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Bell diagonal states constitute a well-studied family of bipartite quantum states that arise naturally in various
contexts in quantum information. In this paper we generalize the notion of Bell diagonal states to the case of
unequal local dimensions and investigate their entanglement properties. We extend the family of entanglement
criteria of Sarbicki et al. [Phys. Rev. A 101, 012341 (2020)] to non-Hermitian operator bases to construct
entanglement witnesses for the class of generalized Bell diagonal states. We then show how to optimize the
witnesses with respect to noise robustness. Finally, we construct bound entangled states that are detected by
these witnesses, but not by the usual computable cross norm or realignment and de Vicente criteria.

DOI: 10.1103/PhysRevA.109.012217

I. INTRODUCTION

In bipartite quantum systems, Bell diagonal states (BDSs)
constitute an important class of states which occur naturally
in studies of nonlocality and entanglement theory [1,2]. They
are characterized by the fact that they are diagonal in the
Bell basis, i.e., the basis obtained by certain local unitary
rotations of maximally entangled bipartite states. The class
contains both the maximally mixed state, as well as maxi-
mally entangled states. Moreover, it contains bound entangled
states, which are states that exhibit entanglement, but cannot
be distilled to pure Bell pairs [3]. As such, the class of these
states is a popular playground to gain insight in the structure
of states and entanglement in high dimensional systems. What
is more, these states are relevant in the context of quantum key
distribution, as in certain protocols the shared states between
the two parties can be assumed to be Bell diagonal, thereby
simplifying the analysis of security [4].

There exist several generalizations of the class of Bell
diagonal states, most of which extend the usual Bell diagonal
states to the case of multiqubit systems [5–8]. In Ref. [9], the
authors extend the notion to the multiqudit scenario. All of
these generalizations have in common that they range only
over composite systems of equal local dimension.

However, there exist several physical systems where this
assumption is not met, e.g., for photons interacting with ions
[10], or systems using photonic polarization and time of ar-
rival degrees of freedom [11]. This indicates that it is useful to
extend the definition of Bell diagonal states to the case where
the local Hilbert space dimensions do not coincide. In this
paper, we propose such an extension in the bipartite case and
analyze their entanglement features.

Entanglement is an important resource for imminent ap-
plications of quantum technology, as its presence guarantees
genuine quantum correlations between several systems. How-
ever, its efficient and reliable detection remains a hard
challenge, particularly for quantum systems of large dimen-
sions, as the decision problem of whether a given state is

entangled or not is known to be NP-hard [12,13]. This remains
true for the subclass of Bell diagonal states, despite recent
progress [14].

Nevertheless, many different criteria are known which
are sufficient for the presence of entanglement. An easily
applicable criterion for entanglement arises from so-called en-
tanglement witnesses, which are observables on the composite
Hilbert space that yield non-negative expectation values for all
separable states, and strictly negative expectation values for
some entangled states [15]. The existence of such linear op-
erators is guaranteed by the Hahn-Banach theorem as the set
of separable density operators is a convex subset of all density
operators. Naturally, the following questions arise: Given an
entangled density operator, how do we construct an entangle-
ment witness that is capable of detecting its entanglement? And
out of these witnesses, which one is suited best? Generally,
these two questions are difficult to answer. However, in this
paper, we restrict our attention to entangled states that can
be detected using a powerful criterion derived by Sarbicki,
Scala, and Chruściński (SSC) [16]. Their criterion allows
for the construction of entanglement witnesses, but assumes
Hermitian operator bases. We will refer to said criterion and
witnesses as SSC bound and SSC witnesses, respectively. As
the generalized Bell diagonal states are naturally expressed
in terms of a non-Hermitian operator basis, we generalize the
SSC construction to allow for arbitrary orthonormal operator
bases of the local Hilbert spaces. Finally, we show how to
optimize over the class of arising SSC witnesses. While our
results on the witnesses are universally applicable, we focus
on their use in the case of generalized Bell diagonal states.

This paper is organized as follows. In Sec. II, we introduce
the family of generalized BDSs. As these states are naturally
defined in a non-Hermitian operator basis, we generalize in
Sec. IV the entanglement criterion of Ref. [16] to the case of
non-Hermitian bases. We then reduce the optimization pro-
cess required to derive entanglement witnesses to a singular
value decomposition and isolate optimal choices of parame-
ters of the criterion by relating it to the white noise robustness
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of entanglement detection. In Sec. V we explicitly investigate
the criterion for the introduced class of generalized BDSs and
show that there exist detectable Bell diagonal states of unequal
dimension which are bound entangled, but are detected by nei-
ther the usual computable cross norm or realignment (CCNR)
criterion [17,18], nor the de Vicente criterion [19,20].

II. BELL DIAGONAL STATES OF UNEQUAL
LOCAL DIMENSIONS

Let H = HA ⊗ HB be a bipartite Hilbert space with local
dimensions dA and dB, respectively. Without loss of generality,
we assume dA � dB. Throughout this paper, we denote by S ∈
{A, B} the subsystem of interest.

We would like to construct generalized Bell mixtures act-
ing on a bipartite Hilbert space where generally, dA �= dB. To
do so, we fix an orthonormal basis {|i〉S}dS−1

i=0 on each local
space HS . This allows us to define the unitary shift operator

XS : HS → HS, |i〉S �→ |i ⊕ 1〉S , (1)

where ⊕ denotes addition modulo dS , as well as the unitary
clock operator

ZS : HS → HS, |i〉S �→ ωi
S |i〉S , (2)

where ωS = exp(2π i/dS ) is the corresponding root of unity
for subsystem S. Both of the above definitions are extended to
all of HS via linearity. Note that for each subsystem S, the
operators {X α

S Zβ
S }dS−1

α,β=0 form the so-called Heisenberg-Weyl
basis of linear operators acting on S [21]. In particular, they
obey

Tr
[(

X α
S Zβ

S

)†
X μ

S Zν
S

] = dSδαμδβν, (3)

i.e., they are pairwise orthogonal with respect to the Hilbert-
Schmidt inner product. Note that this also implies that for
(α, β ) �= (0, 0), the operator X α

S Zβ
S is traceless. Here and in

the following, the exponents of the clock and shift operators
may be interpreted modulo dS as X dS

S = ZdS
S = 11S .

We now construct a class of quantum states that exhibit
particularly nice symmetry properties. To do so, we define the
generalized Bell state

|φ00〉 := 1√
dA

dA−1∑
i=0

|i〉A ⊗ |i〉B , (4)

and extend it to a basis of the bipartite Hilbert space via

|φαβ〉 := (
Zα

A ⊗ X β
B

) |φ00〉 . (5)

In the following, we will omit the index denoting the sub-
system, as the position of the operators and vectors leaves
no ambiguity. One can verify that the |φαβ〉 are all pairwise
orthogonal. For a given probability distribution {pαβ}, i.e.,
pαβ � 0 and

∑
α,β pαβ = 1, we denote by P the dA × dB

matrix with entries pαβ , i.e.,

P =

⎛
⎜⎝

p00 . . . p0,dB−1
...

...

pdA−1,0 . . . pdA−1,dB−1

⎞
⎟⎠, (6)

FIG. 1. Graphical representations of the entries of the probability
matrices PW (q) of the Bell diagonal Werner states from Eqs. (8) and
(9) for (a) ρW (0), (b) ρW ( 1

3 ), (c) ρW ( 2
3 ), and (d) ρW (1).

and define

ρP :=
dA−1∑
α=0

dB−1∑
β=0

pαβ |φαβ〉〈φαβ | . (7)

These density operators are diagonal in the generalized Bell
basis |φαβ〉; hence, we will call them Bell diagonal states.

A simple example for Bell diagonal states in 2×2 dimen-
sions is the family of Werner states [22], given by

ρW (q) = q

3
(|φ00〉〈φ00| + |φ01〉〈φ01| + |φ10〉〈φ10|)

+ (1 − q) |φ11〉〈φ11| , (8)

where q ∈ [0, 1]. The probability matrix of such a state ρW (q)
thus reads

PW (q) =
( q

3
q
3

q
3 1 − q

)
. (9)

In Fig. 1, we show a graphical grid representation of the prob-
ability matrices of the Werner states ρW (0), ρW ( 1

3 ), ρW ( 2
3 ),

and ρW (1).
Using Eq. (3), a BDS can be decomposed in the

Heisenberg-Weyl basis as

ρP = 1

dAdB

dA−1∑
κ,μ=0

dB−1∑
ν=0

sκνλμνX μZκ ⊗ X μZ−ν, (10)

where the sκν are given by

sκν = 1

dA

dA−1∑
j=0

(
ωκ

Aω−ν
B

) j
(11)

and the λμν are the Fourier-transformed probabilities

λμν =
dA−1∑
α=0

dB−1∑
β=0

pαβω
α·μ
A ω

β·ν
B . (12)

We denote by � the matrix with entries λμν . We will later
connect the latter to properties of the state.

Conversely, given the coefficients λμν , the probabilities
pαβ can be obtained by means of the inverse Fourier trans-
form, i.e.,

pαβ = 1

dAdB

dA−1∑
μ=0

dB−1∑
ν=0

λμνω
−α·μ
A ω

−β·ν
B . (13)
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As an example, consider the state ρP = |φ00〉〈φ00|, i.e.,
p00 = 1. Its Fourier coefficients are given by λμν = 1 for all
μ and ν. As it turns out, this Fourier picture yields insight into
the entanglement properties of the BDS.

Whether a given Fourier matrix � yields a proper prob-
ability distribution, i.e., 0 � pαβ � 1 and

∑
αβ pαβ = 1, is

cumbersome to check without actually performing the trans-
formation. Apart from the trivial conditions λ00 = 1 from
normalization and λμν = λ∗

−μ,−ν due to reality of the prob-
abilities (note that indices are taken modulo dA and dB,
respectively, and z∗ denotes the complex conjugate of z), a set
of necessary conditions is given by the Herglotz-Bochner the-
orem [23,24] that yields conditions on the Fourier coefficients
for the probabilities to be positive. In particular, it implies that
the r×r-dimensional Toeplitz matrices T (r)

( fA, fB ) with entries

[
T (r)

( fA, fB )

]
μν

= λ(μ−ν) fA,(μ−ν) fB (14)

need to be positive semidefinite for all 0 � fA � dA − 1, 0 �
fB � dB − 1, and r � 1. As an example, the Toeplitz matrices
of size 2×2 yield the conditions |λμν |2 � |λ00|2 = 1 for all μ

and ν.
If we define a modified clock operator via its action on the

computational basis vectors

Z̃ : HA → HA, |i〉A �→ ωi
B |i〉A (15)

(note that we multiply vectors from HA by powers of ωB), as
well as the operators

T (μ, ν) = X μZ̃ν ⊗ X μZ−ν (16)

acting on the bipartite Hilbert space, the BDS given by (10)
becomes diagonal:

ρP = 1

dAdB

dA−1∑
μ=0

dB−1∑
ν=0

λμνT (μ, ν). (17)

Note however that for dA �= dB, this is not a proper operator
Schmidt decomposition of the state because {X μZ̃ν} is an
overcomplete generating set of linear operators acting on HA.

For the case of equal dimensions dA = dB =: d , the oper-
ators Z̃ and Z are identical, and therefore, the state has the
particularly nice form

ρP = 1

d2

∑
μ,ν

λμνX μZν ⊗ X μZ−ν . (18)

Thus, one obtains the usual definition of Bell diagonal states
(up to relabeling), as found, e.g., in Ref. [25].

For dA = dB, it is known that there exist nonentangling
quantum channels that reduce arbitrary bipartite states to Bell
diagonal ones [26]. If one can detect entanglement in the
resulting BDS, then the original state must already have been
entangled. We will now show that a similar result also holds
if dA < dB. To that end, observe that pairwise tensor products
of the Heisenberg-Weyl operators together with the T (μ, ν)
and ωα

Aω
β
B11 ⊗ 11 generate a finite group G under composition

(multiplication). We denote by Adg(h) := ghg−1, g, h ∈ G the
adjoint inner group automorphism, and extend it to linear
combinations of group elements via linearity in h. For every
q ∈ [0, 1], we define a map on End(H) (i.e., the space of linear

operators acting on H = HA ⊗ HB):


q : End(H) → End(H),

ρ �→ (1 − q)ρ + q

dAdB

dA−1∑
μ=0

dB−1∑
ν=0

AdT (μ,ν)(ρ). (19)

Note that these maps are trace preserving and positive (i.e.,
they map positive operators to positive operators). They can
be used to convert quantum states into their Bell diagonal
contribution:

Proposition 1. For all linear operators ρ on the bipartite
Hilbert space and for all q ∈ [0, 1], it holds that


q(ρ) =(1 − q)ρ + q
dA−1∑
α=0

dB−1∑
β=0

〈φαβ |ρ|φαβ〉 |φαβ〉 〈φαβ | .

(20)

Restricting the domain of the maps 
q to density operators
gives rise to a family of nonentangling quantum channels. For
q = 1, this channel projects each state onto the set of Bell
diagonal states.

Proof. To verify the equality, expand ρ in the Heisenberg-
Weyl basis and use the identities

Zν
S X μ

S = ω
μ·ν
S X μ

S Zν
S , Z̃νX μ

A = ω
μ·ν
B X μ

A Z̃ν . (21)

Positivity and trace preservation follow directly from the def-
inition of the 
q; hence, by restricting the domain to density
operators, we can view them as quantum channels. In doing
so, one sees that the 
q are nonentangling because they are
convex combinations of local unitaries [see (19)]. By (20), it
is clear that for q = 1, only the Bell diagonal part remains.

Hence, if we use this channel with q = 1 for a quantum
state, and detect entanglement in the resulting state, we know
that the original state must have been entangled. Therefore,
the channel can be used to characterize entanglement of arbi-
trary states.

To see the dephasing channel in action, consider the 2×3
maximally entangled |φ00〉 and construct the one-parameter
family of states

|φθ 〉 = Zθ ⊗ 11|φ00〉 = |00〉 + eiθπ |11〉, (22)

where 0 � θ � 1. Applying the channel 
1 yields


1(|φθ 〉〈φθ |) = cos2(θπ/2)|φ00〉〈φ00|
+ sin2(θπ/2)|φ10〉〈φ10|, (23)

which is also entangled whenever θ �= 1/2, as can be verified
with the CCNR or the positive partial transpose (PPT) cri-
terion. It follows that for θ �= 1/2, the |ψθ 〉 must have been
entangled.

For dA = dB = d , the Fourier picture allows us to obtain
a simple sufficient entanglement test based on the CCNR
criterion [17,18]: As the operators {X μZν} form an orthogonal
operator basis, Eq. (18) constitutes a proper operator Schmidt
decomposition, after one absorbs the phases of the λμν into
one of the bases. This means that ρP is entangled if its CCNR
value exceeds d [17,18], i.e.,

CCNR(ρP ) :=
d−1∑

μ,ν=0

|λμν | > d. (24)
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III. CONSTRUCTING BOUND ENTANGLED BELL
DIAGONAL STATES

A particularly interesting class of quantum states is that
of bound entangled ones. These states cannot be used to
distill highly entangled states by means of local operations
and classical communication [3]. Hence, these states are usu-
ally weakly entangled and their entanglement is notoriously
difficult to detect. To benchmark the employed entanglement
criteria, we will construct examples of Bell diagonal bound
entangled states. To that end, we make use of the fact that
entangled states that are not detected by the PPT criterion are
bound entangled [3]. Remember that the PPT criterion states
that for separable states σ , σ TA := (T ⊗ 11)(σ ) � 0, where
T denotes the transposition map in the computational basis
[27,28].

In terms of Eq. (18), the partial transposition maps the op-
erator on system A from X μZν to ω−μ·νX −μZν . The positivity
of the resulting state is generally hard to check.

We start our constructions by considering the case where
dA = dB = d , and return to the case of unequal local dimen-
sions afterwards. To ensure that the constructed states are
indeed entangled, we make use of the CCNR criterion dis-
cussed in (24). Constructing ρP such that ρTA

P � 0 is not trivial,
which is why one usually uses tricks to ensure it [29–31].
Here, we use two different methods to construct states with
an inherently positive partial transpose. First, we demand that
the partial transpose is a multiple of a projector, i.e., (ρTA

P )2 ∝
ρ

TA
P , implying positivity. Second, we construct ρP such that

ρP = ρ
TA
P , similarly to the approach in Ref. [29].

A. States with partial transpose being proportional
to a projector

Our first approach demands that (ρTA
P )2 ∝ ρ

TA
P . To simplify

things, we restrict ourselves to a specific subfamily of Bell di-
agonal states, which we call dichotomous Bell diagonal states.
These are states where each Bell state is either nonpresent or
comes with the same, fixed probability. Such states can be
characterized uniquely by the set S = {(α, β ) : pαβ �= 0}. In
particular, it holds for the probabilities

pαβ ∈
{

0,
1

|S|
}
. (25)

Writing these states as

ρS := 1

|S|
∑

(α,β )∈S
|φαβ〉〈φαβ | (26)

and demanding (ρTA
S )2 ∝ ρ

TA
S yields after a lengthy but

straightforward calculation∑
(α,β )∈S
(μ,ν)∈S̄

ω(α,β )∧(μ,ν)X μ−αZν−β ⊗ (X μ−αZν−β )† = 0, (27)

where S̄ denotes the complement of S and (α, β ) ∧ (μ, ν) =
αν − βμ denotes the standard symplectic form. Note that
this equation yields one condition for each fixed displacement
� = (μ, ν) − (α, β ), with subtraction (and addition) defined
componentwise. Graphically, this condition can be read as

follows. Draw a grid of size d×d and color the cells corre-
sponding to points in S . For each displacement �, check all
colored cells (α, β ) on the grid, such that the displacement
links a colored to a noncolored cell (μ, ν) = (α, β ) + � (note
that all operations are again taken modulo d). For each such
colored cell (α, β ), calculate the phase ω(α,β )∧�. The condi-
tion in Eq. (27) now states that for all displacements �, the
sum of the phases of the admissible cells must vanish.

We visualize this procedure by the following example
in d = 3. We choose S = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2)},
which would correspond to the Bell diagonal state ρP given by
probabilities

P = 1

5

⎛
⎝1 0 0

0 1 1
0 1 1

⎞
⎠. (28)

This can be equivalently visualized by the grid displayed in
Fig. 2(a).

Now, consider the displacement � = (1, 1). It links S
to S̄ only at places (1,2) and (2,1) with correspond-
ing phases ω(1,2)∧(1,1) = ω−1 and ω(2,1)∧(1,1) = ω. Thus, the
corresponding state does not have the projector property.
In contrast, consider the state defined by choosing S =
{(0, 0), (1, 1), (2, 2)}, displayed in Fig. 2(b). Here, choosing
for example � = (0, 1) links all three points in S to S̄ ,
with sum of phases ω(0,0)∧(0,1) + ω(1,1)∧(0,1) + ω(2,2)∧(0,1) =
1 + ω + ω2 = 0. The same applies to all other � apart from
� = (1, 1) and (2, 2), which link no point at all from S to S̄ ,
and are therefore trivially fulfilled.

While this last example does have a projectorlike partial
transpose, it is not detected as entangled by the CCNR cri-
terion: It reaches a CCNR value of CCNR(ρS ) = 3. In fact,
by exhaustively checking all dichotomous states with d = 3,
we can say that there are no dichotomous Bell diagonal states
with entanglement detected by CCNR. However, in d = 4,
we can find (up to symmetries) exactly one solution that is
detected. It is displayed in Fig. 2(c) with its probability matrix
given by

P = 1

6

⎛
⎜⎜⎝

1 0 0 0
0 1 1 1
0 0 1 0
0 0 1 0

⎞
⎟⎟⎠. (29)

This state is very similar to the bound entangled state con-
structed in Ref. [32].1 It has a CCNR value of 6 > d = 4.
Numerical search indicates that this is the largest violation
any (even nondichotomous) Bell diagonal state with positive
partial transpose exposes in this dimension. Furthermore, it
has additional nice properties: For each displacement � �=
(0, 0), exactly four points in S are linked to points in S̄ . This
motivates us to search for such homogeneous solutions, which
we capture in the following definition.

Definition 1. A dichotomous Bell diagonal state ρS as
defined in Eq. (26) is called k-displacement homogeneous if

1While we could not find local unitary transformations to transform
the states into another, we could not find a local unitary invariant
which differs.
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FIG. 2. Grid representation of some of the dichotomous BDSs
considered in the text. Displayed are (a) a 3×3 dimensional BDS that
does not fulfill the phase condition from Eq. (27) for guaranteeing
PPT; (b) a state which does fulfill the phase condition, and thus is
PPT but not entangled; (c) the unique dichotomous 4×4 dimensional
Bell diagonal state which fulfills the phase condition and violates the
CCNR criterion maximally; (d) a 6×6 dimensional BDS which is
six-displacement homogeneous (see Def. III A) but not PPT; and (e),
(f) the two bound entangled dichotomous 4×6 dimensional BDSs.

each displacement � �= (0, 0) links exactly k of the points in
S to points in S̄ .

However, such states can only be found for certain param-
eters: Let us denote the dimension by d , the rank of the state
by |S|, and the displacement homogeneity by k. As there are
d2 − 1 different nonvanishing displacement tuples, the total
number of links between S and S̄ is given by (d2 − 1)k.

On the other hand, there are |S|(d2 − |S|) possible links
between S and S̄ , each contributing to exactly one of
the shifts. Setting both equal, we obtain the diophantine
equation [33]

(k − |S|)d2 − k + |S|2 = 0, (30)

and all we have to do is to find its integer solutions, which is,
in general, a hard task. Checking numerically for solutions,
with fixed d we obtain the solutions given in Table I. A few
comments are in order.

TABLE I. All nontrivial integer solutions to the diophantine
Eq. (30) for d � 12, where d denotes the local dimension, |S| de-
notes the rank, and k denotes the displacement homogeneity, i.e., the
number of links from S to S̄ for each displacement �. The CCNR
violation is calculated via Lemma III A. While these solutions in
principle allow for the existence of dichotomous states similar to the
one in Eq. (29), we did not find any bound entangled solution for
d > 4, and could exclude their existence for d = 5 and 6.

d |S| k CCNR−d Entangled dichotomous BDS exists?

4 6 4 2 Yes
5 9 6 2.53197 No
6 15 9 2 Yes, but not PPT
7 16 11 3.94987
8 28 16 2
9 16 13 10.0278
10 45 25 2
11 16 14 18.0624
11 25 20 11.4663
11 40 27 5.58846
12 66 36 2

First, note that we do not list the following trivial solutions:
For each solution S , also S̄ is a valid solution. We list only
the solution with the smaller number of elements in S , as they
exhibit a larger CCNR violation. Setting k = 0, we can always
find the maximally mixed state as a solution, where S is the
full set. Setting k = 1, we always find the pure Bell states
as solutions with |S| = 1. These can never exhibit a positive
partial transpose and are therefore omitted as well.

The remaining solution pairs are displayed in the table.
Second, we can construct a family of solutions for all even

d by setting |S| = (d
2

)
and k = d2

4 . These are those solutions
yielding an excess CCNR value of 2.

Note that we also list the CCNR value, which is fixed for
this kind of states.

Lemma 1. A k-displacement homogeneous dichotomous
Bell diagonal state ρS defined by the set S ⊂ {(α, β ) :
0 � α, β < d} as given in Eq. (26) has a CCNR value of
CCNR(ρS ) = 1 + (d2 − 1)

√
k

|S| .
Proof. Consider the Bloch component

λμν =
∑
αβ

pαβωα·μ+β·ν (31)

= 1

|S|
∑

(α,β )∈S
ω(α,β )·(μ,ν), (32)

where (α, β ) · (μ, ν) := α · μ + β · ν. The squared magni-
tude of λμν is given by

|λμν |2 = 1

|S|2
∑

(α,β )∈S

∑
(α′,β ′ )∈S

ω[(α,β )−(α′,β ′ )]·(μ,ν). (33)

Now, the k-displacement homogeneity of the links from S to
S̄ implies also a displacement homogeneity of the links from
S to itself: As the total number of links for fixed � from
S to anything is given by |S|, and k of them link to S̄ , the
other |S| − k must link to S again. The single exception is
� = (0, 0), as this shift always leads to S again. Thus, we
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can replace the double sum in Eq. (33) by a single sum and a
factor:

|λμν |2 = 1

|S|2

⎡
⎣|S| + (|S| − k)

∑
� �=(0,0)

ω�·(μ,ν)

⎤
⎦ (34)

= 1

|S|2
[|S| + (|S| − k)(d2δμ,0δν,0 − 1)

]
. (35)

Thus, for each (μ, ν) �= (0, 0), the squared magnitude is the
same. Thus, the sum of them yields

CCNR(ρS ) =
∑
μ,ν

|λμν | = 1 + (d2 − 1)

√
k

|S| . (36)

Note that integer solutions to the diophantine equation do
not guarantee existence of a corresponding grid. For example,
for d = 5, we checked exhaustively all grids with |S| = 9, and
no solution exists. For d = 6, however, solutions do exist and
we display one example in Fig. 2(d).

Unfortunately, though, none of them is arranged in such
a way that the k = 9 phases cancel for all �. This does
not guarantee a positive partial transpose, and indeed, all
of the solutions (which we were barely able to check) are
not PPT. Therefore, we conjecture that no PPT entangled k-
displacement homogeneous dichotomous Bell diagonal states
exist for dA = dB > 4.

Finally, let us turn to the case of unequal dimensions
dA < dB. While these states are by construction diagonal in the
generalized Bell basis, their Bloch representation fails to yield
a direct operator Schmidt decomposition, making the evalua-
tion of criteria like CCNR more cumbersome. Nevertheless,
we can numerically optimize over the set of dichotomous Bell
diagonal states, demanding that they are PPT, but maximizing
their violation with respect to CCNR. For local dimensions
dA = 3 and dB = 4, we obtain—up to cyclic permutations
of the rows and columns—two different states, depicted in
Figs. 2(e) and 2(f).

For dA = 4 and dB = 6, we obtain two different states
(again up to cyclic permutations of the rows and columns).
The first one is displayed in Fig. 2(g) and given by the proba-
bility matrix

P(1) = 1

10

⎛
⎜⎜⎝

1 0 1 0 0 0
1 1 1 0 1 0
1 0 1 0 0 0
0 0 0 1 0 1

⎞
⎟⎟⎠, (37)

and the other one is displayed in Fig. 2(h) and defined by

P(2) = 1

10

⎛
⎜⎜⎝

1 0 0 0 1 0
1 1 1 1 1 0
1 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎠. (38)

Both exhibit a CCNR value of

CCNR(ρP(1,2) ) ≈ √
4×6 + 0.554. (39)

Exhaustively testing all dichotomous BDSs of unequal lo-
cal dimensions dA � 4 and dB � 6 yields no further bound
entangled states that are detected by CCNR. In summary, we

have constructed examples of bound entangled Bell diagonal
states in dimensions 3×4, 4×4, and 4×6.

B. PT-invariant Bell diagonal states

We now try to simply demand ρ = ρTA for the case dA =
dB = d . Using the Bloch representation of ρP we obtain

ρ
TA
P = 1

d2

∑
μ,ν

λμνω
−μ·νX −μZν ⊗ X μZ−ν . (40)

Comparing this with the original state yields λμν = 0 when-
ever μ �≡ −μ (mod d ). Otherwise, λμνω

−μ·ν = λμν . The first
condition is met by μ = 0 or, if d is even, μ = d

2 . If μ = 0, the
second condition is met automatically. If μ = d

2 , the second
condition implies that ν ≡ 0 (mod 2).

Note that if d is odd, only the d entries in the first row of
the λ matrix can be nonzero. However, since |λμν | � 1, such
states can never violate the CCNR criterion and we are not
able to detect their entanglement with this criterion. Thus, we
concentrate on the case of even d . In this case, we have d + d

2

nonvanishing entries in the first and d
2 th row. However, numer-

ical maximization of CCNR over this class of states for d = 4
and 6 does not yield any state violating the CCNR criterion,
making it unlikely that such detectably bound entangled states
exist.

Note that for dA = 2 and dB arbitrary, no entangled states
with ρ = ρTA exist (see Ref. [34]). We did not further investi-
gate the case dA �= dB.

IV. SSC WITNESSES FOR NON-HERMITIAN
OPERATOR BASES

While the CCNR criterion is known to work well in the
case of equal dimensions, it fails to detect many entan-
gled states, especially if the local dimensions are not equal.
Furthermore, its application usually requires a full state to-
mography, which is costly in terms of the numbers of required
measurements. In practical setups, the tool of entanglement
witnesses is often used instead [15]. A witness W is an ob-
servable such that (1) Tr(W σ ) � 0 for all separable states σ

and (2) Tr(W ρ) < 0 for at least one entangled state ρ.
To remedy the shortcomings of the CCNR criterion, in

Ref. [16], the authors provided a strong family of separa-
bility criteria and sketched the construction of entanglement
witness arising from it. However, throughout their paper, they
assumed Hermitian operator bases on the local Hilbert spaces.
Since we are dealing with Bell diagonal states, which are
canonically defined in the non-Hermitian Heisenberg-Weyl
basis, we show how to get rid of the latter restriction. This
will then allow us to apply a generalization of their results to
our BDS.

The remaining part of this section is organized as follows:
In Sec. IV A, we show how to construct said entangle-
ment witnesses. Except for the slight generalization, the
construction will mostly follow Ref. [16]. In Sec. IV B, we
show how to analytically optimize said witnesses. Finally, in
Sec. IV C, we suggest a numerical optimization procedure
that only relies on a previously fixed number of different local
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measurements, thus avoiding resource consuming full quan-
tum state tomography in practice.

A. General construction of the witnesses

In the following, we denote by {BS
i }d2

S −1
i=0 an operator basis

on subsystem S ∈ {A, B}, subject only to the restrictions

BS
0 = 11S, Tr

(
BS

i
†
BS

j

) = dSδi j . (41)

Note that this definition implies that the operators BS
i are trace-

less for i �= 0. A basis of operators acting on the joint Hilbert
space H can be constructed via the pairwise tensor products of
the local basis operators. We define the correlation matrix of
a given density operator ρ acting on H as the complex d2

A×d2
B

matrix C with the entries

ci j = Tr
[(

BA
i ⊗ BB

j

)†
ρ
]
. (42)

It follows that the density operator ρ can be written as

ρ = 1

dAdB

d2
A−1∑
i=0

d2
B−1∑
j=0

ci jB
A
i ⊗ BB

j , (43)

and Tr ρ = 1 implies that c00 = 1. We employ the notation
‖X‖1 = Tr

√
X †X for the trace norm. The criterion from

Ref. [16] reads as follows.
Theorem 1 (SSC bound [16]). Let ρ be a separable density

operator with correlation matrix C. Then, it holds that

‖DxCDy‖1 �
√

dA − 1 + x2
√

dB − 1 + y2 (44)

for all x, y � 0, where Dx = diag(x, 1, . . . , 1) is a d2
A×d2

A
matrix, and likewise Dy = diag(y, 1, . . . , 1) is a d2

B×d2
B

matrix.2

Note that for x = y = 0 the de Vicente criterion [19,20] is
recovered, and for x = y = 1 the CCNR criterion [17,18] is
recovered. For Bell diagonal states with dA = dB, the criterion
is strongest when choosing x = y, and the dependence on this
parameter cancels out.

It turns out that the requirement that the basis operators be
Hermitian may be dropped (simply adapt the original proof by
allowing for complex valued entries in the correlation matrix).
For convenience, we introduce the functions

R(x, y) :=
√

dA − 1 + x2
√

dB − 1 + y2 and (45)

g(x, y) := R(x, y) − ‖DxCDy‖1, (46)

such that a state is detected to be entangled by (44) if and
only if g(x, y) < 0 for some x, y. As sketched in Ref. [16], this
bound allows for the construction of entanglement witnesses
due to the variational characterization of the trace norm: Let X
be a complex m×n matrix (we assume m � n). Then, it holds
that

‖X‖1 = max
U∈I(m×n)

| Tr
(
U †X

)|, (47)

where I (m × n) denotes the set of isometries of appropriate
dimensions, i.e., m × n matrices that satisfy UU † = 11m. A

2Note that we use a different normalization compared to Ref. [16].

proof for the case m = n can be found in [35], and the gen-
eralization is straightforward.

The optimization above can be carried out over the real
part of Tr (U †X ) since the corresponding complex phase can
be absorbed into the isometry. For the construction of the
entanglement witnesses, let us fix operator bases satisfying
(41). Now, we combine Theorem 1 with (47), such that we
obtain for separable states

0 � R(x, y) − ‖DxCDy‖1 (48)

= R(x, y) − max
U∈I(m×n)

Re Tr(DyU
†DxC) (49)

= R(x, y) + min
U∈I(m×n)

Re Tr (DyU
†DxC). (50)

In order to write the right-hand side as an expectation value,
we define Ũ = DxUDy for an arbitrary isometry U and make
use of the normalization of ρ, i.e., c00 = 1, to bound Eq. (50)
by

0 � c00R(x, y) + 1

2

∑
i, j

(ci jŨ
∗
i j + c∗

i jŨi j ). (51)

Let us consider a generic entanglement witness W . As it is
Hermitian, it can be decomposed as W = W̃ +W̃ †

2 for some
operator W̃ . Expanding it in the operator basis yields

W = 1

2

∑
i, j

(
wi jB

A
i ⊗ BB

j + w∗
i jB

A
i

† ⊗ BB
j

†)
. (52)

Exploiting Hermiticity of ρ, we find

Tr (W ρ) = 1

2

∑
i, j

(ci jw
∗
i j + c∗

i jwi j ). (53)

Comparing this to (51) yields the coefficients

w00 = xyU00 + R(x, y), and wi0 = yUi0,

w0 j = xU0 j,wi j = Ui j for i, j > 0. (54)

Together with (52), this gives an entanglement witness: If
Tr(W ρ) < 0, then ρ is entangled. Note that for Hermitian
operator bases, one recovers the result from Ref. [16].3

B. Analytical optimization of the witnesses

Given some entangled state ρ, we would now like to find
the parameters x, y, and U characterizing the witness such that
its detection power for ρ is optimal. Since the witnesses follow
from the criterion in Theorem 1, which does not depend on the
isometry U (recall that U only entered when we constructed
the witnesses, which are generally weaker than the criterion
itself), we first have to optimize over x and y. This raises
the question of what optimality means in this context. The
interpretation of the minimum of the function g in Eq. (46) is
unclear, as the norm of the resulting witness depends on x and
y. Therefore, we suggest that the optimal parameter values of x
and y correspond to the maximal noise robustness: We choose

3Note that, apart from the different normalization, there seem to be
additional erroneous factors of

√
dA and

√
dB in the definitions of

w0β and wα0 in Ref. [16].
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the parameters such that the given state mixed with as much
white noise as possible is still detected by the criterion. For
ε ∈ [0, 1], we therefore define

ρε := (1 − ε)ρ + ε
11A ⊗ 11B

dAdB
, (55)

and call the corresponding SSC violation gε(x, y) [see (46)].
Optimal values (x, y)∗ for (x, y) are the ones that yield the
largest ε with

min
x,y

gε(x, y) < 0. (56)

There might be multiple such values; in fact the example
we study later provides a one-dimensional curve of optimal
values. We define the noise threshold to be the largest such ε

for given x, y and denote it by εmax(x, y), such that

(x, y)∗ ∈ argmax
(x,y)

εmax(x, y). (57)

This two-dimensional optimization can be carried out numeri-
cally or analytically (depending on the structure of ρ). Having
found optimal values for x and y, all that remains is the opti-
mization over the isometry U . To tackle this, we notice that the
trace norm of a generic m × n matrix X can be expressed in
terms of its singular value decomposition X = RΣS†, where
R and S are unitary m × m and n × n matrices, respectively,
and Σ is a m × n dimensional matrix with real, non-negative
entries on the diagonal. Then, assuming m � n, we have

‖X‖1 = Tr

(
Σ

0

)
= Tr

(
R†XS

0

)
= Tr

[
S

(
R†

0

)
X

]
, (58)

where 0 denotes the matrix consisting of zeros and is of
dimension (m − n) × m. Applying this to the modified corre-
lation matrix, i.e., imposing DxCDy = RΣS†, we see that the
isometry minimizing (50) is given by

U = −(R, 0)S†, (59)

where 0 is a d2
A × (d2

B − d2
A) matrix consisting of zeros. Note

that together with (52) and (54), this yields the optimal wit-
ness from the SSC family of entanglement witnesses for a
given quantum state, and the optimized witnesses are, in fact,
equivalent to the criterion from Theorem 1.

C. Numerical optimization of the witnesses

Let us fix some detectable quantum state ρ with corre-
sponding correlation matrix C. The results so far rely on
the full knowledge of the underlying density operator. How-
ever, we would like to detect entanglement in a way that
requires measuring fewer than d2

A × d2
B local basis operators.

To achieve this, we note that the trace norm can also be
characterized as follows:

‖X‖1 = max
‖U‖∞�1

Re Tr(U †X ), (60)

where ‖U‖∞ is the operator norm and evaluates to the largest
singular value of U . We can now make an ansatz for a wit-
ness in analogy to (52) and (54), and numerically optimize
over the wi j with the constraints that (1) the corresponding
matrix U fulfills ‖U‖∞ � 1 and (2) only � entries of U are
nonvanishing.

After fixing values (x, y), the resulting expression needs
to be optimized over � entries of U , which is generally
an �-dimensional complex optimization problem with non-
linear constraints. Finally, we require that the witness must
be Hermitian, and therefore, the optimization boils down
to an �-dimensional real procedure. Let us denote by P�

the set of possible parameters (x, y) that can detect ρ with
� local measurements other than the one corresponding to
BA

0 ⊗ BB
0 = 11A ⊗ 11B (since this is just the normalization of ρ),

according to the aforementioned construction of entanglement
witnesses. By P , we denote the full admissible parameter
space, i.e., the set of parameter values (x, y) that allow for
detection of ρ by directly using Theorem 1. Clearly, this
defines a filtration

∅ = P0 ⊆ P1 ⊆ · · · ⊆ Pd2
Ad2

B−1 = P (61)

of the full admissible parameter space. For the numerical
implementation, it is feasible to choose those entries in U
to be nonvanishing that correspond to the largest entries (by
absolute value) in DxCDy. We denote by P̃� the corresponding
parameter spaces. It can easily be verified that this construc-
tion yields a new filtration:

∅ = P̃0 ⊆ P̃1 ⊆ · · · ⊆ P̃d2
Ad2

B−1 = P . (62)

V. SSC WITNESSES FOR BELL DIAGONAL STATES
OF UNEQUAL LOCAL DIMENSION

Having generalized the entanglement criterion and the wit-
ness construction to non-Hermitian bases, we are applying it
to classes of states which are most naturally defined in such
bases, namely Bell diagonal states. If dA = dB, the witness
imposed in (53) and (54) can be optimized analytically. Then,
one finds that x = y is required for optimality, such that the
dependence on these parameters cancels out. In that case, one
obtains

W = d11 ⊗ 11 −
∑
μ,ν

λμν

|λμν |X μZν ⊗ X μZ−ν, (63)

which coincides exactly with the known CCNR witnesses
(see, e.g., Ref. [36]). However, in the case of dA �= dB, there
exist Bell diagonal states which are detectable by neither de
Vicente nor CCNR, but still are bound entangled and detected
as such by different values of x and y.

To that end, we set dA = 4 and dB = 6 and consider the
bound entangled state given by the probability matrix P(1)

in Eq. (37). Let ρ1 := ρP(1) denote the corresponding Bell
mixture and let

ρε
1 = (1 − ε)ρ1 + ε

114 ⊗ 116

24
(64)

be its noisy version with ε ∈ [0, 1]. We plot the noise ro-
bustness for each choice of x and y in Fig. 3. The state
is detected by the SSC criterion for ε � 0.1295, and with
ε = 0.129 the criterion gives a value of −6.3×10−4, whereas
the state is detected by neither the de Vicente criterion nor
the CCNR criterion. The matrix representation of the corre-
sponding entanglement witness is given in the Appendix. In
order to estimate the value of ε where ρε

1 becomes separable,
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FIG. 3. Noise threshold εmax for the state ρ1 from Eq. (37) for
different values x and y in the criterion in Theorem 1. Outside of
the region enclosed by the dashed black lines, no entanglement is
detected. The gray line indicates pairs (x, y) that yield the maximal
noise threshold argmax(x,y) εmax(x, y) ≈ 0.1295. The CCNR criterion
at (x, y) = (1, 1) (marked as a white cross) and the de Vicente crite-
rion at (x, y) = (0, 0) do not belong to this one-dimensional curve.
For further details, see main text.

we used the algorithm from Ref. [37] and found separable
decompositions for ε � 0.361.

We see that for dA �= dB, the SSC criterion, and therefore
also our constructed witnesses, are stronger than the CCNR
and de Vicente criteria (which correspond to x = y as pointed
out in Ref. [16]).

We now turn to the numerical optimization described in
Sec. IV and apply the procedure to the state |φ00〉 in local
dimensions 2×3 [see definition in Eq. (4)]. For suitable pa-
rameter values of x and y, the numerical optimization yields
entanglement witnesses detecting the state whenever we allow
for � � 3 local measurements in the Heisenberg-Weyl basis
(as well as the trivial one of 11A ⊗ 11B). In Fig. 4, we visualize
the required number of measurements depending on x and y.
The graph shows that we indeed have

∅ = P̃0 = P̃1 = P̃2 ⊂ P̃3 ⊂ · · · ⊂ P̃5 ⊆ · · · ⊆ P . (65)

Furthermore, for the analyzed state |ψ00〉 in local dimensions
2×3, it holds that [0, 2]×[0, 2] ⊂ P . Therefore, all parameter
values depicted in Fig. 4 admit witnesses that can detect the
state whenever we allow for sufficiently many local measure-
ments. A peculiar feature is the vertical line at x = 1. It is
caused by the fact that we select measurements corresponding
to the � largest entries of the correlation matrix after scaling
it, i.e., of DxCDy. For the given state, the absolute values of
the entries of this matrix are given by

(DxCDy)abs = 1

2

⎛
⎜⎜⎝

2xy x x 0 0 0 0 0 0
0

√
3

√
3 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1

⎞
⎟⎟⎠.

(66)

FIG. 4. The maximally entangled Bell state |φ00〉 in local di-
mensions 2×3 admits suitable entanglement witnesses relying on
� � 3 local measurements in the Heisenberg-Weyl basis. The areas
P̃� correspond to values of (x, y) that require � local measurements in
order to detect the entanglement. In particular, tuples (x, y) ∈ P̃>5 =
P \ P̃5 require at least five local measurements. The construction
procedure is described in detail in Sec. IV.

While the value of y only affects the trivial entry correspond-
ing to the identity, the value of x has an effect on which of the
entries are largest, with a transition at x = 1.

To conclude, we visualize the maximal noise robust-
ness for the one-parameter family of dephased states ρθ :=

1(|φθ 〉 〈φθ |), introduced in (22), in Fig. 5. As expected, the
noise robustness is maximal when ρθ is Bell diagonal, i.e.,
θ ∈ {0, 1}. For θ = 1/2, no entanglement is detected. Using
the PPT criterion, it can be verified that the state ρθ=1/2 is
indeed separable.

VI. CONCLUSIONS

We introduced the notion of Bell diagonal states for
the case of unequal local Hilbert-space dimensions. We
proceeded by analyzing their structure, in particular, their
alternative characterization via the Fourier picture as well as
their entanglement properties. For the latter, we made use of
well-known criteria such as the CCNR test to construct bound

FIG. 5. Maximal noise robustness of the one-parameter class of
states {ρθ } [see Eq. (22) and Sec. V in the main text]. For θ = 1/2,
no entanglement is detected.
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entangled states with large violation of the respective criteria
in different local dimensions.

We then generalized an entanglement criterion found by
Sarbicki, Scala, and Chruściński [16] based on the decomposi-
tion of density operators into Hermitian operator bases, to the
case of non-Hermitian operator bases, and demonstrated how
to express the arising entanglement witnesses in these bases.
This allowed for the application of said criterion to Bell diago-
nal states which are canonically defined in the non-Hermitian
Heisenberg-Weyl basis. We imposed a protocol which allows
for analytical as well as numerical optimization of entangle-
ment witnesses based on the SSC criterion and showed that
the generated witnesses have the same detection power as
the criterion itself if the involved isometry parameter is cho-
sen appropriately. Additionally, we provided an optimization
method for (generally weaker) witnesses, which only relies
on a previously fixed number of local measurements, which
enhances applicability in experimental setups. Finally, by ap-
plying said criterion to BDSs of unequal local dimensions,
we showed that the witnesses arising from our construction
are generally stronger than the CCNR criterion and allow one
to detect bound entanglement even when CCNR and the de
Vicente criterion fail to do so.

Nevertheless, many questions remain open for future re-
search. For example, it is known that usual Bell diagonal
states arise naturally in the analysis of quantum key distri-
bution schemes, and it would be interesting to investigate
the role of generalized Bell diagonal states in asymmetric
protocols. Another immediate route forward concerns the en-
tanglement dimensionality of the states as characterized by
their Schmidt numbers. As the employed criteria for entan-
glement have been generalized to detect different Schmidt
numbers, it should be possible to generalize the analysis in
this paper to that case [38,39].
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APPENDIX: NUMERICAL CONSTRUCTION
OF ENTANGLEMENT WITNESSES

The numerical optimization used to construct entangle-
ment witnesses corresponding to Fig. 4 was carried out using
the scipy.optimize.minimize function in PYTHON 3.9.5. We
employed the Heisenberg-Weyl operator basis, such that

BA
i := X �i/dA�

A Zi
A, and

BB
j := X � j/dB�

B Z− j
B , (A1)

where the exponents on the right-hand side may be taken
mod dA and mod dB, respectively. We took the � entries in U
corresponding to the largest coefficients (by absolute value) in
the correlation matrix of |φ00〉 (not counting the normalization
11A ⊗ 11B) to be nonvanishing.

We now describe the optimization procedure that we em-
ployed to construct the optimal SSC witness to detect the
bound entangled state ρP(1) constructed from the probability
matrix in Eq. (37). To that end, we discretized the parame-
ter space of possible values of 0 � x � 2 and 0 � y � 2 in
steps of 200 each, yielding a total of 40 000 points. For each
point, we constructed the optimal isometry as explained in
Sec. IV and evaluated the noise robustness εmax(x, y) with a
divide and conquer scheme. It turns out that the largest noise
robustness of 0.1295 is assumed for a one-dimensional subset
of values for x and y as displayed in Fig. 3. Identifying the
fixed orthonormal basis in H with the canonical unit vectors
in CdA ⊗ CdB = CdA×dB , the corresponding witness is given as
a matrix:

W =
dAdB−1∑
k,l=0

mk,l |k〉〈l| . (A2)

We print the nonvanishing coefficients (rounded to four
digits):

m0,0 = m7,7 = m16,16 = m23,23 = 0.2039,

m0,7 = m4,11 = m6,5 = m11,12 = m12,19

= m13,6 = m16,23 = m17,10 = m18,17 = 0.4i,

m0,14 = m2,16 = m7,21 = m9,23 = m14,0

= m16,2 = m21,7 = m23,9 = −0.4472,

m0,21 = m2,23 = m18,3 = m20,5 = −0.4472i,

m1,1 = m5,5 = m6,6 = m10,10 = m13,13

= m17,17 = m18,18 = m22,22 = 1.2015,

m1,8 = m8,15 = m15,22 = 0.7099i,

m1,15 = m3,17 = m6,20 = m8,22 = m15,1

= m17,3 = m20,6 = m22,8 = 0.4472,

m1,22 = m4,19 = −0.6325i,

m2,2 = m9,9 = m14,14 = m21,21 = 0.6015,

m2,9 = m7,14 = m9,16 = m10,3

= m14,21 = m20,13 = 0.555i,

m3,3 = m8,8 = m15,15 = m20,20 = 1.3318,

m3,10 = m9,2 = m13,20 = m14,7

= m16,9 = m21,14 = −0.555i,

m3,18 = m5,20 = m21,0 = m23,2 = 0.4472i,

m4,4 = m11,11 = m12,12 = m19,19 = 1.4689,

m4,12 = m5,13 = m10,18 = m11,19 = m12,4

= m13,5 = m18,10 = m19,11 = 0.6325,

m5,6 = m6,13 = m7,0 = m10,17 = m11,4

= m12,11 = m17,18 = m19,12 = m23,16 = −0.4i,

m8,1 = m15,8 = m22,15 = −0.7099i,

m19,4 = m22,1 = 0.6325i. (A3)
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[25] D. Chruściński and A. Kossakowski, Phys. Rev. A 82, 064301

(2010).
[26] C. Popp and B. C. Hiesmayr, arXiv:2307.10727 (2023).
[27] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[28] P. Horodecki, Phys. Lett. A 232, 333 (1997).
[29] D. Bruß and A. Peres, Phys. Rev. A 61, 030301(R) (2000).
[30] J. A. Smolin, Phys. Rev. A 63, 032306 (2001).
[31] J. Lockhart, O. Gühne, and S. Severini, Phys. Rev. A 97, 062340

(2018).
[32] F. Benatti, R. Floreanini, and M. Piani, Open Syst. Inf. Dyn. 11,

325 (2004).
[33] J. Sesiano, Books IV to VII of Diophantus’ Arithmetica: In

the Arabic Translation Attributed to Qustā Ibn Lūqā (Springer,
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