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Equioverlapping measurements, as a natural class of quantum measurements with the appealing property of
equal overlap between any pair of measurement operators, generalize both the notions of equiangular tight frames
(including von Neumann measurements) and symmetric informationally complete positive operator valued
measures (SIC-POVMs). The structures of equioverlapping measurements in general dimensions are rather
subtle and complicated. In this work, we reveal some structural properties of equioverlapping measurements
which may be useful for constructing and classifying equioverlapping measurements. In particular, we obtain two
bounds for the number of measurement operators in an equioverlapping measurement. We further illustrate how
equioverlapping measurements go beyond SIC-POVMs in a nontrivial fashion with some illuminating examples
in lower dimensions (two, three, and four). Finally, we present the challenging problem of fully classifying
equioverlapping measurements and discuss some related perspectives.
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I. INTRODUCTION

In quantum mechanics, traditionally, a quantum measure-
ment in a system Hilbert space often refers to a von Neumann
measurement, which is determined by an orthonormal basis
(or the corresponding set of projection operators) of the sys-
tem Hilbert space [1–3]. With modern development, now a
general measurement is often described by a positive opera-
tor valued measure (POVM) E = {Eα : α = 1, 2, . . . }, which
consists of non-negative operators (called measurement oper-
ators) Eα in a system Hilbert space summing to the identity
operator 1, i.e., Eα � 0 and

∑
α Eα = 1 (resolution of iden-

tity) [4–10]. If the POVM E is performed in a system state ρ,
then the probability of obtaining the outcome labeled by α is
pα = tr(Eαρ), as postulated by Born’s probability rule. In this
work, we will study a special class of quantum measurements,
so-called equioverlapping measurements (see Definition 4 in
Sec. II), investigate the structures of such measurements, and
illuminate how these measurements relate to other measure-
ments, particularly the celebrated symmetric informationally
complete positive operator valued measures (SIC-POVMs;
see Definition 1 in Sec. II).

Despite the simplicity in its formal mathematical def-
inition, the notion of POVMs is rather versatile and has
played a crucial role in studies of quantum foundations and
applications, and many features of POVMs with certain spe-
cial structures remain unexplored or unknown [11,12]. For
instance, a highly symmetric class of POVMs, so-called
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SIC-POVMs, has attracted considerable interest in quantum
information theory [11–23]. However, its existence in every
dimension, although widely believed and rather convinc-
ingly supported by much analytical and numerical evidence,
remains an elusive and outstanding conjecture (Zauner’s con-
jecture) [11,12,22,23]. Quite recently, semi-SIC-POVMs (see
Definition 1 in Sec. II with item 3 dropped) were introduced
to relax the equal-trace condition in SIC-POVMs, and some
remarkable new phenomena appeared [24].

Ever since the 1970s, equiangular lines and equiangular
tight frames (see Definition 2 in Sec. II) have been extensively
and intensively studied in the fields of signal processing,
frame theory, and combinatorial geometry [25–34]. Equiangu-
lar tight frames can be equivalently formulated in the language
of POVMs and are essentially equivalent to equiangular mea-
surements (see Definition 3 in Sec. II). We emphasize that
the notions of equioverlapping and equiangularity, although
closely related, are quite different. This will be elaborated in
Sec. II.

For SIC-POVMs and equiangular lines (as well as equian-
gular tight frames), a key feature is the requirement of
equal angles: the angles between all pairs of constituent
elements are equal. However, in quantum mechanics, the
overlaps between operators, as evidenced in Born’s prob-
ability rule pα = tr(Eαρ) and in the correlation cαβ (ρ) =
tr(EαρEβ ) = tr(Eα

√
ρ)(Eβ

√
ρ )†, appear frequently and play

an important role in quantum measurements. Indeed, the most
basic structure of a Hilbert space lies in the inner product
(scalar product), which is just the overlap (rather than an-
gle) between vectors. Consequently, from both theoretical and
practical perspectives, it is desirable to study overlaps between

2469-9926/2024/109(1)/012218(10) 012218-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4362-051X
https://orcid.org/0009-0000-7493-0655
https://orcid.org/0000-0002-2631-4919
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.012218&domain=pdf&date_stamp=2024-01-24
https://doi.org/10.1103/PhysRevA.109.012218


FENG, LUO, ZHAO, AND GUO PHYSICAL REVIEW A 109, 012218 (2024)

measurement operators, which encode important informa-
tion about quantum measurements. This leads to the notion
of equioverlapping measurements [35], which is closely re-
lated to equiangular tight frames and SIC-POVMs, but with
fundamental and subtle distinctions. In fact, the former si-
multaneously generalizes the latter two notions. Some basic
properties and classification of equioverlapping measure-
ments in a qubit system were addressed in Ref. [35]. However,
general properties and the classification of equioverlapping
measurements remain largely unexplored. Our purpose here
is to reveal some structural features of equioverlapping mea-
surements, illuminate how they go beyond SIC-POVMs in a
nontrivial fashion, and pose the very challenging problem of
fully classifying equioverlapping measurements.

The remainder of this work is arranged as follows. In
Sec. II, we recall basic aspects of SIC-POVMs, equiangular
tight frames, equiangular measurements, and equioverlapping
measurements, which are closely related yet subtly different.
In Sec. III, we prove several structural properties of equiover-
lapping measurements, which may be useful in classifying
and constructing equioverlapping measurements. We establish
two upper bounds for the number of measurement operators
in an equioverlapping measurement. In Sec. IV, we present
some nontrivial examples of equioverlapping measurements
in lower dimensions, which are neither von Neumann mea-
surements nor SIC-POVMs. Finally, we summarize the results
and discuss some perspectives in Sec. V. In the Appendixes,
we present detailed proofs of the main results, as summarized
in Propositions 1–6.

II. FROM SIC-POVMS TO EQUIOVERLAPPING
MEASUREMENTS

In this section, we review, in a rigorous way, the detailed
definitions of several important classes of measurements
and make a careful comparison between them: SIC-POVMs,
equiangular measurements, and equioverlapping measure-
ments. We also discuss the equivalence between equiangular
measurements and equiangular tight frames, which include
von Neumann measurements as special instances.

Recall that in the modern formalism, a quantum mea-
surement in a quantum system described by a d-dimensional
Hilbert space Cd is mathematically represented by a POVM

E = {Eα : α = 1, 2, . . . , m}
consisting of a family of distinct non-negative operators Eα

summing to the identity, i.e., Eα � 0 and

m∑
α=1

Eα = 1d (identity operator on Cd ).

A key point for POVMs is that the number m of measurement
operators Eα may be any natural number.

POVMs generalize the traditional quantum measurements
(von Neumann measurements, Lüders measurements) which
are mathematically described by spectral decompositions of
observables [1–3,36]. Notice that compared with a von Neu-
mann measurement � = {�α = |ψα〉〈ψα| : α = 1, 2, . . . , d},
the number m of measurement operators in a POVM is not
necessarily d (it may even be 1 or infinity), and furthermore,

the measurement operators may not be projective or rank one
and are not orthogonal in general [4–9]. In this work, we
will assume that both the dimension d and the number m of
measurement operators are finite. To exclude the trivial case,
we also assume that d � 2.

A symmetric informationally complete POVM is a special
type of POVM notable for its extraordinary properties. In this
context, “symmetric” means that the measurement operators
are both equiangular and equidistant in the Hilbert space,
and “informationally complete” means that any state can
be expanded along the measurement operators. The precise
meaning is as follows [12].

Definition 1. SIC-POVM. A symmetric information-
ally complete POVM in Cd is a POVM E = {Eα : α =
1, 2, . . . , d2} such that the following are true:

(1) Informational completeness. The measurement opera-
tors Eα span the whole operator (matrix) space acting on Cd

and thus in particular also span the state (pure or mixed) space
in Cd .

(2) Equal overlap. tr(EαEβ ) = b is a constant independent
of α �= β.

(3) Equal trace. trEα = t is a constant independent of α.

(4) Rank one. All measurement operators Eα are rank one
in the sense that Eα = t |ψα〉〈ψα| for some pure states (unit
norm vectors) |ψα〉 in Cd and a common constant t .

It turns out that the parameters b and t in a SIC-POVM are
uniquely determined by the system dimension d as [12]

b = 1

d2(d + 1)
, t = 1

d
.

Moreover, the angles between any two different measurement
operators in a SIC-POVM are equal (i.e., equiangularity), that
is,

|〈ψα|ψβ〉|2 = tr(EαEβ )

trEαtrEβ

= 1

d + 1
, α �= β.

For a concrete example, it can be readily checked that
E = {Eα = 1

3 |ψα〉〈ψα| : α = 1, 2, . . . , 9} is a SIC-POVM in
C3, where

|ψ1〉 = 1√
2

(|0〉 + |1〉),

|ψ2〉 = 1√
2

(|1〉 + |2〉),

|ψ3〉 = 1√
2

(|0〉 + |2〉),

|ψ4〉 = 1√
2

(|0〉 + e2π i/3|1〉),

|ψ5〉 = 1√
2

(|1〉 + e2π i/3|2〉),

|ψ6〉 = 1√
2

(|2〉 + e2π i/3|0〉),

|ψ7〉 = 1√
2

(|0〉 + e−2π i/3|1〉),

|ψ8〉 = 1√
2

(|1〉 + e−2π i/3|2〉),

|ψ9〉 = 1√
2

(|2〉 + e−2π i/3|0〉).
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TABLE I. Comparison between the concepts of equioverlapping measurement, equiangular measurement, and SIC-POVM in a
d-dimensional system.

POVM E = {Eα : α = 1, 2, . . . , m}
Requirements Equioverlapping measurement Equiangular measurement SIC-POVM

Number of measurement operators m d � m � d2 d � m � d2 m = d2

Equal trace: trEα = trEβ, ∀ α, β No Yes Yes
Equal overlap: trEαEβ = b, ∀ α �= β Yes Yes Yes
Equal angle:

trEαEβ

trEα trEβ
= c, ∀ α �= β No Yes Yes

Due to their structural symmetry and informational com-
pleteness, SIC-POVMs have many significant applications in
quantum information theory, although the construction of a
SIC-POVM in a general dimension remains an outstanding
open problem [22,23].

If the condition of equal trace (i.e., item 3 in Def-
inition 1) is dropped, then we come to the notion of
semi-SIC-POVMs [24].

Equiangularity in a SIC-POVM is closely linked to the
concept of equiangular tight frames.

Definition 2. Equiangular tight frame. A family of vectors
{cα|ψα〉 : α = 1, 2, . . . , m} in Cd (with |ψα〉 being unit norm
vectors and cα �= 0 being constants) is called an equiangular
tight frame if the following are true:

(1) Equiangularity. |〈ψα|ψβ〉|2 = c is a constant indepen-
dent of α �= β.

(2) Tightness.
∑m

α=1 |cα|2|ψα〉〈ψα| = γ 1d for some posi-
tive constant γ .

Since condition (2) above can be rewritten as
m∑

α=1

|cα|2
γ

|ψα〉〈ψα| = 1d ,

up to a multiplicative constant, equiangular tight frames are
equivalent to equiangular measurements defined as follows.

Definition 3. Equiangular measurement. A POVM E =
{Eα : α = 1, 2, . . . , m} in Cd is called an equiangular mea-
surement if the following are true:

(1) Equiangularity. tr(EαEβ ) = ctr(Eα )tr(Eβ ), with c be-
ing a constant independent of α �= β.

(2) Rank one. All measurement operators Eα are rank one
in the sense that Eα = tα|ψα〉〈ψα| for some pure states |ψα〉
and positive constants tα .

As a simple example, E = {Eα = 2
3 |ψα〉〈ψα| : α = 1, 2, 3}

is an equiangular measurement (but not a SIC-POVM) in C2

for any θ ∈ [0, 2π ), where

|ψ1〉 = |0〉,
|ψ2〉 = 1

2 (|0〉 − eiθ
√

3|1〉),

|ψ3〉 = 1
2 (|0〉 + eiθ

√
3|1〉).

In an equiangular measurement, the trace of any mea-
surement operator trEα = (1 − cd )/(1 − c) is a constant
independent of α. Here c = tr(EαEβ )/(trEαtrEβ ) = (m −
d )/d (m − 1) is a constant independent of α �= β. This value
reaches the Welch bound [37], which is a lower bound on
the maximal overlap (cross correlation) between vectors in a
set first given by Welch and subsequently studied by many

authors [38–40]. Furthermore, due to the equiangular prop-
erty, tr(EαEβ ) is also a constant independent of α �= β.

It is known that the number of elements, denoted as m,
in any equiangular tight frame or equiangular measurement
in Cd is constrained within the range d � m � d2 [25].
However, it should be noted that an equiangular tight frame
(equiangular measurement) may not exist for certain values of
m between d and d2. For instance, there is no equiangular tight
frame consisting of five vectors in C3 [29]. When m = d2,
an equiangular measurement reduces to a SIC-POVM, whose
existence in a general dimension still stands as an elusive
and outstanding conjecture known as Zauner’s conjecture
[11,12,22,23], despite the widespread belief in and substantial
supporting evidence for the truth of this conjecture.

Equiangularity of an equiangular measurement (including
SIC-POVM) implies that the measurement has equal overlap
and equal trace [35]. If we drop the equal-trace condition
and retain only the equal-overlap condition, we arrive at the
concept of “equioverlapping measurements”, which opens
the door to a broad class of measurements with intricate
structures [35].

Definition 4. Equioverlapping measurement. A POVM E =
{Eα : α = 1, 2, . . . , m} in Cd is called an equioverlapping
measurement if the following are true:

(1) Equal overlap. tr(EαEβ ) = b is a constant independent
of α �= β.

(2) Rank one. All measurement operators Eα are rank one
in the sense that Eα = tα|ψα〉〈ψα| for some pure states |ψα〉
and positive constants tα .

Some basic features and classification of equioverlapping
measurements in dimension 2 are discussed in Ref. [35]. More
examples of equioverlapping measurements will be given in
Sec. IV.

For the convenience of comparison, we list the
basic requirements of various measurements in Ta-
ble I. These measurements constitute a hierarchical
structure with the following strict inclusion rela-
tions: {SIC-POVM} ⊂ {equiangular measurement} ⊂
{equioverlapping measurement} ⊂ {POVM}. This is further
illustrated in Fig. 1.

III. GENERAL PROPERTIES OF EQUIOVERLAPPING
MEASUREMENTS

In this section, we study the general properties of equiover-
lapping measurements. For latter convenience, we first recall
some preliminary results from Ref. [35], which are summa-
rized as the following two lemmas.

012218-3



FENG, LUO, ZHAO, AND GUO PHYSICAL REVIEW A 109, 012218 (2024)

FIG. 1. Hierarchy of measurements: any SIC-POVM is an
equiangular measurement, which in turn is an equioverlapping mea-
surement, which in turn is a POVM. The converse is not true in
general.

Lemma 1. Let {Eα : α = 1, 2, . . . , m} be an equioverlap-
ping measurement in Cd such that

trEα = tα, α = 1, 2, . . . , m,

tr(EαEβ ) = b, α �= β.

Then we have the following statements.
(1) For any α, trEα can take at most two possible values.

More precisely, tα ∈ {t−, t+} with

t− = 1
2 [1 −

√
1 − 4(m − 1)b], (1)

t+ = 1
2 [1 +

√
1 − 4(m − 1)b]. (2)

(2) Let k = #{α : trEα = t−} be the number of measure-
ment operators Eα such that trEα = t−. Then 0 � k � m, and

m − 2d = (2k − m)
√

1 − 4(m − 1)b. (3)

In the following, we identify any rank one operator with
a complex line determined by the operator in the system
Hilbert space; for example, the measurement operator Eα =
tα|ψα〉〈ψα| (with tα �= 0 fixed) corresponds to the line l =
{cα|ψα〉 : cα ∈ C} in Cd .

Lemma 2. Let E = {Eα : α = 1, 2, . . . , m} be an equiover-
lapping measurement in Cd . Then E is either a set of
equiangular lines or a union of two disjoint sets of equiangular
lines. In the latter case, we can separate E into two disjoint
sets as

E = L− ∪ L+, L− ∩ L+ = ∅,

with L− = {Eα : tα = t−} and L+ = {Eα : tα = t+}, both of
which are sets of equiangular lines. Moreover, we have

cos2(θ−) = b

t2−
= 2b

1 − 2(m − 1)b − √
1 − 4(m − 1)b

,

cos2(θ+) = b

t2+
= 2b

1 − 2(m − 1)b + √
1 − 4(m − 1)b

,

cos2(θ0) = b

t−t+
= 1

m − 1
,

where θ− (θ+) denotes the angle between any two lines both
in L− (L+), while θ0 denotes the angle between any line in L−

and any line in L+. In particular,

θ− � θ0 � θ+.

From Lemma 2, we know that the angles between any two
measurement operators in an equioverlapping measurement
can take at most three distinct values. More precisely, we have
the following:

(1) If k = 0 or m, then the equioverlapping measurement
is a set of equiangular lines, and the angle can only take one
value.

(2) If k = 1 or m − 1, then the equioverlapping measure-
ment is a union of a set of equiangular lines and a set
consisting of a single element. The angle then can take two
values: either θ0 and θ+ (corresponding to the case with k = 1)
or θ0 and θ− (corresponding to the case with k = m − 1).

(3) If 2 � k � m − 2, then the angles take on three differ-
ent values: θ−, θ0, and θ+.

In case 2, the equioverlapping measurement is a biangular
measurement, which is defined as follows.

Definition 5. Biangular measurement. A POVM E = {Eα :
α = 1, 2, . . . , m} in Cd is called a biangular measurement if
the following are true:

(1) Biangularity. The angles between the mea-
surement operators Eα only take two values, i.e.,
#{tr(EαEβ )/tr(Eα )tr(Eβ ) : α �= β} = 2.

(2) Rank one. All measurement operators Eα are rank one
in the sense that Eα = tα|ψα〉〈ψα| for some pure states |ψα〉
and positive constants tα .

Biangular measurements have a close connection to the
concept of biangular lines, as discussed in Refs. [41–47],
where the angles between the lines are constrained to exactly
two values. When a collection of biangular lines forms a
tight frame, it naturally induces a corresponding biangular
measurement.

In Ref. [35], it was shown that the number m of measure-
ment operators in any equioverlapping measurement in Cd

is bounded as d � m < d2 + d. Here we improve the upper
bound to m � d2. For this purpose, we first establish the
following result.

Proposition 1. Let E = {Eα : α = 1, 2, . . . , m} be an
equioverlapping measurement in Cd , where tr(EαEβ ) = b for
α �= β, then we have the following statements.

(1) b = 0 if and only if m = d . This corresponds to a von
Neumann measurement.

(2) b � t2
− � t2

+, with t− and t+ defined by Eqs. (1) and (2).
Furthermore, b = t2

− if and only if m = d or d + 1, while t− =
t+ if and only if m = 2d . If 0 < k < m, we have b < t2

− < t2
+.

(3) If m > d , then

1

m2
� b � 1

4(m − 1)
.

Moreover, b = 1/m2 if and only if m = d + 1, and b =
1/4(m − 1) if and only if m = 2d .

The proof is given in Appendix A. The above proposition
reveals some intrinsic relations between various parameters
m, d , and b in an equioverlapping measurement.

Proposition 2. Let {Eα : α = 1, 2, . . . , m} be an equiover-
lapping measurement in Cd ; then

d � m � d2. (4)
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For the proof, see Appendix B.
According to Eq. (3), equioverlapping measurements can

generally be categorized into two classes based on the param-
eter m (the number of measurement operators). Specifically,
when m �= 2d , the overlap parameter b between any two
distinct measurement operators can take only some discrete
values. In contrast, when m = 2d , the overlap b can take
continuous values within the interval (1/4d2, 1/4(2d − 1)].
The results are summarized as follows.

Proposition 3. Let E = {Eα : α = 1, 2, . . . , m} be an
equioverlapping measurement with tr(EαEβ ) = b for α �= β.

Let k = #{α : trEα = t−} be the number of measurement op-
erators Eα such that trEα = t−.

(1) If m �= 2d , then b can take only some discrete values in
the form of

b = (k − d )(k + d − m)

(m − 1)(m − 2k)2
.

Moreover, if m = d, then k = 0; if d < m < 2d, then k <

m − d , and if 2d < m � d2, then m − d < k � m.

(2) If m = 2d , then b can take continuous values in
(1/4d2, 1/4(2d − 1)]. Moreover, if b = 1/4(2d − 1), then
k = 2d, and if b < 1/4(2d − 1), then k = d.

For the proof, see Appendix C. The above proposition
displays some surprising features of an equioverlapping mea-
surement in the sense that the overlap parameter b takes only
discrete values for the general case m �= 2d and takes contin-
uous values in the critical case m = 2d .

Next, we discuss some methods for constructing new
equioverlapping measurements from existing ones: the com-
plementary trick and tensor product.

If we represent any state |ψ〉 ∈ Cd as a d-dimensional
column vector, then the equioverlapping measurement E =
{Eα = tα|ψα〉〈ψα| : α = 1, 2, . . . , m} in Cd induces a d × m
matrix

X = (
√

t1|ψ1〉, . . . ,
√

tm|ψm〉) ∈ Md×m(C),

where rows of X collectively form an orthonormal system in
Cm (considered to be a complex vector space of row vec-
tors) since XX † = ∑m

α=1 tα|ψα〉〈ψα| = 1d . When m > d , it is
always possible to extend the matrix X to a complete orthonor-
mal basis by adding m − d additional row vectors, typically
through methods such as the Gram-Schmidt orthogonaliza-
tion procedure. This extended basis enables us to construct
a complementary measurement in Cm−d denoted as E ′ when
m > d + 1.

Proposition 4. Let E = {Eα = tα|ψα〉〈ψα| : α =
1, 2, . . . , m} be an equioverlapping measurement in Cd ,
with tr(EαEβ ) = b for α �= β. Let k = #{α : trEα = t−}
be the number of measurement operators Eα such that
trEα = t−. When m > d + 1, we can always construct another
equioverlapping measurement E ′ = {E ′

α : α = 1, 2, . . . , m}
in Cd ′

, with d ′ = m − d and the same overlap value b.
Moreover, k + k′ = m, where k′ = #{α : trE ′

α = t−}.
For the proof, see Appendix D. Proposition 4 not only

provides a way of constructing new equioverlapping measure-
ments from existing ones but also implies a strong constraint
on the number of measurement operators in an equioverlap-
ping measurement. To highlight this point, we summarize the
result as follows.

Proposition 5. Let E = {Eα = tα|ψα〉〈ψα| : α =
1, 2, . . . , m} be an equioverlapping measurement in Cd

with m > d + 1; then

m � (m − d )2. (5)

Putting it alternatively, for any natural numbers r > 1 and d >

r(r − 1), an equioverlapping measurement in Cd with d + r
measurement operators does not exist.

For the proof, see Appendix E. It is interesting to com-
pare the upper bounds in inequalities (4) and (5). Although
the proof of Proposition 5 relies on Proposition 4 (see
Appendix E), if we assume Proposition 5, then the upper
bound in inequality (4) follows readily. Here is a simple
argument. Suppose that E = {Eα : α = 1, 2, . . . , m} is an
equioverlapping measurement in Cd . If m = d or d + 1, then
it is trivially true that m � d2 since d � 2. If m > d + 1, then
by Proposition 4, an equioverlapping measurement E ′ = {E ′

α :
α = 1, 2, . . . , m} in Cd ′

with d ′ = m − d exists. Since, in this
dimension d ′, it is always true that m > d ′ + 1, it then follows
from Proposition 5 that m � (m − d ′)2 = [m − (m − d )]2 =
d2, which is consistent with Proposition 2.

To illustrate the power of Proposition 5, let us consider
some special instances.

(1) If m = d + 2, then from inequality (5), we have m � 4;
thus, d + 2 � 4, i.e., d � 2. Consequently, for d � 3, an
equioverlapping measurement in Cd with m = d + 2 mea-
surement operators does not exist.

(2) If m = d + 3, then from inequality (5), we have m � 9;
thus, d + 3 � 9, i.e., d � 6. Consequently, for d � 7, an
equioverlapping measurement in Cd with m = d + 3 mea-
surement operators does not exist.

For construction of new equioverlapping measurements
from existing ones, a natural question arises about the con-
struction of the direct sum or tensor product. In general,
the direct sum of equioverlapping measurements is not an
equioverlapping measurement, as discussed in Ref. [35]. For
the tensor product, the answer is as follows.

Proposition 6. Let E = {Eα : α = 1, 2, . . . , m} be an
equioverlapping measurement in Cd , with tr(EαEβ ) = b for
α �= β, and let F = {Fμ : μ = 1, 2, . . . , n} be an equioverlap-
ping measurement in Cd ′

, with tr(FμFν ) = b′ for μ �= ν; then

E ⊗ F = {Eα ⊗ Fμ : α = 1, 2, . . . , m; μ = 1, 2, . . . , n}
is an equioverlapping measurement in Cd ⊗ Cd ′ = Cdd ′

if
and only if both E and F are von Neumann measurements.

The proof is given in Appendix F. The above proposition
shows that the tensor product of equioverlapping measure-
ments cannot be an equioverlapping measurement except in
the rather trivial case of von Neumann measurements and
amends an incorrect observation in Ref. [35]. This excludes
an easy way of constructing equioverlapping measurements
and indicates certain difficulty and complexity in constructing
equioverlapping measurements.

IV. ILLUSTRATIVE EXAMPLES

Clearly, von Neumann measurements are trivial exam-
ples of equioverlapping measurements, and SIC-POVMs are
prominent examples of equioverlapping measurements. In this
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section, we present some nontrivial examples of equioverlap-
ping measurements which, in general, are not SIC-POVMs.
This shows that the class of equioverlapping measurements
is significantly broader than the class of SIC-POVMs in a
concrete way.

Example 1. Consider a qubit system C2 (thus, d = 2) with
the measurement E = {Eα = tα|ψα〉〈ψα| : α = 1, 2, 3, 4}.
Here

|ψ1〉 = |0〉,
|ψ2〉 = r|0〉 +

√
1 − r2|1〉,

|ψ3〉 = 1√
3

(|0〉 − eiθ
√

2|1〉),
|ψ4〉 = 1√

3

(|0〉 − e−iθ
√

2|1〉),
with b ∈ (1/16, 1/12],

r = 2
√

b

1 − √
1 − 12b

, cos θ =
√

1 − 8b − √
1 − 12b

4
√

b
,

and

tα = trEα =
{

1
2 (1 − √

1 − 12b), α = 1, 2,

1
2 (1 + √

1 − 12b), α = 3, 4.

It can be straightforwardly checked that

4∑
α=1

Eα = 12, tr(EαEβ ) = b, α �= β,

which shows that E is, indeed, an equioverlapping measure-
ment in C2. In this case, the number m of measurement
operators equals 2d = 4 with d = 2. Since the equal-overlap
parameter b assumes continuous values in the interval
(1/16, 1/12], we have constructed a continuous family of
equioverlapping measurements. In particular, when b = 1/12,
we come to a SIC-POVM. For any other b, the equioverlap-
ping measurement E is not a SIC-POVM since trE1 = trE2 �=
trE3 = trE4.

Example 2. Consider a qutrit system C3 (thus, d = 3) with
the measurement E = {Eα = tα|ψα〉〈ψα| : α = 1, 2, . . . , 7}.
Here

|ψ1〉 = 1√
2

(|0〉 + e2π i/3|1〉),

|ψ2〉 = 1√
2

(|1〉 + e2π i/3|2〉),

|ψ3〉 = 1√
2

(|2〉 + e2π i/3|0〉),

|ψ4〉 = 1√
2

(|0〉 + e−2π i/3|1〉),

|ψ5〉 = 1√
2

(|1〉 + e−2π i/3|2〉),

|ψ6〉 = 1√
2

(|2〉 + e−2π i/3|0〉),

|ψ7〉 = 1√
3

(|0〉 + |1〉 + |2〉),

and

tα = trEα =
{

2
5 , α = 1, 2, 3, 4, 5, 6,

3
5 , α = 7.

It can be straightforwardly checked that

7∑
α=1

Eα = 13, tr(EαEβ ) = 1

25
, α �= β,

which shows that E is an equioverlapping measurement in
C3. It is worth noting that |ψ1〉, . . . , |ψ6〉 are derived from
a set of vectors associated with a SIC-POVM in C3, while
|ψ7〉 represents the average of the three remaining SIC-POVM
vectors. Angles between any two vectors from {|ψα〉 : α =
1, 2, . . . , 7} take only two distinct values since

|〈ψα|ψβ〉|2 = 1
4 , α �= β ∈ {1, 2, . . . , 6},

|〈ψα|ψ7〉|2 = 1
6 , α ∈ {1, 2, . . . , 6}.

Thus, this equioverlapping measurement E is not a SIC-
POVM but a biangular measurement.

Example 3. Considering the equioverlapping measurement
E in Example 2 and following Proposition 4, we now con-
struct a complementary measurement E ′ in C4 (noting that
7 − 3 = 4) as follows. By the proof of Proposition 4 in
Appendix D, we first construct the 3 × 7 matrix

X = (
√

t1|ψ1〉, . . . ,
√

t7|ψ7〉)

=

⎛
⎜⎜⎝

1√
5

0 eiθ√
5

1√
5

0 e2iθ√
5

1√
5

eiθ√
5

1√
5

0 e2iθ√
5

1√
5

0 1√
5

0 eiθ√
5

1√
5

0 e2iθ√
5

1√
5

1√
5

⎞
⎟⎟⎠,

which can be complemented to the 7 × 7 unitary matrix

A =
(

X
X ′

)
,

with

X ′=

⎛
⎜⎜⎜⎜⎜⎝

1√
6

eiθ√
6

0 e2iθ√
6

1√
6

−eiθ√
6

−1√
6

1√
10

eiθ√
10

0 −√
3ie2iθ√
10

√
3i√
10

eiθ√
10

1√
10

−√
3i√

10
e2iθ√

10

√
3ieiθ√
10

e2iθ√
10

0 1√
10

1√
10

1√
30

√
7ei(θ+ϕ)√

30

√
3eiθ√
10

e2iθ√
30

−2√
30

−√
7ei(θ−ϕ)√

30
−1√

30

⎞
⎟⎟⎟⎟⎟⎠,

where θ = 2π i/3 and eiϕ = −(1 + 3
√

3i)/2
√

7. Now by the
proof of Proposition 4, a complementary equioverlapping
measurement in C4 can be constructed as

E ′ = {E ′
α = t ′

α|ψ ′
α〉〈ψ ′

α| : α = 1, 2, . . . , 7},
where

|ψ ′
1〉 =

√
10

6
|0〉 + 1√

6
|1〉 − i√

2
|2〉 +

√
2

6
|3〉,

|ψ ′
2〉 =

√
10

6
|0〉 + 1√

6
|1〉 + 1√

6
eiθ |2〉 +

√
14

6
eiϕ |3〉,

|ψ ′
3〉 = 1√

2
|2〉 − i√

2
|3〉,
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|ψ ′
4〉 =

√
10

6
|0〉 − i√

2
|1〉 + 1√

6
|2〉 +

√
2

6
|3〉,

|ψ ′
5〉 =

√
10

6
|0〉 + i√

2
|1〉 −

√
2

3
|3〉,

|ψ ′
6〉 =

√
10

6
|0〉 − 1√

6
|1〉 − 1√

6
e−iθ |2〉 +

√
14

6
e−iϕ |3〉,

|ψ ′
7〉 =

√
15

6
|0〉 − 1

2
|1〉 − 1

2
|2〉 +

√
3

6
|3〉,

and

t ′
α = trE ′

α =
{

3
5 , α = 1, 2, 3, 4, 5, 6,

2
5 , α = 7.

It can be straightforwardly checked that

7∑
α=1

E ′
α = 14,

tr(E ′
αE ′

β ) = 1

25
, α �= β,

which show that the complementary measurement E ′ is, in-
deed, an equioverlapping measurement in C4. The angles
between any two measurement operators take two distinct
values,

|〈ψ ′
α|ψ ′

β〉|2 = 1
9 , α �= β ∈ {1, 2, . . . , 6},

|〈ψ ′
α|ψ ′

7〉|2 = 1
6 , α ∈ {1, 2, . . . , 6}.

Thus, this equioverlapping measurement E ′ is a biangular
measurement.

V. SUMMARY

In this work, we have made a careful comparison be-
tween various measurements with some special structures:
SIC-POVMs, equiangular measurements, and equioverlap-
ping measurements. We have proved several basic properties
of equioverlapping measurements, which set a variety of con-
straints for the parameters in the measurements. We have
shown how equioverlapping measurements generalize both
equiangular tight frames and SIC-POVMs and have illus-
trated these notions through some explicit examples in lower
dimensions. We have discussed methods for deriving new
equioverlapping measurements from established ones and
have presented examples of equioverlapping measurements
going beyond SIC-POVMs.

These results may be useful in further investigations of
equioverlapping measurements.

The following questions arise naturally in this context:
(1) For which size m (number of measurement operators)

does a nontrivial equioverlapping measurement exist?
(2) How to classify and construct equioverlapping mea-

surements in a general dimension?
(3) What is the use of equioverlapping measurements?
Question 1 is closely related to Zauner’s conjecture on

the existence of SIC-POVMs. Since this conjecture is widely
believed to be true and SIC-POVMs are special cases of

equioverlapping measurements, and moreover since equian-
gular measurements with m = d + 1 always exist, we tend to
believe that some other non-trivial equioverlapping measure-
ments exist in every dimension. Even if Zauner’s conjecture
is not true, it is still possible that nontrivial equioverlapping
measurements exist in the absence of a SIC-POVM, and work
on equioverlapping measurements may help clarify certain
aspects of Zauner’s conjecture.

Question 2 is of basic importance and considerable sig-
nificance since equioverlapping measurements are natural
extensions of SIC-POVMs, and SIC-POVMs, apart from their
own intrinsic interest, have found many applications [11–23].
However, even for qutrit systems (i.e., dimension d = 3), the
issues of classifying and constructing equioverlapping mea-
surements are rather complicated, and we still do not have a
complete classification of all equioverlapping measurements
in C3, although we have constructed some families, which
will be fully treated in a separate work.

Question 3 is worthy of further investigation because
equioverlapping measurements capture overlaps (cross corre-
lations) between measurement operators and generalize the
notion of SIC-POVMs, which have been extensively and in-
tensively investigated. Due to their intrinsic nature related to
Born’s rule and close connections to SIC-POVMs, we expect
equioverlapping measurements may shed new light on SIC-
POVMs and may play an interesting and useful role in the
theory of quantum measurements.
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APPENDIX A: PROOF OF PROPOSITION 1

Here we present a detailed proof of Propositions 1. For
item 1, noting that there are at most d mutually orthogonal
vectors in Cd , if b = 0 (orthogonality), then we conclude
that m = d . Conversely, if m = d , then from Eq. (3) we have
−d = (2k − d )

√
1 − 4(d − 1)b, which is equivalent to

2k
√

1 − 4(d − 1)b = d[
√

1 − 4(d − 1)b − 1].

Since, obviously, the above left-hand side � 0 while the above
right-hand side � 0,

0 = 2k
√

1 − 4(d − 1)b = d[
√

1 − 4(d − 1)b − 1] = 0,

which implies that b = 0 and k = 0. In this case, the measure-
ment E reduces to a von Neumann measurement.

For item 2, it follows from Eqs. (1) and (2) that t− � t+.

Furthermore, t− = t+ if and only if
√

1 − 4(m − 1)b = 0.

This, combined with Eq. (3), means that k = m = 2d. We now
proceed to establish b � t2

−. For this purpose, we consider the
following two cases.

(1) m = d . In this case, from item 1, we have b = t− = 0.

(2) m > d . We consider the subcases k � 1 and k > 1
separately.
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When k � 1, we have 2k − m �= 0 since d � 2. By Eqs. (1)
and (3), we have

b = (d − k)(m − k − d )

(m − 1)(m − 2k)2
, t− = m − k − d

m − 2k
.

Since b > 0 and k � 1, we obtain m − k − d � 1. It follows
that

t2
− − b =

(
m − k − d

m − 2k

)2(
1 − d − k

(m − 1)(m − k − d )

)

=
(

m − k − d

m − 2k

)2 m2 − mk − md − m + 2k

(m − 1)(m − k − d )

=
(

m − k − d

m − 2k

)2 m(m − k − d − 1) + 2k

(m − 1)(m − k − d )

� 0.

The last inequality becomes an equality if and only if m − k −
d − 1 = 0 and k = 0; thus, m = d + 1.

When k > 1, there are at least two different measurement
operators, say, E1 and E2, such that trE1 = trE2 = t− and
tr(E1E2) = b. Noting that tr(E2

1 ) = tr(E2
2 ) = t2

− and by the
Cauchy-Schwarz inequality, we have

b = tr(E1E2) �
√

tr
(
E2

1

)√
tr
(
E2

2

) = t−t− = t2
−.

Here the equality holds if and only if a number r exists such
that E1 = rE2. But from trE1 = trE2 we conclude that r = 1
and thus E1 = E2. However E1 �= E2, and consequently, the
above inequality is strict, i.e., b < t2

−.

For item 3, since 0 < b � t2
−, substituting Eq. (1) into the

above inequality and after straightforward manipulation, we
come to 1/m2 � b. The lower bound 1/m2 is reached if and
only if m = d + 1.

The inequality b � 1/4(m − 1) comes from

tα = trEα =
m∑

β=1

tr(EαEβ ) = t2
α + (m − 1)b

and the fact that tα = trEα � 0 are real numbers. Furthermore,
b = 1/4(m − 1) if and only if t− = t+, that is, m = 2d in view
of Eq. (3).

APPENDIX B: PROOF OF PROPOSITION 2

We proceed to prove that E1, E2, . . . , Em are linearly in-
dependent in the real d2-dimensional space of operators
(matrices) acting on Cd , and thus, m � d2.

First, if E is an equiangular measurement, i.e., k = 0 or
m, then from the result concerning equiangular lines we have
m � d2 [25].

If 0 < k < m, then from Proposition 1 we have

t2
+ > t2

− > b.

Assume that there exist m real numbers cα such that

m∑
α=1

cαEα = 0; (B1)

we need to prove that all cα are zero, and thus, E1, E2, . . . , Em

are linearly independent. By Eq. (B1),

0 = tr

(
m∑

α=1

cαEαEβ

)
=

(
m∑

α=1

cα

)
b + cβ (t2

− − b)

for any β = 1, 2, . . . , k. This implies that

cβ =
(∑m

α=1 cα

)
b

b − t2−
(B2)

is a constant independent of β, which will be denoted by c−.
Similarly,

cγ =
( ∑m

α=1 cα

)
b

b − t2+
, γ = k + 1, k + 2, . . . , m

is also a constant independent of γ , which will be denoted by
c+. From

0 = tr

(
m∑

α=1

cαEα

)
=

(
k∑

α=1

cα

)
(t− − t+) +

(
m∑

α=1

cα

)
t+,

we have

c− =
( ∑m

α=1 cα

)
t+

k(t+ − t−)
. (B3)

Comparing Eqs. (B2) and (B3) (noting that cβ = c−), we have( ∑m
α=1 cα

)
b

b − t2−
= (

∑m
α=1 cα )t+

k(t+ − t−)
,

which implies that either
∑m

α=1 cα = 0 or

b

b − t2−
= t+

k(t+ − t−)
.

In the latter case, the left-hand side of the equation is less than
zero while the right-hand side is greater than zero, which is
a contradiction. Therefore,

∑m
α=1 cα must be equal to zero,

which means

c− =
(∑m

α=1 cα

)
b

b − t2−
= 0, c+ =

( ∑m
α=1 cα

)
b

b − t2+
= 0.

It follows that all cα are zero. Consequently, E1, E2, . . . , Em

are linearly independent, which implies that m � d2.

APPENDIX C: PROOF OF PROPOSITION 3

For item 1, if m �= 2d, then from Eq. (3), we have

b = (k − d )(k + d − m)

(m − 1)(m − 2k)2
,

which shows that b can take only discrete values.
According to Proposition 1, m = d if and only if b = 0.

Since b = 0, by Eq. (3), we obtain k = 0.
When m > d , based on the above conclusion, the value of

b is necessarily greater than zero, which implies that

(k − d )(k + d − m) > 0. (C1)

In addition, Eq. (3) implies that

(m − 2d )(2k − m) > 0 (C2)
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unless m = 2d . When d < m < 2d , k must be less than m/2,
i.e., k < m/2 < d . Then inequality (C1) implies that k < m −
d since k < d . Similarly, when m > 2d , from inequalities
(C1) and (C2) we have k > m/2 > d and k > m − d . The
upper bound k � m is evident.

For item 2, the situation is quite different when m = 2d,

which implies that the left-hand side of Eq. (3) is zero. In
this case, either 1 − 4(m − 1)b = 0, or 2k − m = 0. When
b = 1/4(m − 1) = 1/4(2d − 1), t− and t+ degenerate to the
same value, 1/2, which means all trEα are the same. Mean-
while, if 1 − 4(m − 1)b > 0, then m − 2k = 0, i.e., m = 2k.

In this case, b can take continuous values in the interval
(1/4d2, 1/4(2d − 1)]. Notice that the case with b = 1/4d2 is
excluded since Eα are distinct for different α.

APPENDIX D: PROOF OF PROPOSITION 4

Let

X = (
√

t1|ψ1〉, . . . ,
√

tm|ψm〉) ∈ Md×m(C).

From
∑m

α=1 Eα = 1d , we have

XX † =
m∑

α=1

tα|ψα〉〈ψα| = 1d ∈ Md×d (C),

which means that the rows of X can be viewed as d mutually
orthogonal unit vectors in Cm (considered as a complex vector
space of row vectors). When m > d + 1, it is always possible
to add m − d (� 2) unit vectors, typically through methods
such as the Gram-Schmidt orthogonalization process, such
that they form an orthonormal basis of Cm. That is, X can
be dilated to an m × m unitary matrix

A =
(√

t1|ψ1〉 · · · √
tm|ψm〉√

t ′
1|ψ ′

1〉 · · · √
t ′
m|ψ ′

m〉
)

∈ Mm×m(C),

with |ψ ′
1〉, . . . , |ψ ′

m〉 being unit vectors in ∈ Cm−d . Since A is
unitary, we find that

AA† =
( ∑m

α=1 tα|ψα〉〈ψα| ∑m
α=1

√
tαt ′

α|ψα〉〈ψ ′
α|∑m

α=1

√
tαt ′

α|ψ ′
α〉〈ψα| ∑m

α=1 t ′
α|ψ ′

α〉〈ψ ′
α|

)

= 1m ∈ Mm×m(C).

Because
m∑

α=1

tα|ψα〉〈ψα| =
m∑

α=1

Eα = 1d ,

we have
m∑

α=1

t ′
α|ψ ′

α〉〈ψ ′
α| = 1m−d .

Therefore, we can construct a POVM E ′ = {E ′
α =

t ′
α|ψ ′

α〉〈ψ ′
α| : α = 1, 2, . . . , m} in Cm−d , with m − d � 2.

Furthermore, from A†A = 1m ∈ Mm×m(C), we have

tα〈ψα|ψα〉 + t ′
α〈ψ ′

α|ψ ′
α〉 = 1, α = 1, 2, . . . , m, (D1)√

tαtβ〈ψα|ψβ〉 +
√

t ′
αt ′

β〈ψ ′
α|ψ ′

β〉 = 0, α �= β. (D2)

From Eq. (D2), we know that

tr(E ′
αE ′

β ) = t ′
αt ′

β |〈ψ ′
α|ψ ′

β〉|2

= tαtβ |〈ψα|ψβ〉|2
= tr(EαEβ ) = b

is a constant independent of α �= β. Consequently, E ′ is
an equioverlapping measurement in Cm−d with m elements.
Moreover, from Eq. (D1), we find that

trE ′
α = t ′

α = 1 − tα = 1 − trEα, α = 1, 2, . . . , m,

which implies that if trEα = t− (t+), then trE ′
α = 1 − t−(t+) =

t+ (t−). Because there are m − k measurement operators in E
with trace t+, we have #{α : E ′

α = t−} = m − k.

APPENDIX E: PROOF OF PROPOSITION 5

By Proposition 4, we can construct an equioverlapping
measurement E ′ in Cm−d with m elements. Now from Propo-
sition 2, it is necessary that m � (m − d )2.

If m = d + r, then from inequality (5), we have

m � (m − d )2 = r2;

thus, d + r � r2, i.e., d � r(r − 1). Consequently, for d >

r(r − 1), an equioverlapping measurement in Cd with m =
d + r measurement operators does not exist.

APPENDIX F: PROOF OF PROPOSITION 6

First, it is clear that if E and F are von Neumann measure-
ments in Cd and Cd ′

, respectively, then E ⊗ F is also a von
Neumann measurement in Cdd ′

and thus is an equioverlapping
measurement.

Conversely, if E ⊗ F is an equioverlapping measurement,
we need to show that b = b′ = 0, which implies that both E
and F are von Neumann measurements. To prove this, we
compute

tr(Eα ⊗ Fμ)(Eβ ⊗ Fν ) =

⎧⎪⎨
⎪⎩

bb′, α �= β,μ �= ν,

b(t ′
μ)2, α �= β,μ = ν,

t2
αb′, α = β,μ �= ν,

(F1)

where tα = trEα and t ′
μ = trFμ. If E ⊗ F is an equioverlap-

ping measurement, then from Eq. (F1) we have

bb′ = b(t ′
μ)2 = t2

αb′, ∀ α,μ.

If b′ �= 0, then t2
α = b is a constant independent of α, which

implies that E is an equiangular measurement. But such an
equiangular measurement does not exist in view of Lemma 1
(noting that any equiangular measurement is an equioverlap-
ping measurement). Consequently, b′ = 0, which implies that
F is a von Neumann measurement. Similarly, b = 0, and E is
a von Neumann measurement.
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