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We investigate parametrized multipartite entanglement measures from the perspective of k nonseparability
in this paper. We present two types of entanglement measures in n-partite systems, q-k-ME concurrence
(q > 1, 2 � k � n) and α-k-ME concurrence (0 � α < 1, 2 � k � n), which unambiguously detect all k-
nonseparable states in arbitrary n-partite systems. Rigorous proofs show that the proposed k-nonseparable
measures satisfy all the requirements for being an entanglement measure including the entanglement monotone,
strong monotone, convexity, vanishing on all k-separable states, and being strictly greater than zero for all
k-nonseparable states. In particular, the q-2-ME concurrence and α-2-ME concurrence, renamed as q-GME
concurrence and α-GME concurrence, respectively, are two kinds of genuine entanglement measures corre-
sponding to the case where the systems are divided into bipartition (k = 2). The lower bounds of the two classes
k-nonseparable measures are obtained by employing the approach that takes into account the permutationally
invariant part of a quantum state. Furthermore, the relations between q-n-ME concurrence (α-n-ME concurrence)
and global negativity are established. In addition, we discuss the degree of separability and elaborate on an
effective detection method with concrete examples. Moreover, we compare the q-GME concurrence defined by
us to other genuine entanglement measures.
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I. INTRODUCTION

Quantum entanglement as a physical resource is indispens-
able in such tasks as quantum cryptography [1–4], quantum
teleportation [5–7], and quantum communication [8–10].
Moreover, it is recognized that entangled states are at the
core of quantum information processing [11–13]. Therefore,
the qualitative and quantitative study of multipartite quantum
states is a matter of great importance, and in this paper we
mainly focus on the quantitative description of entanglement
of states.

Initially, bipartite systems were studied extensively, and
a wide range of measures were found to quantify the en-
tanglement of states. Concurrence is one of the well-known
measures for bipartite quantum systems [14–17], and Woot-
ters gave an analytical expression for arbitrary two-qubit
quantum states in Ref. [15]. Furthermore, there are other
methods, such as negativity [18,19], entanglement of forma-
tion [20,21], and Tsallis entropy of entanglement [22], that
can also characterize the entanglement of quantum states com-
mendably.

Many efforts have been made to detect multipartite en-
tanglement [23–33], but no measure can be employed to
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calculate the entanglement of multipartite mixed states. In
Ref. [34], Ma et al . put forth a measure of genuine multipar-
tite entanglement (GME), termed GME concurrence, which
can distinguish the genuinely entangled states from the oth-
ers, in addition, they rendered a computable lower bound.
Subsequently, Chen et al. [35] optimized the lower bound of
Ref. [34]. To quantitatively characterize the entire hierarchy
of k separability of states more precisely in n-partite systems,
Hong et al . [36] advanced generalized measures called k-ME
concurrence, where k runs from n to 2, and provided their two
strong lower bounds. The GME concurrence [34] is a special
case of the k-ME concurrence [36] when k = 2. It is ac-
knowledged that multipartite entanglement (ME) is extremely
complicated. Gao et al . [37] proposed that whether a state
is k nonseparable can be determined by its permutationally
invariant (PI) part, which dramatically reduces the dimension
of the space to be considered.

In addition, some researchers devoted themselves to the
study of parametrized measures. Yang et al . [38] introduced
a parametrized entanglement monotone [39] called q concur-
rence (q � 2) for arbitrary bipartite systems, and presented
the lower bound of q concurrence meanwhile. Later, Wei and
Fei [40] came up with a generalized concurrence in terms
of different ranges of the parameter named α concurrence
(0 � α � 1

2 ). Shi [41] generalized the geometric mean of
bipartite concurrences (GBC) defined by Li and Shang [42]
to parametrized form, which is known as geometric mean of
q concurrence (GqC).
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Motivated by the thoughts in Refs. [36–38,40], our aim
in this paper is to define new ME measures from the point
of k nonseparability utilizing the parametrized concurrence
[38,40]. The calculation of entanglement for an n-partite
mixed state is considerably difficult as it generally involves
optimization procedures. We will try to give lower bounds on
the k-nonseparable parametrized entanglement measures and
provide an effective degree of separability for a convenient
way to understand the structure of multipartite quantum states.
Genuine multipartite entanglement is vital in quantum spin
chains [43] and measurement-based quantum computing [44],
hence we specifically mention the special case of k = 2 (i.e.,
the genuine entanglement measure), and compare it with other
available GME measures.

The content of this paper is arranged as follows. In Sec. II,
we briefly introduce a few notions. In Sec. III, we put forward
two classes of parametrized measures called q-k-ME con-
currence Cq−k (q > 1) and α-k-ME concurrence Cα−k (0 �
α < 1), respectively. When k = 2, the corresponding two
categories of genuine entanglement measures, respectively,
are termed q-GME concurrence (Cq−GME) and α-GME con-
currence (Cα−GME). We verify that these measures defined
by us conform with, simultaneously, the properties includ-
ing nonnegativity, being strictly greater than zero for all
k-nonseparable states, invariance under local unitary trans-
formations, (strong) monotonicity, and convexity. In addition,
Cq−k and Cq−GME satisfy the subadditivity as well, but Cα−k

and Cα−GME fail. The lower bound of Cq−k is obtained in
Sec. IV by taking the maximum of Cq−k of the PI part of a
quantum state and so is Cα−k . Furthermore, we establish the
relations between Cq−n (Cα−n) and global negativity, which
can be used to detect whether a quantum state is entangled
or fully separable. Meanwhile, we discuss a specific exam-
ple of mixing the W state with white noise and observe
that the range detected by our results is larger than that of
Ref. [29]. These two approaches, reflecting the degree of
entanglement in Sec. V, exhibit different aspects of dom-
inance in the detection of entanglement. The combination
of these two methods can be used to detect k-nonseparable
states more effectively. In Sec. VI, we compare Cq−GME with
concurrence fill [61] and GqC [41] by a concrete example,
which shows that they generate different entanglement orders
as well as that Cq−GME is smoother at times. We conclude in
Sec. VII.

II. PRELIMINARIES

Let ρ be an n-partite quantum state on Hilbert space H =
H1 ⊗ H2 ⊗ · · · ⊗ Hn with dimHi = di, and A1|A2| · · · |Ak be
a k partition (2 � k � n) of set A = {1, 2, . . . , n} such that

k⋃
t=1

At = {1, 2, . . . , n}, At

⋂
At ′ = ∅ when t �= t ′. (1)

An n-partite pure state |ϕ〉 on Hilbert space H is referred
to as k separable (2 � k � n) [16] if there exists a split-
ting of the n parties into k parts A1, A2, . . . , Ak such that
|ϕ〉 = ⊗k

t=1|ϕt 〉At holds. An n-partite mixed state ρ is called k
separable if it can be represented as a convex combination of
k-separable pure states, that is, ρ = ∑

i pi|ϕi〉〈ϕi|, where |ϕi〉

could be k separable regarding different partitions fulfilling
the above condition (1). Otherwise, the quantum state is called
k nonseparable. If ρ is n separable, then it is called fully
separable. If not, it is said to be entangled.

For any n-partite quantum state ρ, its PI part can be denoted
as [37]

ρPI = 1

n!

n!∑
j=1

� jρ�
†
j , (2)

where the set {� j} contains all of permutations of n particles.
A well-defined k-nonseparability measure E (ρ) ought to

meet the conditions as follows.
(M1) E (ρ) = 0 for arbitrary k-separable quantum states.
(M2) E (ρ) > 0 for arbitrary k-nonseparable quantum

states.
(M3) (Invariance under local unitary transformations)

E (ρ) = E (ULocalρU †
Local ).

(M4) (Monotonicity) E is nonincreasing under lo-
cal operations and classical communication (LOCC), i.e.,
E [�LOCC(ρ)] � E (ρ). Moreover, several entanglement mea-
sures can obey a stronger condition called strong monotonic-
ity, that E is average nonincreasing under LOCC, i.e., E (ρ) �∑

j p jE (σ j ) with {p j, σ j} being yielded after �LOCC acts on
state ρ.

(M5) Most entanglement measures also conform to con-
vexity, E (

∑
i piρi ) �

∑
i piE (ρi ).

(M6) Further, there may be several entanglement mea-
sures that satisfy subadditivity, E (ρ ⊗ σ ) � E (ρ) + E (σ ).

For any bipartite pure state |ϕ〉AB, Yang et al . [38] defined
a parametrized bipartite entanglement measure, q concurrence
(q � 2), which is

Cq(|ϕ〉AB) = 1 − Tr
(
ρ

q
A

)
. (3)

Then, Wei and Fei [40] also came up with a new bipartite
entanglement measure in terms of different parameter ranges,
α concurrence (0 � α � 1

2 ), the form is

Cα (|ϕ〉AB) = Tr
(
ρα

A

) − 1. (4)

Here ρA is the reduced density operator of |ϕ〉AB. In fact, from
the perspective of being an entanglement measure, the above
parameters’ range can be extended to q ∈ (1,+∞) and α ∈
[0, 1).

Bipartite systems are the simplest ones containing en-
tanglement. However, multipartite entangled systems are
extremely complicated owing to the multiple distinct ways
in which a multipartite state can be entangled; to be more
blunt, a multipartite state can be partially entangled rather than
just genuinely multipartite entangled. Moreover, multipartite
entangled states play an essential role in the applications of
quantum information theory, such as quantum computation
[45] and quantum secret sharing [46]. Therefore, it is neces-
sary to gain a more refined structure of multipartite quantum
states. Here we will generalize bipartite parametrized concur-
rence to multipartite quantum systems from the point of k
nonseparability in the following sections.
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III. NEW PARAMETRIZED
ENTANGLEMENT MEASURES

We start by introducing new measures, q-k-ME concur-
rence (q > 1) and α-k-ME concurrence (0 � α < 1), which
are inspired by those proposed in Refs. [36–38,40].

Definition 1. For any n-partite pure state |ϕ〉 ∈ H, we define
the q-k-ME concurrence as

Cq−k (|ϕ〉) = min
A

∑k
t=1

[
1 − Tr

(
ρ

q
At

)]
k

(5)

for any q > 1, and the α-k-ME concurrence as

Cα−k (|ϕ〉) = min
A

∑k
t=1

[
Tr

(
ρα

At

) − 1
]

k
(6)

for any 0 � α < 1, respectively. Here ρAt is the reduced den-
sity operator of subsystem At , and the minimum is done over
all feasible k partitions A = {A1|A2| · · · |Ak} obeying condition
(1).

The quantization of Definition 1 can be generalized to any
n-partite mixed state ρ via convex-roof extension, the q-k-ME
concurrence is defined as

Cq−k (ρ) = inf
{pi,|ϕi〉}

∑
i

piCq−k (|ϕi〉) (7)

for any q > 1. Analogously, the α-k-ME concurrence is
defined as

Cα−k (ρ) = inf
{pi,|ϕi〉}

∑
i

piCα−k (|ϕi〉) (8)

for any 0 � α < 1. Here the infimum is taken over all viable
pure decompositions ρ = ∑

i pi|ϕi〉〈ϕi|.
The following we will verify q-k-ME concurrence (q > 1)

and α-k-ME concurrence (0 � α < 1) satisfy the require-
ments of an entanglement measure.

Proposition 1. Both q-k-ME concurrence (q > 1) and α-k-
ME concurrence (0 � α < 1) fulfill the necessary conditions
to be a reasonable entanglement measure.

The detailed proof is presented in Appendix A. We have
that both kinds of parametrized multipartite entanglement
measures possess the properties (M1) to (M5), in addition,
q-k-ME concurrence also satisfy the property (M6).

A quantum state is genuinely multipartite entangled iff it is
2 nonseparable. In particular, for the special case k = 2, the
formula (5) can be written as

Cq−GME(|ϕ〉) = min
γi∈γ

[
1 − Tr

(
ρ

q
Aγi

)]
, (9)

which is called q-GME concurrence for any q > 1. Similarly,
the formula (6) can be reduced to

Cα−GME(|ϕ〉) = min
γi∈γ

[
Tr

(
ρα

γi

) − 1
]
, (10)

which is termed α-GME concurrence for any 0 � α < 1. Here
γ = {γi} expresses the set of all feasible bipartitions.

For an arbitrary n-partite mixed state ρ, the q-GME con-
currence is expressed as

Cq−GME(ρ) = inf
{pi,|ϕi〉}

∑
i

piCq−GME(|ϕi〉) (11)

for any q > 1. Analogously, the α-GME concurrence is given
by

Cα−GME(ρ) = inf
{pi,|ϕi〉}

∑
i

piCα−GME(|ϕi〉) (12)

for any 0 � α < 1, where the infimum runs over all feasible
pure decompositions of ρ.

The expressions (11) and (12) are particular cases of the
formulas (7) and (8), respectively. It is natural that q-GME
concurrence and α-GME concurrence satisfy the necessary
requirements (M1) to (M5). Moreover, q-GME concurrence
fulfills additivity as well. So they can be used to detect
whether a quantum state is genuinely multipartite entangled.

Note that q-k-ME concurrence Cq−k (|ϕ〉) tends to 1 as
q → +∞ when the quantum state |ϕ〉 is k nonseparable.
However, when α = 0 and the state |ϕ〉 is k nonseparable,
0-k-ME concurrence C0−k depends on the rank of the re-

duced density operator ρAt , C0−k (|ϕ〉) =
∑k

t=1 rAt
k − 1, where

rAt denotes the rank of ρAt , t = 1, 2, . . . , k. Thus, the two
entanglement measures Cq−k and Cα−k describe different as-
pects. When q → +∞, Cq−k will take two extremes, Cq−k →
1 for any k-nonseparable pure state, whereas Cq−k = 0 for any
k-separable pure state, which mean that the pure states are
classified in terms of whether or not they are k separable, if the
state is k nonseparable, the value of entanglement is unified to
1, otherwise, the value of entanglement is 0.

Since bipartite parametrized concurrence and Tsallis-q̂ en-
tanglement are equivalent for some particular q̂, the q̂-k-ME
concurrence (or q̂-GME concurrence) can be viewed as a sort
of generalization of parametrized concurrence [38,40] and
Tsallis entanglement [22] in some sense. It may provide a
method to estimate Tsallis-q̂ entanglement with a particular
parameter q̂ for any multipartite quantum state.

Concurrence is known to be one of the most widely used
bipartite entanglement measures since it has analytic expres-
sions for any two-qubit quantum states [15]. Moreover, Gour
and Sanders [47] indicated that concurrence has important
implications in remote entanglement distribution protocols,
including entanglement swapping and remote preparation of
bipartite entangled states. As far as the quantum networks
are concerned, the distribution of long-range entanglement
is crucial [48–50]. A statistical theory, concurrence percola-
tion theory, was advanced, which implies that entanglement
transmission can also be established when two infinitely dis-
tant nodes are connected via paths with only imperfectly
entangled states, provided there are enough paths [48,50]. In
addition, entanglement swapping, as a fundamental protocol
in quantum information has many applications, such as the
creation of multiparticle entangled states from singlets [51],
entanglement purification [52], and so on. Thus, we can see
that concurrence is not only a powerful mathematical tool, but
also has physical operational interpretations.

The concurrence for any bipartite pure state |ϕ〉AB is as-
sociated with Tsallis-q̂ entropy corresponding to q̂ = 2, i.e.,
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C(|ϕ〉AB) = √
2T2(ρA). Also the parametrized bipartite en-

tanglement measures, q concurrence and α concurrence, are
obtained from Tsallis-q̂ entropy Tq̂, thus these formulas pre-
sented in Eqs. (5) and (6) can be uniformly expressed as

Cq̂−k (|ϕ〉) = min
A

|q̂ − 1| ∑k
t=1 Tq̂(ρAt )

k
(13)

for specific q̂, where Tq̂(ρ) = 1
q̂−1 (1 − Trρ q̂), q̂ > 0, and

q̂ �= 1. Remarkably, the Tsallis entropy is a parametrized
generalized form of the Boltzmann-Gibbs entropy [53], and
the corresponding Tsallis statistical mechanics can be widely
applied to long-range systems interaction, such as the optical
lattice [54,55], trapped ion [56], spin-glass relaxation [57],
and so on. However, Boltzmann-Gibbs statistical physics is
based on a series of idealized assumptions about the motion of
a large number of microscopic particles, and deals, in general,
with systems in which there are no or negligible interac-
tions between microscopic particles; of course, there are also
cases where the interactions between particles in the system
are taken into account, but this is limited to the treatment
of weak short-range interactions between nearby particles.
Therefore, the parametrized generalized form we define may
be more flexible to realize long-range interactions between
multipartite systems than the fashion given based on standard
concurrence.

IV. LOWER BOUNDS OF q-k-ME CONCURRENCE
AND α-k-ME CONCURRENCE

Compared with the bipartite systems, the structure of the
multipartite systems is rather complicated. As a result, it is
extremely difficult to give an analytical lower bound since
the optimization procedure is involved in computing entan-
glement of multipartite quantum states. Therefore, we first
employ the approach proposed by Gao et al . in Ref. [37],
considering the PI part of quantum state ρ, to give the lower
bounds of q-k-ME concurrence (q > 1) and α-k-ME concur-
rence (0 � α < 1).

Theorem 1. For any n-partite quantum state ρ, the q-k-ME
concurrence Cq−k (ρ) (q > 1) is lower bounded by the maxi-
mum of q-k-ME concurrence of ρPI

U = (UρU †)PI,

Cq−k (ρ) � max
U

Cq−k
(
ρPI

U

)
. (14)

Analogically, the α-k-ME concurrence (0 � α < 1) satisfies
the relation as follows:

Cα−k (ρ) � max
U

Cα−k
(
ρPI

U

)
. (15)

Here the maximum is taken all locally unitary transformations
U . Please see Appendix B for the detailed proof.

From here on, we only need to take into account the space
of the permutationally invariant quantum states, instead of
the entire space, which broadly reduces the dimension of
the space to be considered. The structure of the multipar-
tite quantum state is extremely complicated, so the approach
introduced in Ref. [37] provides great convenience for charac-
terizing and detecting k separability of general quantum states.

In the following we will establish the relation between q-n-
ME concurrence and global negativity [58]. Global negativity,

a measure between subsystem p and the remaining subsystem,
is given by

N p = 1

dp − 1
(‖ρTp‖1 − 1) = − 2

dp − 1

∑
i

λ
p−
i , (16)

where ρTp is the partial transpose with respect to the subsys-
tem p, ‖ · ‖1 is trace norm, λ

p−
i is the negative eigenvalue

of ρTp , and dp denotes the dimension of subsystem p. When
dp = 2 (p = 1, 2, . . . , n), Eq. (16) can be reduced to N p =
‖ρTp‖1 − 1 = −2

∑
i λ

p−
i .

It is especially emphasized here that we need to further
impose stronger restrictions on the range of parameters q and
α in the following content of this section.

The lower bound of q concurrence (q � 2) was derived by
Yang et al . using the positive partial transpose (PPT) criterion
and realignment criterion in Ref. [38]. The relation is

Cq(ρAB) �
[

max
{∥∥ρTA

∥∥q−1

1 ,
∥∥R(ρ)

∥∥q−1

1

} − 1
]2

m2q−2 − mq−1
, (17)

where ρTA is partial transpose with regard to the subsystem A
and R is a realignment operation [38], and m is obtained by
taking the minimum of the dimensions of the two subsystems.
On the basis of inequality (17), we show the connection be-
tween q-n-ME concurrence (q � 2) and global negativity in
the following theorem.

Theorem 2. For any n-qubit quantum state ρ, the relation
between the q-n-ME concurrence (q � 2) and global negativ-
ity of quantum state ρ is obtained as follows:

Cq−n(ρ) �

n∑
k=1

[(Nk + 1)q−1 − 1]2

n(22q−2 − 2q−1)
. (18)

Here the inequality is saturated for n-qubit pure state when
q = 2. The proof is provided in Appendix C.

For higher-dimensional systems, the result is as follows.
Corollary 1. For any n-qudit quantum state ρ ∈ ⊗n

i=1Hi,
dimHi = m, i = 1, 2, . . . , n, q-n-ME concurrence (q � 2)
satisfies the inequality

Cq−n(ρ) �

n∑
k=1

{[(m − 1)Nk + 1]q−1 − 1}2

n(m2q−2 − mq−1)
. (19)

In Ref. [59], Wei et al . provided lower bounds of q con-
currence for any bipartite state ρAB, which are

Cq(ρAB) � 1 − m1−q

(m − 1)2

{
max[‖ρTA‖1, ‖R(ρ)‖1] − 1

}2
(20)

for either q � 2 with m � 3 or q � 3 with m = 2, and

Cq(ρAB) � 1 − 21−q

2 − 22−s

{
max[‖ρTA‖1, ‖R(ρ)‖1] − 1

}2
(21)

for 2.4721 = s � q < 3 with m = 2. Here m is the smallest of
the dimensions of the two systems.

Next, we improve the above results of Theorem 2 and
Corollary 1 by utilizing the relation presented in formulas (20)
and (21). The conclusion is shown in the following theorem.
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Theorem 3. For any n-qubit quantum state ρ, one derives

Cq−n(ρ) � 2q−1 − 1

2q−1n

n∑
k=1

(Nk )2 (22)

for q � 3, and

Cq−n(ρ) � 1 − 21−q

(2 − 22−s)n

n∑
k=1

(Nk )2 (23)

for s � q < 3. For any n-qudit quantum state ρ ∈ ⊗n
i=1Hi,

dimHi = m, i = 1, 2, . . . , n, one obtains

Cq−n(ρ) � 1 − m1−q

n(m − 1)2

n∑
k=1

(Nk )2 (24)

for q � 2 and m � 3.
For 0 � α � 1

2 , we have the following result.
Theorem 4. For any n-qubit quantum state ρ, the relation

between the α-n-ME concurrence (0 � α � 1
2 ) and global

negativity of quantum state ρ is

Cα−n(ρ) � 21−α − 1

n

n∑
k=1

Nk, (25)

and for any n-qudit quantum state ρ ∈ ⊗n
i=1Hi, dimHi = m,

i = 1, 2, . . . , n, we obtain

Cα−n(ρ) � m1−α − 1

n(m − 1)

n∑
k=1

Nk . (26)

Next we will use these bounds to detect the entangled
states.

Example 1. Consider the mixture of the n-qubit W state and
white noise

ρ = a|W 〉〈W | + 1 − a

2n
I,

where |W 〉 = |0···01〉+|0···10〉+···+|1···00〉√
n

. By calculation, if a �
n

n+2n
√

n−1
, then there is

N1 = N2 = · · · = Nn = (2n
√

n − 1 + n)a − n

n2n−1
.

Following from the relations presented in inequalities (22),

(23), and (25), for a ∈ [ n
n+2n

√
n−1

, 1], one can obtain

Cq−n(ρ) � 2q−1 − 1

2q−1

(
(2n

√
n − 1 + n)a − n

n2n−1

)2

for q � 3, and

Cq−n(ρ) � 1 − 21−q

2 − 22−s

(
(2n

√
n − 1 + n)a − n

n2n−1

)2

for s � q < 3, and

Cα−n(ρ) � (21−α − 1)
(2n

√
n − 1 + n)a − n

n2n−1

for 0 � α � 1
2 .

When a ∈ ( n
n+2n

√
n−1

, 1], ρ is n nonseparable, that is, it is
an entangled state. However, the result in Ref. [29] is that the

state ρ is entangled if a ∈ ( n
2n+n , 1]. Due to n

n+2n
√

n−1
< n

2n+n

when n > 2, the range of entanglement that can be detected
using the negativity method is larger than that in Ref. [29].

V. DEGREE OF SEPARABILITY

In Ref. [30], Hong et al . gave two inequalities that can
be used to determine whether a state is k nonseparable. Let
|φ1〉 = |0〉⊗n and |φ2〉 = |1〉⊗n for Theorem 3 in Ref. [30], if
an n-qubit quantum state ρ is k separable, then it fulfills the
inequality

(2k − 2)A � B, (27)

where

A = |ρ1,2n |,

B =
2n−1∑
i=2

√
ρi,iρ2n−i+1,2n−i+1.

Let |ψ s
i 〉 = |0〉⊗(i−1)|1〉|0〉⊗(n−i) for Theorem 4 in Ref. [30]. If

an n-qubit quantum state ρ is k separable, then the result is
accord with that of Ref. [37], which is

C � D + (n − k)E . (28)

Here

C =
∑

0�i �= j�n−1

|ρ2i+1,2 j+1|,

D =
∑

0�i �= j�n−1

√
ρ1,1ρ2i+2 j+1,2i+2 j+1,

E =
n−1∑
i=0

|ρ2i+1,2i+1|.

Violation of any of the above inequalities (27) and (28) im-
plies that the state is k nonseparable.

Based on the relation of Eq. (27), an effective k1
eff can be

defined

k1
eff = log2(2 + B

A
). (29)

Note that, although Eq. (29) and Eq. (7) in Ref. [60] have
the same form of expression, they represent completely differ-
ent meanings. k1

eff quantifies the degree of separability, while
Eq. (7) in Ref. [60] reflects the degree of entanglement. In
addition, the effective k2

eff was presented in Ref. [37], which
was obtained by inverting Eq. (28),

k2
eff = n − C − D

E
. (30)

So k2
eff can be also regarded as the degree of separability. If

an n-partite quantum state is k separable, then we should have
that ki

eff � k (i = 1, 2). We can say that if k1
eff < k or k2

eff < k,
then the quantum state is k nonseparable. In particular, for
a fully separable quantum state, one ought to obtain that
both k1

eff and k2
eff are greater than or equal to n. If one of

the ki
eff (i = 1, 2) is less than 2, then the quantum state is

genuinely entangled.
To illustrate our results more clearly, we present two con-

crete examples.

012213-5
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FIG. 1. Interpretation the degree of separability k1
eff (t, n) of the

state given in formula (31). The red (upper) line, blue (middle) line,
and green (lower) line, respectively, correspond to the cases where n
takes 11, 4, 3. Since k1

eff > n is meaningless, it is omitted here.

Example 2. Consider an n-qubit quantum state

ρ = t |GHZ〉〈GHZ| + 1 − t

2n
I, (31)

where |GHZ〉 = |0〉⊗n+|1〉⊗n√
2

. By calculation, when t ∈
( 2n−2

2n+k−1−2 , 1], the quantum state ρ is k nonseparable. That

is, if t ∈ ( 2n−2
2n+k−1−2 , 1], then Cq−k (ρ) > 0. Specifically, if

t ∈ ( 2n−2
2n+1−2 , 1], ρ is not 2 separable, namely, the state ρ is

genuinely multipartite entangled, which means Cq−2(ρ) > 0.
The state ρ is fully separable (k = n) when t ∈ [0, 1

2n−1+1 ].
This range is consistent with the range given in Ref. [33].
Due to lim

n→+∞
2n−2

2n+1−2 = 1
2 , when n is large enough, nearly half

of the states are genuinely multipartite entangled. In addition,
lim

n→+∞
1

2n−1+1 = 0, which means the quantum states are almost

entangled when n → +∞. For this state, we can obtain

k1
eff (t, n) = log2

(
(2n − 2)(1 − t )

2n−1t
+ 2

)
,

which is a function of t and n. Plotting k1
eff (t, n), we take

n = 3, 4, 11 here. As shown in Fig. 1, we observe that k1
eff

monotonically increases with the amount of decoherence.
Example 3. Consider an n-qubit quantum state ρ, which is

a mixture of the Greenberger-Horne-Zeilinger (GHZ) state, W
state, and white noise

ρ = a|GHZ〉〈GHZ| + b|W 〉〈W | + 1 − a − b

2n
I,

where |W 〉 = |0···01〉+|0···10〉+···+|1···00〉√
n

. By simple calculation,

one has A = a
2 , B = 2n

√
( b

n + 1−a−b
2n ) 1−a−b

2n + (2n−1 − n − 1)
1−a−b

2n−1 , C = (n − 1)b, D = n(n − 1)
√

( a
2 + 1−a−b

2n ) 1−a−b
2n ,

E = n( b
n + 1−a−b

2n ). Set n = 4, when k1
eff = log2

[ 2
a (

√
(1−a+3b)(1−a−b)

2 + 3(1−a−b)
8 ) + 2] < k or k2

eff = 4 −
12b−3

√
(1+7a−b)(1−a−b)
1−a+3b < k, the quantum state ρ is k

a+b=1

z
1

z
2

z
3

z
4

0 0.2 0.4 0.6 0.8 1
a

0

0.2

0.4

0.6

0.8

1

b

FIG. 2. The solid red line z1 and the dashed red line z2 represent
the equality (32) and (33) for k = 2, respectively; the solid green
line z3 and the dotted blue line z4 denote the equality (32) and (33)
for k = 4, respectively. For case a > b, the inequality (27) is better at
detecting entanglement, whereas for case a < b, the inequality (28)
is better.

nonseparable. To make it more intuitive, we plot

(2k − 2)a =
√

(1 − a + 3b)(1 − a − b) + 3(1 − a − b)

4
(32)

and

4b =
√

(1 + 7a − b)(1 − a − b) + (4 − k)
1 − a + 3b

3
(33)

for k = 2 and k = 4, respectively, in Fig. 2.
As we can see in Fig. 2, the states in the region bounded by

line z1, axis a, and line a + b = 1, and the region bounded by
line z2, axis b, and line a + b = 1 are genuinely four-partite
entangled. The states in the region bounded by line z1, z2,
and axis a can only be detected by the first form (27); the
states in the region bounded by line z1, z2, and axis b can
only be detected by the second form (28); and the states
in the intersection region bounded by line z1, line z2, and
line a + b = 1 are those where both inequalities can detect.
Similarly, the states in the region bounded by line z3, axis a,
and line a + b = 1, and the region bounded by line z4, axis
b, and line a + b = 1 are not 4 separable, namely, they are
entangled states.

Therefore, the combination of Eqs. (29) and (30) can be
used to judge the separability of quantum states more effec-
tively.

VI. COMPARING q-GME CONCURRENCE WITH OTHER
GME MEASURES

We first introduce concurrence fill [61], which is defined
based on the Heron formula of the triangle area

FA1A2A3 = [
16
3 P

(
P − C2

A1|A2A3

)(
P − C2

A2|A1A3

)

× (
P − C2

A3|A1A2

)] 1
4 ,
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PARAMETRIZED MULTIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 109, 012213 (2024)

where P = 1
2 (C2

A1|A2A3
+ C2

A2|A1A3
+ C2

A3|A1A2
). FA1A2A3 perfectly

characterizes the geometric meaning of three-qubit quantum
states.

For any n-partite pure state |ϕ〉, the geometric mean of q
concurrence (GqC) [41] is

Gq(|ϕ〉) = [Pq(|ϕ〉)]
1

c(γ ) ,

where Pq(|ϕ〉) = ∏
γi∈γ CqAγi |Aγi

(|ϕ〉), γ = {γi} denotes all of
possible bipartitions, and c(γ ) represents the cardinality of the
set γ .

Mathematically, GqC is defined based on the geometric
mean of bipartite concurrence, however, the q-GME concur-
rence is a special case of the q-k-ME concurrence defined
in terms of the minimum of all possible k partitions. Next
we illustrate with a specific example, demonstrating that
Cq−GME and Gq are distinct. In fact, the q-GME concurrence is
consistent with GqC for three-partite completely symmetric
pure states. For example, |GHZ3〉 = |000〉+|111〉√

2
and |W3〉 =

|100〉+|010〉+|001〉√
3

, Cq−GME(|GHZ3〉) = Gq(|GHZ3〉) = 1 − 1
2q−1

and Cq−GME(|W3〉) = Gq(|W3〉) = 1 − [( 2
3 )q + ( 1

3 )q].
Now we compare these measures by a specific example.

Theoretically, the q-GME concurrence defined by us may
cause sharp peaks due to the minimization involved, but here
we will present an example to show that the measure defined
by us is sometimes smoother than GqC and concurrence fill.

Example 4. Considering a quantum state |φθ 〉 =
− 1

2 cosθ |010〉 +
√

3
2 cosθ |100〉 + sinθ |011〉, we obtain

Cq−GME(|φθ 〉)= min

{
1−

[(
1

4
+ 3

4
sin2θ

)q

+
(

3

4
cos2θ

)q]
,

1 −
[(

1 + √
1 − 3sin2θcos2θ

2

)q

+
(

1 − √
1 − 3sin2θcos2θ

2

)q]}
,

Gq(|φθ 〉) =
{

1 −
[(

1

4
+ 3

4
sin2θ

)q

+
(

3

4
cos2θ

)q]} 2
3

×
{

1 −
[(

1 + √
1 − 3sin2θcos2θ

2

)q

+
(

1 − √
1 − 3sin2θcos2θ

2

)q]} 1
3

,

F (|φθ 〉) =
[

16

3
P(P − C1)2(P − C2)

]1/4

,

where

P = 3 −
{[(

1 + √
1 − 3sin2θcos2θ

2

)2

+
(

1 − √
1 − 3sin2θcos2θ

2

)2]

− 2

[(
1

4
+ 3

4
sin2θ

)2

+
(

3

4
cos2θ

)2]}
,

FIG. 3. Set q = 3. The red (lower) curve line expresses the
C3−GME(|φ〉), the blue (middle) curve line is G3(|φ〉), the green
(upper) curve line denotes concurrence fill of pure state |φ〉.

C1 = 2 − 2

[(
1

4
+ 3

4
sin2θ

)2

+
(

3

4
cos2θ

)2]
,

C2 = 2 − 2

[(
1 + √

1 − 3sin2θcos2θ

2

)2

+
(

1 − √
1 − 3sin2θcos2θ

2

)2]
,

when q = 3, C3−GME(|φθ 〉) = 1 − [( 1+√
1−3sin2θcos2θ

2 )
3
+

( 1−√
1−3sin2θcos2θ

2 )
3
]. The comparison of the three measures is

shown in Fig. 3.
Observing Fig. 3, we find the pure state |φθ 〉 is not

genuinely entangled when θ = 0, π
2 , π . When θ ∈ [δ, γ ] ∪

[ω, τ ], the entanglement order of C3−GME is different from
G3C and concurrence fill, that is, there exist ϑ1, ϑ2 ∈ [δ, γ ]
or ϑ1, ϑ2 ∈ [ω, τ ] such that C3−GME(|φϑ1〉) � C3−GME(|φϑ2〉),
while G3(|φϑ1〉) � G3(|φϑ2〉) and F (|φϑ1〉) � F (|φϑ2〉). In
addition, when θ ∈ [β, δ] ∪ [τ, η], the order of entanglement
of C3−GME and G3C is also different. When θ ∈ (0, γ ), only
the measure we defined corresponds to the unique quantum
state. When θ = π , the G3C and concurrence fill have a
sharp peak, while our measure is smooth. Therefore, q-GME
concurrence is advantageous in some cases.

To see whether Cq−GME(|φ〉) and Cα−GME(|φ〉) have the
same monotonicity about q and α, respectively, we plot two
figures. In Fig. 4(a) we take q ∈ [2, 12], the function Cq−GME

is increasing of q. In Fig. 4(b) we take α ∈ [0, 1
2 ], the function

Cα−GME is decreasing of α. This also reflects that Cq−k and
Cα−k are different.

VII. CONCLUSION

In this work, we proposed two types of general
parametrized entanglement measures, q-k-ME concurrence
Cq−k (q > 1, 2 � k � n) and α-k-ME concurrence
Cα−k (0 � α < 1, 2 � k � n), in n-partite systems from
the standpoint of k nonseparability, and shown that these
measures Cq−k and Cα−k satisfy the requirements including
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(a)

(b)

FIG. 4. For q ∈ [2, 12], Cq−GME is an increasing function about
q. For α ∈ [0, 1

2 ], Cα−GME is a decreasing function about α.

entanglement monotone, strong monotone, convexity, being
zero for any k-separable state and strictly positive on
any k-nonseparable state. In addition, Cq−k also satisfy
subadditivity. It is evident that, as special cases of Cq−k and
Cα−k , parametrized GME measures Cq−GME and Cα−GME can
inherit their properties, respectively. The q-k-ME concurrence
of ρ is lower bounded by the maximum of Cq−k of the PI part
of ρ and so is Cα−k (ρ). Apart from that, we associated global
negativity with q-n-ME concurrence (α-n-ME concurrence)
and gave the lower bound of Cq−n (Cα−n), which could be used
to detect whether a quantum state is entangled. We presented
an example which is a mixture of W state and white noise,

and observed that when a ∈ ( n
n+2n

√
n−1

, n
2n+n ], our result can

detect that these states are entangled, whereas the result in
Ref. [29] cannot. What is more, we discussed the degree of
entanglement of k-nonseparable states, where the violation of
any of these inequalities (27) and (28) implies that the state is
k nonseparable. The combination of these two formulas can
detect entanglement more effectively. Comparing the q-GME
concurrence with GqC and concurrence fill through a concrete
example, we found that they generate different entanglement
orders and that q-GME concurrence is sometimes smooth.
The measures defined by us could be useful for further study
of multipartite quantum entanglement.
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APPENDIX A: PROOF OF PROPOSITION 1

First, we prove q-k-ME concurrence (q > 1) satisfies the
conditions (M1) to (M6).

(M1) Since Trρq � 1, we can know Cq−k (ρ) � 0. Given
a k-separable pure state |ϕ〉 = ⊗k

t=1|ϕt 〉At , A1 and A1, A2

and A2, . . . , Ak and Ak do not exist correlation, where Ai

is the complement of Ai, one obtains Cq(|ϕ〉At |At
) = 0, t =

1, 2, . . . , k. Then we can easily get Cq−k (|ϕ〉) = 0 for arbitrary
k-separable pure states. For any k-separable mixed state ρ

with pure-state ensemble decomposition {pi, ρi}, ρi = |ϕi〉〈ϕi|
and |ϕi〉 is k separable, then Cq−k (ρ) � ∑

i piCq−k (|ϕi〉) = 0.
Therefore, Cq−k (ρ) = 0 for any k-separable quantum state.

(M2) Suppose that the set {A1|A2| · · · |Ak} contains all
of the k partitions (2 � k � n) of set A = {1, 2, . . . , n}.
For arbitrary k-nonseparable pure states, there exist k′ ∈
{1, 2, . . . , k} such that subsystems Ak′ and Ak′ are entangled,
then Cq(|ϕ〉Ak′ |Ak′ ) = 1 − Tr(ρq

Ak′ ) > 0, thus we can easily de-
rive Cq−k (|ϕ〉) > 0. For any k-nonseparable mixed state ρ,
there is no convex combination of k-separable pure states.
Hence Cq−k (ρ) > 0 for any k-nonseparable state.

(M3) By the property of trace, Cq−k (ρ) is invariant under
local unitary transformation.

(M4) We first demonstrate that Cq−k satisfies monotonicity.
Because q concurrence is nonincreasing under LOCC for

arbitrary bipartite pure states [38], namely, the inequality
CqAt |At

[�LOCC(|ϕ〉)] � CqAt |At
(|ϕ〉) holds for any pure state

|ϕ〉, then we can obtain

Cq−k[�LOCC(|ϕ〉)]

� min

k∑
t=1

CqAt |At
[�LOCC(|ϕ〉)]

k

� min

k∑
t=1

CqAt |At
(|ϕ〉)

k

= Cq−k (|ϕ〉).

For any mixed state ρ with the optimal pure decomposition
{pi, ρi}, ρi = |ϕi〉〈ϕi|, one has

Cq−k[�LOCC(ρ)]

�
∑

i

piCq−k[�LOCC(|ϕi〉)]

�
∑

i

piCq−k (|ϕi〉)

= Cq−k (ρ).
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Here the first inequality is due to the definition of Cq−k (ρ), the
second inequality holds because Cq−k is nonincreasing for any
pure state under LOCC.

Next we show Cq−k conforms to strong monotonicity.
Owing to the fact that q concurrence (q > 1) is entangle-

ment monotone for arbitrary bipartite quantum states [38],
that is, the inequality CqAt |At

(ρ) � ∑
j p jCqAt |At

(σ j ) holds,
where an ensemble of state σ j with the respective correspond-
ing probability p j is obtained by LOCC acting on ρ. We
first consider the case that ρ = |ϕ〉〈ϕ| and σ j are pure states.
Assume that A1|A2| · · · |Ak is the optimal partition of ρ, then
we get

Cq−k (ρ) =

k∑
t=1

(
1 − Trρq

At

)
k

=

k∑
t=1

CqAt |At
(|ϕ〉)

k

�

k∑
t=1

∑
j

p jCqAt |At
(σ j )

k

=
∑

j

p j

k∑
t=1

CqAt |At
(σ j )

k

�
∑

j

p jCq−k (σ j ),

where the last inequality holds according to Eq. (5).
For any mixed state ρ with the optimal pure decomposition

{pi, ρi}, ρi = |ϕi〉〈ϕi|, one has

Cq−k (ρ) =
∑

i

piCq−k (|ϕi〉)

�
∑

i j

pi p( j|i)Cq−k
(∣∣ϕ j

i

〉)

=
∑

i j

p j p(i| j)Cq−k
(∣∣ϕ j

i

〉)

=
∑

j

p j

( ∑
i

p(i| j)Cq−k
(∣∣ϕ j

i

〉))

�
∑

j

p jCq−k (σ j ).

Here the state |ϕ j
i 〉 = � j |ϕi〉√

Tr(� j |ϕi〉〈ϕi|�†
j )

is obtained with proba-

bility p( j|i) = Tr(� j |ϕi〉〈ϕi|�†
j ) after performing stochastic

LOCC on |ϕi〉, and p j = Tr(� jρ�
†
j ) is the probability of the

outcome j occurring with σ j = ∑
i p(i| j)|ϕ j

i 〉〈ϕ j
i |, p(i| j) =

pi p( j|i)/p j . The first inequality is true because Cq−k satisfies
the strong monotonicity for any pure state, while the second
inequality holds following from Eq. (7).

(M5) The convexity holds due to convex-roof extension.
(M6) Further we prove Cq−k fulfills the subadditivity.

Let ρ and σ be two arbitrary pure states and ρ = |ϕ〉〈ϕ|,

σ = |φ〉〈φ|. Suppose that there exist the optimal partitions
A1|A2| · · · |Ak and B1|B2| · · · |Bk satisfying the condition of

k partition such that Cq−k (ρ) =
∑k

t=1[1−Tr(ρq
At

)]

k , Cq−k (σ ) =∑k
t=1[1−Tr(σ q

Bt
)]

k , we can get

Cq−k (ρ ⊗ σ ) − Cq−k (ρ) − Cq−k (σ )

� 1

k

{ k∑
t=1

[
1 − Tr

(
ρ

q
At

)
Tr

(
σ

q
Bt

)] −
k∑

t=1

[
1 − Tr

(
ρ

q
At

)]

−
k∑

t=1

[
1 − Tr

(
σ

q
Bt

)]}

= 1

k

k∑
t=1

[ − Tr
(
ρ

q
At

)
Tr

(
σ

q
Bt

) + Tr
(
ρ

q
At

) + Tr
(
σ

q
Bt

) − 1
]

= −1

k

k∑
t=1

[
1 − Tr

(
ρ

q
At

)][
1 − Tr

(
σ

q
Bt

)]

� 0. (A1)

Suppose that ρ is any mixed state with optimal pure de-
composition ρ = ∑

i piρi and ρi = |ϕi〉〈ϕi|, σ = |φ〉〈φ| is any
pure state, then we have

Cq−k (ρ ⊗ σ ) = Cq−k

(∑
i

piρi ⊗ |φ〉〈φ|
)

�
∑

i

piCq−k (|ϕi〉〈ϕi| ⊗ |φ〉〈φ|)

�
∑

i

pi[Cq−k (|ϕi〉) + Cq−k (|φ〉)]

= Cq−k (ρ) + Cq−k (σ ), (A2)

where the first inequality is owing to the convexity of Cq−k

and the second inequality can be obtained from the result of
inequality (A1).

By similar procedures, if ρ, σ are any two mixed
states, and they have optimal pure decompositions ρ =∑

i pi|ϕi〉〈ϕi|, σ = ∑
j q j |φ j〉〈φ j |, one has

Cq−k (ρ ⊗ σ ) = Cq−k

(∑
i

piρi ⊗
∑

j

q jσ j

)

�
∑

j

q jCq−k

( ∑
i

pi|ϕi〉〈ϕi| ⊗ |φ j〉〈φ j |
)

�
∑

j

q j[Cq−k (ρ) + Cq−k (σ j )]

= Cq−k (ρ) + Cq−k (σ ).

Here the first inequality is due to the convexity of Cq−k , the
second inequality holds because of the inequality (A2).

With similar methods, we can also prove α-k-ME concur-
rence (0 � α < 1) meets the requirements of (M1) to (M5)
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for being a ME measure. It is not difficult to prove that Cα−k

does not satisfy subadditivity.

APPENDIX B: PROOF OF THEOREM 1

Suppose that the set {1, 2, . . . , n} is divided
into A1|A2| · · · |Ak satisfying the condition (1), then
� j (A1)|� j (A2)| · · · |� j (Ak ) is still a k partition of the
set {1, 2, . . . , n}. Let |ϕ〉 be any pure state, then � j (|ϕ〉) is
also a pure state, and we have

Cq−k (|ϕ〉) = Cq−k (� j |ϕ〉), (B1)

where � j ∈ Sn, Sn is an n-order symmetric group.
By using the convexity of Cq−k and the relation shown in

Eq. (B1), one gets

Cq−k (ρPI ) � 1

n!

n!∑
j=1

Cq−k (� j |ϕ〉)

= 1

n!

n!∑
j=1

Cq−k (|ϕ〉) = Cq−k (|ϕ〉). (B2)

Given a mixed state ρ, assume {pi, ρi} is the optimal pure
decomposition of ρ, ρi = |ϕi〉〈ϕi|, then we see

Cq−k (ρ) =
∑

i

piCq−k (|ϕi〉) �
∑

i

piCq−k
(
ρPI

i

)

� Cq−k (ρPI ).

Here the first inequality is based on inequality (B2) and the
second inequality is due to the convexity of Cq−k .

Because the PI part depends on the choice of bases [37]
and the relations listed above are true for ρPI

U obtained under
any locally unitary transformation U , one derives

Cq−k (ρ) � max
U

Cq−k
(
ρPI

U

)
.

With similar procedures, the inequality (15) can be obtained.

APPENDIX C: PROOF OF THEOREM 2

For any n-qubit pure state ρ = |ϕ〉〈ϕ|,

Cq−n(ρ) =

n∑
k=1

[
1 − Tr

(
ρ

q
k

)]
n

= Cq1|A1 + Cq2|A2 + · · · + Cqn|An

n

� [(N1 + 1)q−1 − 1]2 + · · · + [(Nn + 1)q−1 − 1]2

n(22q−2 − 2q−1)
.

Here Ap = {1, 2, . . . , n} \ {p}, p = 1, 2, . . . , n. Note that
when q = 2, C2p|Ap (|ϕ〉) = [N (|ϕ〉)]2

2 , then the inequality (18)
holds with equality when q = 2.

For any n-qubit mixed state ρ, suppose that {pi, ρi} is the
optimal pure decomposition and ρi = |φi〉〈φi|, then

Cq−n(ρ) =
∑

i

piCq−n(|φi〉)

�
∑

i

pi

n∑
k=1

[(Nk (|φi〉) + 1)q−1 − 1]2

n(22q−2 − 2q−1)

�

n∑
k=1

[ ∑
i

pi(Nk (|φi〉) + 1)q−1 − 1
]2

n(22q−2 − 2q−1)

�

n∑
k=1

[( ∑
i

piNk (|φi〉) + 1
)q−1 − 1

]2

n(22q−2 − 2q−1)

�

n∑
k=1

[(Nk (ρ) + 1)q−1 − 1]2

n(22q−2 − 2q−1)
,

where the second inequality holds because y = x2 is a convex
function, the third inequality is due to the fact that y = xq−1

is convex for q > 2, the third inequality is clearly true when
q = 2, and the last inequality holds from the convexity of Nk .
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