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Quantum delay in the time of arrival of free-falling atoms
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Using standard results from statistics, we show that for Gaussian quantum systems the distribution of a time
measurement at a fixed position can be directly inferred from the distribution of a position measurement at a
fixed time as given by the Born rule. In an application to a quantum particle of mass m falling in a uniform
gravitational field g, we use this approach to obtain an exact explicit expression for the probability density of the
time of arrival (TOA). In the long time-of-flight approximation, we predict that the average positive relative shift
with respect to the classical TOA in case of a zero initial mean velocity is asymptotically given by δ = q2

2 when

the factor q ≡ h̄
2mσ

√
2gx

� 1 (semiclassical regime) and by δ =
√

2
π

q when q � 1 (quantum regime), where σ

is the width of the initial Gaussian wave packet and x is the mean distance to the detector. We also discuss
experimental conditions under which these predictions can be tested.
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I. INTRODUCTION

While the Born rule gives the probability density of a posi-
tion measurement at a fixed time, there is no readily available
rule in the standard formalism of quantum mechanics for
deriving the probability density of a time measurement at a
fixed position. The origin of what is known as the first passage
time problem or the time-of-arrival (TOA) problem in quantum
mechanics can be traced down to the fact that there is no
self-adjoint operator canonically conjugate to the Hamiltonian
that can be associated with time measurements [1].1

The time of arrival problem holds particular importance
in the context of free-falling particles, as an ongoing debate
in the literature revolves around the existence of a potential
deviation from the universality of free fall in the quantum
domain. On the one hand, some authors invoke the correspon-
dence principle to postulate that the TOA should have a mean
value agreeing with the classical value and argue that it is
only at the level of uncertainties that such a mass dependence
should occur (see for example [5–7]). In contrast other authors
argue in favor of a mass dependence also in the mean arrival
time [8–10].

In this article we shed light into the time-of-arrival problem
and its application to free fall. We follow an epistemic rather
than an ontic approach ([11] and [12]) in that we specifically
focus on “measured time of arrival,” that is, the “external
time” measured by a clock in the laboratory as per the termi-
nology in [13], without touching upon the more fundamental
question of the ontological nature of time in quantum me-
chanics. More precisely, we argue that a rule for obtaining

1The time of arrival operator in [2,3] is self-adjoint but it does not
strictly satisfy a canonical commutation relation with the Hamilto-
nian (see [4]).

the distribution of a time measurement at a fixed position
is actually readily available within the standard formalism.
For Gaussian systems, we show that it can in fact be directly
inferred from the distribution of the position measurement at
a fixed time as given by the Born rule. To see this, we first
define Xt as the random variable associated with the measured
position at a fixed time t and symmetrically define Tx as the
random variable associated with the measured time of passage
at a fixed position x. Using standard results from statistics, we
are then able to obtain the probability distribution of Tx as a
function of the probability distribution of Xt [see Eq. (10)].
In an application to the free-falling quantum particle, we find
that (i) the mean time of arrival is greater than the classical
time of arrival as the result of a Jensen’s inequality and that
(ii) it is a function of the mass of the particle, among other
ingredients. We also provide an analytical expression for the
asymptotic positive shift of the mean TOA with respect to
the classical particle in both the semiclassical and quantum
regimes [see Eqs. (18) and (19)]. These predictions can be
empirically tested in experimental conditions that we discuss
below.

Many attempts have already been made in the literature
to address this fundamental question (see [14,15] for reviews
of previous work) but a consensus is yet to be reached. In
a nutshell, two main bodies of research have analyzed the
TOA problem within the standard formulation of quantum
mechanics, while a third stream of research has explored the
question within the context of Bohmian mechanics. The first
approach consists in randomizing the classical equation of
motion via the introduction of uncertain initial position and
velocity conditions as per the position-momentum uncer-
tainty relationship. This pragmatic (sometimes also referred
to as “hybrid”) approach is particularly well suited for the
analysis of experimental results since it can accommodate
the presence of various physical constraints in the practical
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implementation of the measurement process (see [16] or [17]
for recent examples of analyses of time of arrival of free-
falling antihydrogen atoms in the context of the GBAR
experiment at CERN). One conceptual limit of this approach,
however, is that it is not truly quantum mechanical and ignores
the full information embedded in the dynamical propagation
of the state of the system through the Schrödinger equation.
One of the contributions of this article is in fact to show that
for a free-falling particle the randomization of the classical
equation of motion can be regarded as a long time-of-flight
approximation to the exact solution [see Eq. (13) and the
discussion that follows]. The second approach consists in
quantizing the classical equation of motion in an attempt to
obtain a quantum time-of-arrival operator. Beside the intrinsi-
cally ad hoc nature of the search for a quantum time operator,
this approach does not easily lead to explicit results regarding
the TOA distribution. For example, the authors of [18] only
deal with the free particle, for which they are simply able to
obtain a semiclassical approximation. The free-fall problem is
analyzed via a dedicated TOA operator in [8], but the authors
are also unable to obtain analytical solutions for the TOA
distribution or even its moments and the associated eigenvalue
problem is solved numerically by coarse graining. Another
contribution of this article is to provide in contrast a general
exact analytical expression for the TOA distribution that is
valid for all Gaussian quantum systems [see Eq. (10)]. In
the application to free fall, and specializing to the long-time-
of-flight situation, we are also able to obtain an analytical
asymptotic expressions for the mean and the standard de-
viation of the TOA in both the semiclassical and quantum
regimes. We use these results to estimate the relative shift with
respect to the classical time of arrival [see Eqs. (18) and (19)].
Finally the third approach to the TOA problem involves a
departure from the standard and accepted formalism since it
consists in casting the problem within Bohmian mechanics.
Interestingly enough, the explicit expression we obtain for
the TOA distribution of the free-falling particle [see Eq. (11)]
coincides with the result obtained with Bohmian mechanics
(see [9] and [19]). Another contribution of this article is to
provide a more general expression that applies to any Gaus-
sian state [see Eq. (10)], while staying within the standard
formalism of quantum mechanics, and also to discuss the
conditions of validity for this expression and how to proceed
when these conditions are not satisfied.

II. STOCHASTIC MEASURED POSITION
AT A FIXED TIME (Xt )

In quantum mechanics, the one-dimensional time-
dependent Schrödinger equation sets the dynamics of the
wave function �t (x):

− h̄2

2m

∂2

∂x2
�t (x) + V (x, t )�t (x) = ih̄

∂

∂t
�t (x), (1)

where m is the mass of the particle and V (x, t ) is a position-
and time-dependent external potential. By the Born rule, the
density of probability for the particle to be measured in a small
region around the position x at a given time t is given by

ρt (x) ≡ |�t (x)|2. (2)

As indicated earlier, we denote by Xt the random variable
associated to the Gaussian probability density function ρt (x).
In other words Xt is defined to represent the uncertain outcome
of a first measurement performed at date t after the system
has been prepared in the state represented by �0 and has
evolved, according to the Schrödinger equation and with no
prior measurement, to the state �t .

From a principle standpoint, this position measurement
corresponds to the following experiment: (i) we place n
detectors at different positions x1, x2, . . . , xn with a spatial
resolution δx in an interval [a, b] (hence x0 = a, x1 = a +
δx, . . . , xk = a + kδx, . . . , xn = b), (ii) we synchronize
these detectors to make sure they turn on at the same exact
time t , and (iii) then we record the position of the particle at
the time t . From Eq. (2), the probability that the kth detector
detects the particle at the time t is Pk (t ) = ∫ xk+1

xk
|�t (x)|2dx.

(iv) We repeat this procedure a large number N of times,
which allows us to reconstruct the density of probability ρt (x)
at a fixed time t . At each trial p = 1, 2, 3, . . . , N , we measure
the value of the position x of the particle at a given time
t and we can thus represent this outcome as the realization
of a stochastic variable Xt that gives the measured position
x ∈ [a, b] of the particle at the time t , for which the density
distribution is given by ρt (x).

While our approach is more general, we specialize in what
follows the analysis to Gaussian states with a density distribu-
tion of the form

ρt (x) = 1√
2πσ (t )2

e− [x−xc (t )]2

2σ (t )2 , (3)

where σ (t ) is the standard deviation of the Gaussian distri-
bution that is centered at the classical path xc(t ), which by
the correspondence principle is also the mean value of the
position operator 〈x̂t 〉 = ∫ +∞

−∞ xρt (x) = xc(t ). Gaussian states
are standard forms in quantum physics, not only for the free-
fall problem which is the focus of this article, but also for
the free motion, the simple and time-dependent harmonic
oscillator, constant or time-dependent electric fields, and more
generally for any quadratic potential of the form V (x, t ) =
a(t )x2 + b(t )x, where a(t ) and b(t ) are two functions of t (see
for example [20]). We further denote the initial mean value of
the position by x0 and its initial standard deviation by σ . In the
Gaussian setting, Xt can be written with no loss of generality
as

Xt = xc(t ) + ξσ (t ), (4)

where ξ = N (0, 1) is a normally distributed random variable
with a variance of 1 and a mean value of 0.

III. STOCHASTIC MEASURED TIME
AT A FIXED POSITION (Tx)

In the previous thought experiment, we considered that the
n position detectors were turned on at a fixed time t . This
means that the detectors are synchronized to an ideal clock
that allows them to switch on through a signal at a precise time
value t . We now turn to a symmetric perspective, where the
focus is on time measurements at a fixed position. As recalled
in the Introduction, there exists an abundant literature on the
subject that has generated a number of insightful results that

012216-2



QUANTUM DELAY IN THE TIME OF ARRIVAL OF … PHYSICAL REVIEW A 109, 012216 (2024)

sometimes contradict each other because of implicit diver-
gences in the underlying definition of a time measurement.
In this context, we seek to avoid ambiguities by carefully
explaining the experimental setup that would be involved in an
idealized yet physical measurement of the TOA. Specifically,
we consider the following procedure: (i) we place a single
detector at the fixed position x; (ii) we drop a particle at time 0
and we turn on the detector (say by triggering a laser pulse) at
some time t ; (iii) we record 1 if the particle has been measured
at position x for this particular time t and 0 otherwise. Then,
(iv) we repeat the steps (i)–(iii) N times while keeping the
exact same time t and we count the total number of particles
detected at this position (alternatively, we could in principle
use in step (ii) an atomic cloud with N noninteracting par-
ticles [21,22]). Finally, (v) we repeat the steps (i)–(iv) by
letting t vary, with a small enough temporal resolution δt
(hence t0 = 0, t1 = δt, . . . , tk = kδt, . . . , tn = nδt). This
procedure allows us to reconstruct the whole time distribution
	x(t ) of a random variable, denoted by Tx (note the symmetry
in notation with respect to Xt ), which can be regarded as
a stochastic time of arrival (STOA) at the fixed position x.
Please note that this approach differs from a procedure that
would consist in performing continuous measurements (with
a detector placed at position x) starting at t = 0 and until the
first detection is recorded. Indeed, such a procedure would
involve multiple measurements before the detection occurs,
in contradiction with our definition of Tx, which is set to be
the random date of a first measurement at position x.

The question that naturally arises at this stage is to find
the expression of the STOA as a function of the position x of
the detector. Formally, Tx is defined as the first passage time
of the random process Xt at the position x:

Tx ≡ inf{t |Xt = x}. (5)

As explained above, we can experimentally determine the pos-
sible values of Tx by fixing the position of the detector at x and
allowing the time of observation to vary. From (5) these values
correspond to the solution of the equation x = XTx , where Xt is
given in (4). Hence we obtain the following mapping between
the random variable ξ and the STOA Tx to be

x = xc(Tx ) + ξσ (Tx ). (6)

This equation can be rewritten as

Tx = hx(ξ ), (7)

assuming the existence of an invertible function where hx(·)
such that

ξ = h−1
x (Tx ) = x − xc(Tx )

σ (Tx )
(8)

[see (14) for an approximate expression of the function hx

for the free-falling particle]. Assuming that the function hx

is strictly monotonic, a standard result from statistics, some-
times referred to as the method of transformations, gives the
following relation between the probability distribution 	x(t )
for the STOA Tx at the detection point x and the probability
distribution f (·) of the standardized Gaussian variable ξ (see,

for example, theorem 4.1 in Chap. 4.1.3 in [23]):

	x(t ) = f
(
h−1

x (t )
)
∣∣∣∣ ∂

∂t
h−1

x (t )

∣∣∣∣. (9)

Note that this result can in fact be extended to a more gen-
eral case by relaxing the assumption of strict monotonicity.
Indeed, if hx is not monotonic, one can usually partition its
domain of definition into a finite number of intervals such that
it is strictly monotonic and differentiable on each partition.
Finally, we use

∂

∂t

(
x − xc(t )

σ (t )

)
= −

(
vc(t )σ (t ) + [x − xc(t )]σ̇ (t )

σ (t )2

)
,

where vc(t ) is the classical velocity and σ̇ (t ) = dσ (t )/dt ;
we find the following expression for the time-of-arrival
distribution:

	x(t ) =
∣∣∣∣vc(t )σ (t ) + [x − xc(t )]σ̇ (t )

σ (t )2

∣∣∣∣ 1√
2π

e− [x−xc (t )]2

2σ (t )2 . (10)

This is a general expression for the density distribution of
the TOA for a Gaussian system. In what follows we discuss
the application to a free-falling particle and also to the free
particle as a nested case with a zero gravitational potential.

IV. TIME DISTRIBUTION OF A FREE-FALLING
PARTICLE

For the free-falling particle, we recall the standard ex-
pressions for the classical path xc(t ) = v0t + g

2 t2 (fixing the
mean initial position x0 = 0 and assuming g > 0) and for the
standard deviation σ (t ) = σ

√
1 + t2

τ 2 , where τ = 2mσ 2

h̄ is a
characteristic time. Here v0 > 0 represents the mean value2

for the initial velocity of the particle, which itself is a random
variable with a standard deviation given from the uncertainty
principle as σv = h̄/2mσ . Using (10) we obtain the exact
expression for the probability distribution of the STOA for the
free-falling particle:

	x(t ) =
(

v0 + x t
τ 2 + gt + g

2
t3

τ 2

1 + t2

τ 2

)exp
(− (x−v0t− gt2

2 )2

2σ 2(1+ t2

τ2 )

)
√

2πσ 2
√

1 + t2

τ 2

,

(11)

where the distribution is normalized
∫ +∞
−∞ 	x(t )dt = 1. Here

we have assumed that the function h exists so that the solution
Tx to Eq. (7) takes on positive values with probability 1,
but this assumption may not always hold. For example, if
ξ > x/σ , the particle would start moving forward from an
initial position already greater than x, implying that there is no
time t > 0 such that it would cross the position x again. How-
ever, we can restrict our attention to experimental situations
where x � σ and hence focus on cases where there is always

2We assume v0 to be positive so that the function hx in Eq. (7) is
strictly monotonic, which implies that Eq. (9) is valid. For the case
where v0 < 0, we will need to partition the domain of definition of hx

in order to write the correct expression of Eq. (9). This goes beyond
the scope of this paper and will be examined in a followup paper.
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a positive value of t solution to Eq. (7). In such situations
we can assume that the probability for the particle to reach
x for t < 0 is negligible and we can therefore consider that∫ +∞

0 	x(t )dt ≈ ∫ +∞
−∞ 	x(t )dt = 1. Notice that when v0 = 0

this formula coincides with the one obtained in [9] from the
quantum current density approach derived from the Bohmian
approach (see also [19]). Our result is more general in that
we derive the distribution for v0 � 0 and find the explicit
expression for the normalization factor. Also, as mentioned
before, we could use our approach to (i) explore the near-field
regime (x ∼ σ ) and (ii) investigate the case where the function
hx in Eq. (7) is not monotonic (e.g., if v0 < 0).

From Eq. (11), we remark that all the nth moments∫ +∞
−∞ t n	x(t )dt < +∞ converge. There is no analytical ex-

pression for such integrals, but they can easily be computed
numerically. In what follows, we use an alternative approach
consisting in first finding an approximate explicit expression
for the stochastic time of variable Tx as a solution to Eq. (6)
and then obtaining analytical estimates for its mean and stan-
dard deviation. The solution to Eq. (6) for the free fall,

x = v0t + g

2
t2 + σξ

√
1 + t2

τ 2
, (12)

is indeed difficult to express in a closed form but we can
find an approximation for this expression in the semiclassical
regime for long time of flight t � τ .

V. TIME OF ARRIVAL OF A FREE-FALLING PARTICLE
IN THE LONG TIME-OF-FLIGHT REGIME

In the long time-of-flight regime where t � τ , Eq. (6) for
the free-falling particle becomes

x ≈ gT 2
x

2
+ v0Tx + σξ

Tx

τ
, (13)

which is exactly equal to the classical trajectory the particle
would have at time Tx with an initial position equal to 0 and
an initial velocity equal to v0 + σξ

τ
. The use of the classical

equation with uncertain initial conditions, which is at the
core of the “hybrid” approach, can thus be regarded for the
free-falling particle as an approximation valid in the long
time-of-flight case. In the short time of flight, and more gen-
erally for other Gaussian quantum systems, we should instead
revert back to the exact equation (10) in order to calculate the
distribution and moments of the TOA.

The solution to Eq. (13) is given by a standard quadratic
formula, from which we find the stochastic time-of-arrival
variable to be

Tx = hx(ξ ) = 1

g

⎛
⎝

√(
v0 + σξ

τ

)2

+ 2gx −
(

v0 + σξ

τ

)⎞
⎠.

(14)
Notice that, for σ = 0, we find the classical time: tc =
1
g (

√
v2

0 + 2gx − v0). Consider now the semiclassical con-
dition q � 1, where the factor q measures the ratio of
the height-dependent wavelength to the initial width of the

particle wave packet

q = σ√
v2

0 + 2gx τ

= h̄

2mσ

√
v2

0 + 2gx
= λ

2πσ
(15)

and where λ = h/(m
√

v2
0 + 2gx ). In this semiclassical case,

we obtain

Tx ≈ tc − tc√
v2

0 + 2gx

σξ

τ
+ xσ 2ξ 2(

v2
0 + 2gx

)3/2
τ 2

. (16)

We can see from Eq. (16) that Tx is a strictly convex function
of ξ , which implies by the Jensen’s inequality that its mean
value E(Tx ) is strictly greater than the classical time tc as
E(Tx ) = E(hx(ξ )) > hx(E(ξ )) = hx(0) = tc.3Moreover, it is
easy to obtain from Eq. (16) the following expressions for
the mean value and standard deviation of the TOA (see the
Appendix for further details):

tmean ≈ tc + xσ 2(
v2

0 + 2gx
)3/2

τ 2
,

�Tx ≈ tc
σ√

v2
0 + 2gxτ

. (17)

It is worth mentioning that the expressions of the mean
value and the standard deviation of the TOA for the free
motion can be obtained by taking the limit g → 0 (which
implies that tc → x/v0) in the expressions (17). Notice that the
expression for the time distribution (11) in this limit (g → 0)
is the same as Eqs. (A9) and (A18) in [18]. The difference here
is that we obtain the formula as an exact expression, while
the authors of [18] present this result as an approximation
to the order of σ

v0τ
in the semiclassical regime. Other authors

have also found a similar formula in the semiclassical regime
using a quantum flux approach [see, for example, Eq. (9)
in [24]]. These results are consistent with the finding reported
in [8] that the expectation value of the TOA operator for a
free-falling particle is equal to the classical time of arrival plus
mass dependent quantum correction terms.

Interestingly, if the particle is dropped in the gravity field
(v0 = 0), we find that the mean value of the fall is greater than

the classical value tc =
√

2x
g by a relative factor:

δ = tfall − tc
tc

≈ q2

2
= h̄2

16gxm2σ 2
. (18)

Turning to the quantum regime (q � 1), we can rewrite the
TOA in Eq. (14) as

Tx = qtc

⎛
⎝

√
ξ 2 + 1

q2
− ξ

⎞
⎠ ≈ qtc(|ξ | − ξ )

3The Jensen’s inequality is a standard tool in statistics, widely used
in various fields of application. Simply put, it states that the expected
value of a strictly convex function of a random variable is strictly
greater than the convex function of the expected value of the random
variable.
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FIG. 1. Relative quantum delay versus quantumness. In this fig-
ure, we show the value of the relative quantum delay defined by
δ = (tfall − tc )/tc as a function of the coefficient of quantumness q =

h̄
2mσ

√
2gx

in the long time-of-flight (TOF) regime (the TOF varies from

700τ to 2 × 1010τ ) in the log-log scale. For comparison, we display
the asymptotic values obtained from the numerical integration of
the mean of the distribution (11) (continuous red line), as well as
the values obtained within the semiclassical regime as per Eq. (18)
(dashed blue line) and within the quantum regime as per Eq. (19)
(dashed-dotted green line).

when q � 1. Hence we obtain in the full quantum regime the
following estimate for the relative deviation with respect to
the classical TOA:

δ =
√

2

π
q =

√
2

π

h̄

2
√

2gxmσ
, (19)

where we used
∫ +∞
−∞ dξ |ξ | e−ξ2/2√

2π
=

√
2
π

.
These results are surprising for at least two reasons: (i)

the mean time of free fall is not equal to (is strictly greater
than) the classical time and (ii) it depends on the mass of the
particle. In Fig. 1, we show that the expressions (18) and (19)
give excellent approximations for the numerical values of
the integral

∫ +∞
0 t 	x(t )dt (which we calculate using the

scipy.integrate library of PYTHON 3.10) when the coefficient
of quantumness q is much lower or much greater than 1, re-
spectively. In the transition towards the quantum regime, that
is when q ∼ 1, the analytical approximation deteriorates with
respect to the more accurate numerical integration. However,

our explicit expressions (18) and (19) provide a convenient
tool to help search for optimal experimental conditions to
observe this quantum delay in the semiclassical and quantum
regime. In particular we propose in Table I three different
scenarios for a realization of the quantum-delay experiment.
The first line of Table I shows that the effect is small (2.5%)
but noticeable for a sufficiently sensitive detector. Fortunately,
one can follow two different strategies to make the deviation
significant enough to be more easily detectable: (i) either we
decrease the distance traveled (second line of the table) or (ii)
we realize a microgravity experiment (third line of the table).
Some technical challenges must be addressed before one can
reach these experimental conditions, but we believe that the
potential benefits of measuring a deviation from the univer-
sality of free fall make the investigation worth pursuing.

VI. DISCUSSION

Using standard results from statistics, we introduce a
stochastic representation of position measurements and use
standard results from statistics to analyze the time of arrival
for a free-falling particle. We derive the probability density for
the stochastic time of arrival (STOA) Tx and obtain analytical
expressions for its mean and its standard derivation in the
semiclassical regime and in the quantum regime for a long-
time flight. In further research, we might extend our analysis
to encompass the regime of short time of flight, where t � τ ,
as well as the near-field scenarios where x ∼ σ . Our approach
can also be extended in a straightforward manner to any other
Gaussian system, which is a setting general enough to encom-
pass a number of important standard systems including the
free motion, the free fall, and the harmonic oscillator (simple
and time dependent). While this present article only considers
applications to Gaussian states, our equations (8) and (9)
actually provide a general framework that can be applied to
the study of entangled particles [25,26], quantum superpo-
sition [27], quantum gases [28], potential barriers [29,30],
two-slit experiment [31], diffraction in time [22,32,33], and
quantum backflow [34–36].

We find that the mean TOA for a free-falling object is not
equal to the classical time. Although the time shift can be
very small, we propose various experimental scenarios where
this subtle effect could be measured. Specifically, we consider
situations involving atoms with small mass, short distances
traveled (these two conditions could be met in the GBAR
experiment [17]), and microgravity. A future space mission
(see, e.g., STE-QUEST [37]) with low-mass atoms emerges as

TABLE I. Experimental prediction of quantum delay for the free fall of atoms. In this table, we show the expected time shift δt for a free-fall
particle using typical values for the hydrogen-1 atom in the ground state of a harmonic trap with an angular frequency of ω = 3.16 MHz (i.e.,
the initial width of the wave packet is σ = 10−7 m) in three different situations: (i) on earth with the standard experimental conditions, (ii) on
earth with a shorter distance traveled x, and (iii) in microgravity with the same x as in (i).

Atoms x (m) g (m s−2) tc (s) δt (s) q δ

Hydrogen-1 0.1 9.81 0.143 0.004 0.225 2.5%
Hydrogen-1 0.01 9.81 0.045 0.009 0.713 20%
Hydrogen-1 0.1 10−5 141 2.5053 × 104 223 1.77 × 104%
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a highly promising candidate for investigating and unraveling
this phenomenon.
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APPENDIX: DERIVATION OF EQS. (17) AND (18)

In the long time-of-flight regime where t � τ , we have

x ≈ gt2

2
+ v0t + σξ

t

τ
,

which is exactly equal to the classical trajectory the particle
would have with an initial position equal to 0 and an initial

velocity equal to v0 + σξ

τ
. The solution to this equation is

given by a quadratic formula; thus we find the stochastic
time-of-arrival variable to be

T = 1

g

⎛
⎝

√(
v0 + σξ

τ

)2

+ 2gx −
(

v0 + σξ

τ

)⎞
⎠. (A1)

Notice that for σ = 0, we find the classical time:

tc = 1

g

(√
v2

0 + 2gx − v0
)
.

Consider now the semiclassical regime σ � v0τ . Since(
v0 + σξ

τ

)2

+ 2gx = v2
0 + 2gx + 2v0σξ

τ
+ σ 2ξ 2

τ 2
,

and given that the first two terms v2
0 + 2gx are very large

compared to the next two ones, we find the Taylor series:

√(
v0 + σξ

τ

)2

+ 2gx ≈
√

v2
0 + 2gx

(
1 + v0σξ(

v2
0 + 2gx

)
τ

+ σ 2ξ 2

2
(
v2

0 + 2gx
)
τ 2

− v2
0σ

2ξ 2

2
(
v2

0 + 2gx
)2

τ 2

)

=
√

v2
0 + 2gx

(
1 + v0σξ(

v2
0 + 2gx

)
τ

+ gxσ 2ξ 2

2
(
v2

0 + 2gx
)2

τ 2

)
,

where we used
√

1 + a ≈ 1 + a
2 − a2

8 , when a � 1. We can now approximate (A1) as

T ≈ 1

g

(√
v2

0 + 2gx − v0
) +

⎛
⎜⎝ v0√

v2
0 + 2gx

− 1

⎞
⎟⎠σξ

gτ
+ xσ 2ξ 2(

v2
0 + 2gx

)3/2
τ 2

. (A2)

Notice that the classical time is given by

tc = 1

g

(√
v2

0 + 2gx − v0
)
, (A3)

as expected. Thus we can rewrite the previous equation (A2) as

T ≈ tc − tc√
v2

0 + 2gx

σξ

τ
+ xσ 2ξ 2(

v2
0 + 2gx

)3/2
τ 2

. (A4)

The second-order approximation of the squared value of T is given by

T 2 ≈ t2
c + t2

c

v2
0 + 2gx

σ 2ξ 2

τ 2
+ 2tcxσ 2ξ 2(

v2
0 + 2gx

)3/2
τ 2

− 2t2
c√

v2
0 + 2gx

σξ

τ
.

Using the last two expressions, we find the formulas for the mean and the variance of T :

tmean = E (T ) ≈ tc + xσ 2(
v2

0 + 2gx
)3/2

τ 2
,

V (T ) = E (T 2) − E (T )2 ≈ t2
c

σ 2(
v2

0 + 2gx
)
τ 2

, (A5)

and hence the expression of the standard deviation of T :

�T ≈ tc
σ

τ

√
v2

0 + 2gx
. (A6)
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Notice that, when g → 0, we obtain the standard deviation for the TOA of the free particle. Interestingly, if the particle is
dropped in the gravity field (v0 = 0), we have

tmean ≈
√

2x

g
+ 1

2

√
2x

g

σ 2

2gxτ 2
=

√
2x

g

(
1 + σ 2

4gxτ 2

)
=

√
2x

g

(
1 + h̄2

16gxm2σ 2

)

leading to Eq. (18).
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