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Majorana stars, the 2S spin coherent states that are orthogonal to a spin-S state, offer an elegant method
to visualize quantum states, disclosing their intrinsic symmetries. These states are naturally described by the
corresponding multipoles. These quantities can be experimentally determined and allow for an SU(2)-invariant
analysis. We investigate the relationship between Majorana constellations and state multipoles, thus providing
insights into the underlying symmetries of the system. We illustrate our approach with some relevant and
informative examples.
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I. INTRODUCTION

Completely symmetric states aptly describe numerous
phenomena [1]. These states play a crucial role in the char-
acterization of spinor Bose gases [2,3], whose dynamics
have been observed with spin-1 [4,5], spin-2 [6], and even
spin-3 [7,8] condensates. They have also been used for the
characterization of entanglement [9–14] in those boson sys-
tems.

A salient feature of this family is that any state of spin S can
be described as a permutation-symmetric n-qubit state, with
n = 2S. This is the basis of the elegant representation devised
by Majorana [15], in which a spin S is depicted by 2S points
(called the stars) on the Bloch sphere. Although the subject
attracted some attention in relation to the quantum theory
of angular momentum [16–19], it remained quiescent until
1969, when Penrose reinterpreted Majorana stars as principal
null directions in spinor theory [20] and brought it to wider
attention in his celebrated book [21].

Apart from indisputable mathematical advantages [22],
this picture builds a bridge between the abstract Hilbert space
(where the states live) and the simple geometry of the Bloch
sphere. Consequently, this representation rapidly meets the
increasing interest in high-dimensional quantum systems and,
several decades after its conception, is being used in fields as
diverse as polarization [23–27], spinor Bose gases [28–31],
multiqubit systems [32–38], metrology [39–43], geometric
phases [44–51], non-Hermitian lattices [52], and alge-
braic quantum models such as the Lipkin-Meshkov-Glick
model [53,54].
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The distribution of Majorana stars conveys complete in-
formation and can be directly computed when the quantum
state is known. But this notion has far-reaching advantages:
by visualizing in a crystal-clear manner the intrinsic sym-
metries of the state, one can perceive connections with other
intriguing questions. Examples include geometrical measures
of entanglement [55–57], spherical t-designs [58,59], and
the Thomson [60–65] and Tammes [66–68] problems. More-
over, a number of states with remarkable properties, such as
queens [69] and kings of quantumness [70], maximally en-
tangled states [71], k-uniform states [72–74], and states with
maximal Wehrl entropy [75], can be aptly understood in terms
of the properties of their corresponding constellations [76].

Distributing points on a sphere is a mathematical prob-
lem with a long history and with a variety of optimal
configurations depending on the cost function one tries to
optimize [77–80]. This suggests exploring those arrangements
of points distinguished by some extremal properties. Then
a natural question arises: if one knows the locations of the
Majorana stars, what can one say about the state, in particular,
about its multipolar distribution? That is precisely our main
goal here.

For a system of point charges on the sphere, the most
suitable way of capturing the progressively finer angular fea-
tures of the system is the standard multipolar expansion [81].
Such an expansion can often be truncated, meaning that to a
good approximation only the first terms need to be retained.
We propose here to carry out a similar procedure for the
Majorana constellation: the resulting multipoles constitute a
basic tool for problems with an SU(2) invariance [82,83]
and, in addition, they can be experimentally determined with
simple procedures [84,85].

The paper is organized as follows. In Sec. II we intro-
duce the basic notions needed to understand the Majorana
constellations, whereas in Sec. III we show how to calculate
the multipoles from a given Majorana constellations. Our
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insight is to apply the time-honored Vieta formulas [86] to
the polynomial defining the constellation, which provides a
shortcut between the stars and other representations of the
state. In Sec. IV we thoroughly examine how the method
works in a series of relevant examples. Further physical im-
plications are discussed in Sec. V and, finally, our conclusions
are summarized in Sec. VI.

II. MAJORANA CONSTELLATIONS

We will deal with any pure system living in a finite-
dimensional Hilbert space of dimension 2S + 1, which can be
formally regarded as a spin S. The corresponding space HS ,
spanned by the standard angular momentum basis {|S, m〉 |
m = −S, . . . , S}, is the carrier of the irreducible representa-
tion (irrep) of spin S of SU(2) and is isomorphic to C2S+1.
Since any two vectors in HS differing by a phase represent
the same physical state, the manifold of physical states is the
projective space CP2S [87].

The merit of Majorana was to show that points in CP2S are
in one-to-one correspondence with unordered sets of (possibly
coincident) 2S points on the unit sphere S2. There are various
ways to see why this is so, but probably the most direct one is
in terms of coherent states.

The spin (or Bloch) coherent states live in HS and
are displaced versions of a fiducial state, much the same
as for the canonical coherent states on the plane. This
fiducial state is chosen so as to minimize the vari-
ance of the Casimir operator S2 = S2

x + S2
y + S2

z , where
(Sx, Sy, Sz ) are the angular momentum operators, which gen-
erate the algebra su(2). The minimum-variance states are
|S,±S〉 and they guarantee that their displaced versions are
the closest to classical states. The displacement operator
on S2 is D(θ, φ) = exp(iφSz ) exp(iθSy) = exp[ 1

2θ (S+e−iφ −
S−eiφ )], where S± = Sx ± iSy are raising and lowering opera-
tors. Disentangling this displacement allows us to express the
coherent states |θ, φ〉 = D(θ, φ)|S,−S〉 as [88,89]

|θ, φ〉 ≡ |z〉 = 1

(1 + |z|2)S
exp(zS+)|S,−S〉, (2.1)

where the label z = tan(θ/2)e−iφ corresponds to an inverse
stereographic projection from the south pole, mapping the
point z ∈ C onto the point (θ, φ) ∈ S2 [90].

On expanding the exponential, we can write the coherent
states in terms of the basis states of the irrep:

|z〉 = 1

(1 + |z|2)S

S∑
m=−S

(
2S

S + m

) 1
2

zS+m|S, m〉, (2.2)

or, employing again the stereographic projection,

|z〉 =
S∑

m=−S

(
2S

S + m

) 1
2

[sin(θ/2)]S+m[cos(θ/2)]S−m

× e−i(S+m)φ |S, m〉. (2.3)

The system of spin coherent states is complete, but the states
are not mutually orthogonal; their overlap is

〈z|z′〉 = (1 + z∗z′)2S

[(1 + |z|2)(1 + |z′|2)]S . (2.4)

They allow for a resolution of the unity in the form∫
C

dμS (z) |z〉〈z| = 1, (2.5)

with the invariant measure given by

dμS (z) = 2S + 1

π

d2z

(1 + |z|2)2
. (2.6)

With this completeness relation one is able to decompose an
arbitrary pure state over the coherent states. If we denote
ψ (z∗) = 〈z|ψ〉, by using the basis {|S, m〉}, we define the
stellar function fψ (z) of the state |ψ〉 as

fψ (z) = (1 + |z|2)Sψ (z) =
S∑

m=−S

(
2S

S + m

) 1
2

ψm zS+m

=
2S∑

k=0

(
2S

k

) 1
2

ψk−S zk, (2.7)

with ψm = 〈S, m|ψ〉, and in the second line we have made
the relabeling S + m �→ k. Interestingly, in this representation
the wave function is a polynomial in z of order r � 2S. In
consequence, the roots zk ∈ C of fψ (z) fully characterize the
state. These roots define, via an inverse stereographic map,
2S points on the unit sphere S2. This is the Majorana con-
stellation, and each one of these points constitutes one star of
the constellation. Note that an SU(2) rotation corresponds to
a solid rotation of the constellation; therefore, states with the
same constellation, irrespective of their relative orientation,
have the same physical properties.

The stellar function is directly related to the Husimi Q
function [91,92]:

Qψ (z) = (1 + |z|2)2S| fψ (z∗)|2, (2.8)

which clearly shows that the zeros of the Husimi Qψ function
are the complex conjugates of the zeros of fψ . These can then
be observed in the laboratory by measuring where the Husimi
function vanishes [93].

Let us examine a few relevant examples to illustrate how
these constellations look. The first one is that of a spin co-
herent state |z0〉, whose stellar representation is direct from
Eq. (2.4):

fz0 (z) = (1 + z0z)2S

(1 + |z0|2)S
(2.9)

so it has a single zero at z = −1/z0 with multiplicity 2S.
In consequence, the constellation collapses in this case to a
single point diametrically opposed to the maximum z0.

Another relevant set of states is that of the so-called NOON
states, defined as [94]

|NOON〉 = 1√
2

(|S, S〉 − |S,−S〉). (2.10)

They are known to have the highest sensitivity for a fixed
excitation S to small rotations about the Sz axis [95]. The
associated polynomial reads

fNOON(z) = 1√
2

(z2S − 1). (2.11)
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FIG. 1. Top: Majorana constellations for, from left to right, a spin
coherent state, a NOON state, and a king of quantumness, all of them
for the same dimension with S = 6. Bottom: Density plots of the
corresponding Husimi functions, with a scale that goes from blue
(minimum) to red (maximum).

The zeros are thus the 2S roots of unity, so the Majorana
constellations have 2S stars placed around the equator with
equal angular separation between each star. A rotation around
the Sz axis of angle π/(2S) renders the state orthogonal to
itself, justifying their optimality.

Finally, we consider kings of quantumness, initially
dubbed anticoherent states [96]. In a sense they are the op-
posite of spin coherent states: whereas the latter correspond
as nearly as possible to a classical spin vector pointing in
a given direction, the former point nowhere; i.e., the aver-
age angular momentum vanishes and the fluctuations up to
given order M are isotropic [97]. Their symmetrical Majo-
rana constellations herald their isotropic angular momentum
properties [98] and correspond to the vertices of Platonic
solids in some particular dimensions. In Fig. 1 we show the
constellation associated to the examples aforementioned for
the case of spin S = 6.

III. STATE MULTIPOLES FROM A CONSTELLATION

So far, we have shown how to compute the constellation
when the state is given. In this section, we attack the inverse
problem: what information can we extract from a given con-
stellation. To this end, we first recall that every polynomial
P(z) of degree n can be represented in terms of its zeros ζk us-
ing the classical Vieta formulas [86], which can be expressed
in the form

P(z) =
n∑

k=0

akzk = an

n∑
k=0

(−1)n−ken−k (ζ) zk, (3.1)

where e j (ζ) ≡ e j (ζ1, ζ2, . . . , ζn) are the elementary symmet-
ric polynomials [99] defined as

e0(ζ1, ζ2, . . . , ζn) = 1,

e1(ζ1, ζ2, . . . , ζn) =
∑

1� j�n

ζ j,

e2(ζ1, ζ2, . . . , ζn) =
∑

1� j<k�n

ζ jζk,

...

en(ζ1, ζ2, . . . , ζn) = ζ1ζ2 . . . ζn. (3.2)

Using this fundamental result, the Majorana stellar function
can be expressed in the compact form

fψ (z) =
2S∑

k=0

fk (ζ) zk, (3.3)

where we have introduced the notation

fk (ζ) = (−1)2S−k ψS e2S−k (ζ), (3.4)

and the coefficient ψS is fixed by the normalization condition

ψS (ζ) =
(

2S∑
k=0

|e2S−k (ζ )|2(2S
k

)
)−1/2

. (3.5)

In this way, the state coefficients are simply related to the
coefficients of the Majorana polynomial, and we can calculate
them as a function of the stars:

ψk−S (ζ) = fk (ζ)√(2S
k

) . (3.6)

For many purposes, expanding in the basis |S, m〉 is not a good
choice. Instead, if one considers the associated density matrix
� = |ψ〉〈ψ |, it proves more convenient to use the irreducible
tensors [83]. They are defined as

TKq =
√

2K + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,Kq |S, m′〉〈S, m|, (3.7)

with CSm′
Sm,Kq being the Clebsch-Gordan coefficients that cou-

ple a spin S and an integer spin K (0 � K � 2S) to a total
spin S [100]. These tensors constitute an orthonormal basis
Tr(TKq T †

K ′q′ ) = δKK ′δqq′ and have the correct transformation
properties under rotations.

The corresponding expansion coefficients �Kq = Tr(� T †
Kq)

are known as state multipoles. Actually, �Kq can be related
to the K th powers of the generators. The monopole �00 =
1/

√
2S + 1 is trivially fixed by normalization; the dipole �1q

is the first-order moment of S and thus corresponds to the
classical picture, in which the state is represented by its
average value on the Bloch sphere. However, the complete
characterization of a state demands the knowledge of the other
multipoles that account for higher-order fluctuations. The her-
miticity of � imposes the conditions �K−q = (−1)q �∗

Kq.
The multipoles can be expressed in terms of the state

amplitudes ψm, which, in turn, can be computed from the
constellation. This allows us to calculate �Kq as a function of
the constellation in a very compact form:

�Kq =
√

2K + 1

2S + 1

S∑
m=−S

CS,m+q
Sm,Kq ψ∗

m+q(ζ) ψm(ζ). (3.8)
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FIG. 2. Multipole lengths for the three constellations depicted in
Fig. 1, as a function of the order K .

It will prove convenient to characterize the multipoles by
their effective length:

�2
K =

K∑
q=−K

|�Kq|2, (3.9)

which gauges the state overlapping with the K th multipole
pattern and is unchanged via SU(2) rotations of the state.
Note that, for pure states we are considering,

∑2S
K=0 �2

K = 1.
These coefficients �2

K have been used as measures of lo-
calization [101]; as quantifiers of quantumness [76], which
is useful for applications such as rotation sensing [43]; and
to quantify mode-decomposition-independent entanglement
properties [14].

IV. EXAMPLES

To check how the method works we consider the constella-
tions depicted in Fig. 1, corresponding to the states worked out
in Sec. II, namely, coherent, NOON, and king of quantumness
for S = 6. In Fig. 2 we represent the corresponding �2

K as
a function of the order K (excluding the monopole, as it
is always trivial). Similar patterns emerge for other S. For
completeness, in Fig. 3 we also plot the distribution of �2

K as
a function of the order K and the spin S for the same three
states.

In the Bloch sphere, constellations having their points ar-
ranged as symmetrically as possible are the most quantum,
whereas the opposite occurs for coherent states. As we can
appreciate, the coherent state conveys all the relevant infor-
mation in the lowest-order multipoles, which is in agreement
with its classical character. Only for high values of S, one
can see a tiny contribution of higher-order multipoles. In the
limit of large S, we can fit a Gaussian distribution to these
multipoles. Since the distributions are unchanged by rotations
of the Bloch sphere, we can choose the coherent state with
z = 0 to find

�2
K,coh = (2K + 1)(2S)!2

(2S − K )!(2S + K + 1)!
. (4.1)

FIG. 3. Multipole lengths as a function of the order K and the
system spin S for (upper panel) spin coherent states, (middle panel)
NOON states, and (lower panel) kings of quantumness. Since the
value of the monopole depends on the dimension, we normalized the
rest of the multipole lengths to add up to 1. This allows us to compare
their values for different S.

The maximum of this distribution is at Kmax = √
S + 1/2 −

1/2. In the limit of large S, this peaks at �2
Kmax

≈ 1/
√

Se, with
a variance S/2.

The NOON state has only even multipoles which, sur-
prisingly, are identical with the corresponding ones from the
coherent state. We thus could regard the NOON state as a
coherent state wherein the information from the odd multi-
poles has been transferred to the highest-order one. In the
limit of high S only that multipole is relevant (see Fig. 3),
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FIG. 4. Maximum multipole length for each order K , selected
from randomly generated states (blue bars). Different states maxi-
mize the multipoles for different values of K , so the dotted curves
represent the multipoles of the states maximizing a certain region,
except for the orange dots, which denote the distribution of the
coherent state. The black dot above the last multipole is the value
corresponding to the NOON state. Note that the distribution for the
coherent state and the state maximizing the last multipole are shown
in front of the maximum values, and the rest are vertically displaced
for clarity.

confirming that NOON states are more quantum for higher S.
The significant contribution of the NOON state to the final
multipole raises the question of the maximum value that a
state can achieve in its highest-order multipole. To explore this
question, we numerically generated 6 × 104 random constel-
lations for various values of S: none of them exhibited a larger
highest-order multipole than the NOON state. This brings
the question of the maximum value for the K th multipole
length.

The results are shown in Fig. 4 for S = 60. Unexpectedly,
it appears that the coherent state is the unique state with the
maximal multipole �2

K for all values of K up to a certain point.
After this, another state maximizes the K th multipole for a
different region of larger K values and so on. The multipolar
distribution of these states is bell shaped near the multipole it
maximizes and exhibits a wiggling behavior at the first multi-
poles. We can also observe how, as K increases, this wiggling
evolves to a distribution very similar to that of the NOON
state. This supports the hypothesis that the NOON state is
the one with the highest contribution to its final multipole and
allows a discrete transition between states maximizing low-
order multipoles (coherent) and those maximizing high-order
ones (NOON).

The king of quantumness shows the absence of lower-
order multipoles, which is the origin of the isotropic behavior
of their higher-order fluctuations. However, the signifi-
cance of the strength of the first nonzero multipole is not
clear.

We can also gain some general intuition from our cal-
culations. If one has a constellation and makes a change,
such as adding, removing, or moving a star, what happens to
the multipoles? Upon the addition of a new star ζnew to the
constellation, for example, the elementary symmetric polyno-
mials change as ek �→ ζnewek−1 + ek for k > 0 and the rest
of the calculations proceed as above. Supposing further that
the original constellation corresponded to a coherent state at
z = 0, the addition of a star at ζnew makes the multipoles

transform to

�2
K = c(K, S)

[
4S2 + 4S|ζnew|2 +

(
K2 + K − 2S

)2

4S2
|ζnew|4

]
,

(4.2)

with

c(K, S) = (2K + 1)(2S − 1)!2|ψS|4
(2S − K )!(2S + K + 1)!

. (4.3)

V. DISCUSSION

We explore in this section some nontrivial consequences
of our method. A first direct result is to compute Stokes
operators [102] from the constellation. Choosing the Sz op-
erator, for example, all of its moments may now be computed
as

〈Sn
z 〉 = |f2S (ζ)|2

2S∑
m=0

(m − S)n

(
2S

m

)−1

|e2S−m(ζ)|2; (5.1)

all other moments may be found by rigidly rotating the con-
stellation to highlight any other operator axis. Knowledge of
the Stokes vector S = (〈Sx〉, 〈Sy〉, 〈Sz〉)� (the superscript �
denoting the transpose) and 2S − 1 of the stars provides an
overcomplete set of three equations for finding the location
of the remaining star. With two stars’ locations unknown,
the covariances between the Stokes parameters provide suf-
ficient information to determine the four unknown angular
coordinate parameters, and so on for higher-order moments
and determining the unknown locations of more stars. The
inversion process involves nonlinear functions and tends to
require numerical solutions.

The results may also be used to make contact with spherical
t designs, which are sets of points on the sphere that may
be used for averaging polynomial functions over the entire
sphere [58,59]. For a set of points to be a one-design, their
vectors must sum to the zero vector. In terms of the stereo-
graphic projection, this constrains the points to obey∑

j

ζ j

1 + |ζ j |2 = 0,
∑

j

1 − |ζ j |2
1 + |ζ j |2 = 0. (5.2)

More connections to designs with t > 1 are the subject of
future study.

We can further explore the significance of the elementary
symmetric polynomials, as they have not yet been used to
our knowledge for studying our quantum states. Consider
that a Majorana constellation can always be rotated such that
one of the stars is at the north pole with θ = 0. This makes
the highest-order polynomial e2S vanish. Then, the vanishing
of the next polynomial e2S−1 implies that a second star is
also at the north pole. With each subsequent polynomial that
vanishes, another star is added to the north pole, up to the
condition that e j = 0 ∀ j > 0 implies that all 2S stars are at the
north pole and the state is a spin coherent state. The maximal
degeneracy of any star in the constellation is then equal to
the maximum number of consecutive highest-order symmetric
polynomials that vanish, where the latter is maximized over
rigid rotations of the stars that perform a known transforma-
tion of the roots.
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FIG. 5. Two visualizations of how a Majorana constellation can
smoothly evolve between classical (coherent) and quantum (NOON)
states. On the left, the stars are always at equal polar angles to each
other and are equally spaced from each other, while the circle they
are spaced on transitions between the north pole (coherent) and the
equator (NOON). On the right, the stars spread or coalesce around
the equator, with equal azimuthal angles between each star and the
subsequent star; the final star goes around the equator to come closer
to (NOON) or farther from (coherent) wrapping around to reach the
initial star from the other side.

Specifying which polynomials e j (ζ) vanish significantly
constrains a state. In quantifying quantumness, the vanishing
of low-order multipoles is a sign of nonclassicality, while here
the vanishing of all higher-order polynomials seems to imply
an increase in classicality. We are led to consider an interest-
ing case: what if all of the lower-order polynomials vanish,
such that the state retains e2S �= 0 while e j (ζ) = 0 ∀0 < j <

2S? This includes, for example, the NOON states, which are
considered highly quantum by many measures. Since NOON
states have all of their stars equally spaced around the equator,
the roots all obey |ζ j | = |ζk| and are directly equal to roots
of unity ζ j = exp(iπ j/S). Summing all 2S such roots gives
e1(ζ) = ∑2S

j=1 exp(iπ j/S) = 0; summing all
(2S

2

)
products of

such roots gives

e2(ζ) =
2S∑
j<k

exp[iπ ( j + k)/S]

= 1

2

2S∑
j �=k

exp[iπ ( j + k)/S] = 0, (5.3)

and so on for all higher-order e j (ζ) other than

e2S (ζ) = exp

⎛
⎝iπ

2S∑
j=1

j

S

⎞
⎠ = (−1)2S+1 �= 0. (5.4)

We can visually and mathematically explore the transition
between NOON states and coherent states by the migration of
stars from the equator to the north pole and by the vanishing
of e2S (ζ), respectively. Consider the transition as sketched in
Fig. 5(a), where the 2S points in the constellation are equally
spaced around a circle other than the equator, sharing the polar
angle θ . The symmetric polynomials take the same form as
before, with e j (ζ) multiplied by tan j (θ/2), so all of the lowest
polynomials vanish other than

e2S = (−1)2S+1 tan2S (θ/2). (5.5)

FIG. 6. Evolution of the multipole lengths corresponding to
Fig. 5(a). The position of the stars in the figure is for illustrative
purposes only, as the transition occurs when the stars are very close
to the equator.

This codifies the gradual progression: as the circle on which
the stars lie gets smaller and smaller, from a NOON to a coher-
ent state, the one nonzero polynomial (other than e0 = 1) goes
to zero as tan2S (θ/2). The magnitude of this highest-order
polynomial, after a rigid rotation that makes the rest of the
polynomials vanish, directly encodes the quantumness of the
state. Note that it is the deviation of the magnitude of e2S from
unity that matters: there is a coherent state at θ = 0 and π .

We can also obtain exact expressions for the multipoles as
a function of θ :

�2
K = �2

K,coh

[
tan4S (θ/2) − 1

tan4S (θ/2) + 1

]2

, K = 1, 3, . . . , 2S − 1,

(5.6)

whereas �2
K = �2

K,coh for K = 2, 4, . . . , 2S − 2. This transi-
tion from coherent to NOON is very abrupt, even for low
values of S, due to the power of 4S in the tangent. The
multipoles look much like a coherent state up until the stars
are very close to the equator. This shows the vulnerability of
the NOON state to a small displacement of its stars.

As previously argued, the NOON state maximizes the last
multipole. With the help of the previous expressions we can
obtain this value:

�2
2S,NOON =

⎧⎨
⎩

1
2 + (4S

2S

)−1
S = 1, 2, . . .

1
2 S = 1

2 , 3
2 , . . .

, (5.7)

which tends to 1/2 as S becomes large. Note that this does
not contradict the results in Fig. 3, for the multipoles are
normalized therein.

We can observe how the multipole lengths change in the
aforementioned transition between coherent and NOON states
in Fig. 6. This transition can be enacted by evolution under the
highly nontrivial Hamiltonian

HNOON↔coh = −i|S, S〉〈S,−S| + i|S,−S〉〈S, S| (5.8)

that manifestly breaks degeneracies between Majorana stars.
Further consider the alternative transition as in Fig. 5(b),

where the stars spread around the equator (θ = π/2) smoothly
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between NOON- and coherent-state configurations. Now we
consider the coherent state to have ζ = 1, such that its poly-
nomials take the form e j (ζ) = (2S

j

)
. We choose the spreading

rate such that all stars arrive in place at the same time, with
ζ j (t ) = exp(iπt j/S) and t ∈ (0, 1) with t = 0 and 1 corre-
sponding to coherent and NOON states, respectively. Then

e1[ζ(t )] = exp

[
iπ

(2S + 1)

2S
t

]
sin(πt )

sin
(

πt
2S

) ,

e2[ζ(t )] = 1

2!
{e1[ζ(t )]2 − e1[ζ(2t )]},

e3[ζ(t )] = 1

3!
{e1[ζ(t )]3 − 3e1[ζ(t )]e1[ζ(2t )] + 2e1[ζ(3t )]},

(5.9)

and so on. For small t , these equal

e j[ζ(t )] =
(

2S

j

)
−

(
2S

j + 1

)
π2 2S + 1

4S2
t2 + O(t4). (5.10)

The Hamiltonian required to enact this transition is much
more complicated, as the stars all rotate around the z axis
but no Hamiltonian of the form Sn

z can do anything other than
rotate the NOON state.

Finally, consider the symmetric transition where the stars
spread in both directions along the equator, with pairs moving
at equal speeds. For example, with 2S odd, we can set ζ0 = 1,
ζ j (t ) = exp(iπt j/S) for 0 < j � S − 1/2, and relabel the re-
mainder as ζ− j (t ) = exp(−iπt j/S) for 0 < j � S − 1/2. The
spacings between all of the stars are the same as when all
of the stars traveled in the same direction, merely offset by
a relative phase, which symmetrizes the expressions to

e1[ζ(t )] = sin(πt )

sin
(

πt
2S

) ,

e2[ζ(t )] = 1

2!
{e1[ζ(t )]2 − e1[ζ(2t )]}, (5.11)

and so on. We can thus use the symmetric polynomials to
observe the transitions between highly quantum and highly

classical states, in accordance with the geometric picture of
the Majorana constellation.

VI. CONCLUDING REMARKS

The Majorana representation provides a valuable geomet-
ric tool to characterize quantum states with SU(2) symmetry.
The visualization of quantum states as a constellation in the
unit sphere is finding new applications in quantum informa-
tion science. On the other hand, the multipolar expansion is
especially germane to capture the state invariant properties
and, in addition, the resulting multipoles can be measured in
the laboratory.

We have extensively explored how to go from Majorana
constellations to multipolar distributions and back, illustrat-
ing this through a variety of examples. For instance, we
have elucidated the changes in the multipolar distribution
when the Majorana constellation transitions from a classical
(concentrated) to a highly quantum state (spread out). Addi-
tionally, we have delved into the consequences of adding new
stars to the constellation and examined states with the great-
est contribution to the higher-order multipole, among many
other aspects. Interestingly, the formalism can be manifestly
extended to other symmetries [103]: this is more than an
academic curiosity, and work in this direction is ongoing.
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