2630/14/10/103001
https://doi.org/10.1103/PhysRevLett.123.140401
https://doi.org/10.1103/PhysRevLett.125.060406
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1103/PRXQuantum.2.040323
https://doi.org/10.1103/PRXQuantum.3.030342
https://doi.org/10.1038/s41467-023-36428-w
https://doi.org/10.1007/BF01594946
https://doi.org/10.1016/j.jsc.2004.11.007
https://doi.org/10.1103/PhysRevLett.116.010402
https://doi.org/10.1109/TIT.2019.2935755
https://doi.org/10.1103/PhysRevLett.125.110505
https://doi.org/10.1103/PhysRevLett.123.140503
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.1103/PRXQuantum.4.020311
https://doi.org/10.1103/PhysRevLett.123.070403
https://doi.org/10.1103/PhysRevA.72.012113
https://doi.org/10.1103/PhysRevA.86.012123
https://doi.org/10.1515/jci-2018-0008
https://doi.org/10.1103/PhysRevA.98.062114
https://doi.org/10.1038/s41567-017-0008-5
https://doi.org/10.1103/PhysRevLett.125.230401
https://doi.org/10.1038/ncomms6766

GIULIO CAMILLO et al.

PHYSICAL REVIEW A 109, 012220 (2024)

[39] J. Pienaar and C. Brukner, New J. Phys. 17, 073020 (2015).
[40] F. Costa and S. Shrapnel, New J. Phys. 18, 063032

(2016).

[41] J. Barrett, R. Lorenz, and O. Oreshkov, arXiv:1906.10726
(2019).

[42] J. Henson, R. Lal, and M. F. Pusey, New J. Phys. 16, 113043
(2014).

[43] N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A. Tavakoli, E.
Zambrini Cruzeiro, S. Popescu, and N. Brunner, Nat. Commun.
11, 2378 (2020).

[44] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A
81, 062348 (2010).

[45] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger,
Phys. Rev. Lett. 80, 3891 (1998).

[46] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).

[47] R. J. Evans, Scand. J. Stat. 43, 625 (2016).

[48] E. Wolfe, A. Pozas-Kerstjens, M. Grinberg, D. Rosset, A. Acin,
and M. Navascués, Phys. Rev. X 11, 021043 (2021).

[49] X. Coiteux-Roy, E. Wolfe, and M.-O. Renou, Phys. Rev. Lett.
127, 200401 (2021).

[50] S. Beigi and M.-O. Renou, IEEE Trans. Inf. Theory 68, 384
(2021).

[51] A. Pozas-Kerstjens, A. Girardin, T. Krivachy, A. Tavakoli, and
N. Gisin, New J. Phys. 25, 113037 (2023).

[52] A. Tavakoli, A. Pozas-Kerstjens, M.-X. Luo, and M.-O. Renou,
Rep. Prog. Phys. 85, 056001 (2022).

[53] M. M. Ansanelli, Observational Equivalences between Causal
Structures, MSc. thesis, Universidade Estadual Paulista [UN-
ESP], 2022.

[54] I. Agresti, D. Poderini, B. Polacchi, N. Miklin, M.
Gachechiladze, A. Suprano, E. Polino, G. Milani, G. Carvacho,
R. Chaves et al., Sci. Adv. 8, eabm1515 (2022).

[55] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, 2006).

[56] M. Navascués, S. Pironio, and A. Acin, New J. Phys. 10, 073013
(2008).

[57] M. Navascués, S. Pironio, and A. Acin, Phys. Rev. Lett. 98,
010401 (2007).

[58] M. E. Dyer, Z. Fiiredi, and C. McDiarmid, Random Struct.
Algorithms 3, 91 (1992).

[59] S. G. A. Brito, B. Amaral, and R. Chaves, Phys. Rev. A 97,
022111 (2018).

[60] T. Fritz and R. Chaves, IEEE Trans. Inf. Theory 59, 803 (2012).

[61] L. gupié, J. Bowles, M.-O. Renou, A. Acin, and M. J. Hoban,
Nat. Phys. 19, 670 (2023).

[62] D. Poderini, S. Brito, R. Nery, F. Sciarrino, and R. Chaves,
Phys. Rev. Res. 2, 043106 (2020).

[63] A. Pozas-Kerstjens, N. Gisin, and A. Tavakoli, Phys. Rev. Lett.
128, 010403 (2022).

[64] E.-C. Boghiu, E. Wolfe, and A. Pozas-Kerstjens, Quantum 7,
996 (2023).

[65] https://github.com/Giuhcs/relative_volumes_tripartite.

012220-12


https://doi.org/10.1088/1367-2630/17/7/073020
https://doi.org/10.1088/1367-2630/18/6/063032
https://arxiv.org/abs/1906.10726
https://doi.org/10.1088/1367-2630/16/11/113043
https://doi.org/10.1038/s41467-020-16137-4
https://doi.org/10.1103/PhysRevA.81.062348
https://doi.org/10.1103/PhysRevLett.80.3891
https://doi.org/10.1007/BF02058098
https://doi.org/10.1111/sjos.12194
https://doi.org/10.1103/PhysRevX.11.021043
https://doi.org/10.1103/PhysRevLett.127.200401
https://doi.org/10.1109/TIT.2021.3119651
https://doi.org/10.1088/1367-2630/ad0a16
https://doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1126/sciadv.abm1515
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1103/PhysRevLett.98.010401
https://doi.org/10.1002/rsa.3240030107
https://doi.org/10.1103/PhysRevA.97.022111
https://doi.org/10.1109/TIT.2012.2222863
https://doi.org/10.1038/s41567-023-01945-4
https://doi.org/10.1103/PhysRevResearch.2.043106
https://doi.org/10.1103/PhysRevLett.128.010403
https://doi.org/10.22331/q-2023-05-04-996
https://github.com/Giuhcs/relative_volumes_tripartite

